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Efficient Computation of Hedging Parameters for Discretely Exercisable
Options

ABSTRACT

We propose an algorithm to calculate confidence intervals for the values of hedging
parameters of discretely exercisable options using Monte-Carlo simulation. The algori-
thm is based on a combination of the duality formulation of the optimal stopping problem
for pricing discretely exercisable options and Monte-Carlo estimation of hedging parame-
ters for European options. We show that the width of the confidence interval for a hedging
parameter decreases, with an increase in the computer budget, asymptotically at the same
rate as the width of the confidence interval for the price of the option. The method can
handle arbitrary payoff functions, general diffusion processes, and a large number of ran-
dom factors. We also present a fast, heuristic, alternative method and use our method to
evaluate its accuracy.



Efficient Computation of Hedging Parameters for Discretely
Exercisable Options

The idea behind no-arbitrage option pricing is that, in a complete market, one can almost
surely replicate the payoff of an option using a suitably chosen portfolio of instruments. The
construction of this replicating portfolio is based on the computation of the hedging parame-
ters, or sensitivities, of option prices with respect to parameters of the underlying process.1

Indeed, the first derivative of the option price with respect to the initial asset price, ∆, corre-
sponds to the amount of the underlying asset held in the replicating portfolio, while the second
derivative, Γ, corresponds to the characteristic time interval between rebalancings. Reliable
estimation of option prices and hedging parameters, or option price sensitivities, has become
very important with the ever expanding range of applications of options from, for example,
problems in supply chain management, to problems in energy finance and real estate.

In this paper we develop an algorithm that uses Monte-Carlo simulation to estimate option
price sensitivities for options with multiple exercise dates and a potentially large number of
underlying assets. The advantage of Monte-Carlo simulation and the reason it is the method of
choice for problems with many assets is that, by its nature, Monte-Carlo simulation does not
suffer from an exponential increase in effort for a linear increase in the number of underlying
assets, a common problem with finite difference discretizations of partial differential equa-
tions and high dimensional lattice algorithms. In addition, Monte-Carlo simulation offers an
estimate of its own accuracy and is relatively easy to perform in parallel, leading to significant
increases in computational speed.

In the literature, Monte-Carlo simulation has been used to calculate sensitivities of the
option price for European options; i.e., options with a single exercise date, see Glynn (1989),
Broadie and Glasserman (1996), Fournié, Lasry, Lebuchoux, Lions, and Touzi (1999), and
Glasserman (2003) for an overview. We show how the simulation-based algorithms for ca-
lculating sensitivities of European options, and in particular the likelihood ratio algorithm
proposed by Broadie and Glasserman (1996), can be used to compute confidence intervals for
the values of sensitivities of discretely exercisable options with multiple exercise dates. To this
end, we combine the likelihood ratio algorithm for estimating sensitivities of European options
with an algorithm based on a dual representation of discretely exercisable option prices, origi-
nally proposed by Davis and Karatzas (1994) and further developed by Rogers (2002), Haugh
and Kogan (2004), and Andersen and Broadie (2004). The duality based algorithm provides
confidence intervals for the price of a discretely exercisable option. Our algorithm uses these
intervals in a multi-stage algorithm, where Monte-Carlo simulation is employed at every stage.

1These sensitivities are frequently referred to as ”Greeks”.
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We term the algorithm the LRD algorithm, standing for the combination of the likelihood ratio
and duality algorithms.

The intuition behind the LRD algorithm is that a discretely exercisable option is equivalent
to a European option that expires on the first exercise date of the discretely exercised option.
The value of the payoff of this European option is equal to the price of a discretely exercisable
option, starting on the first exercise date of the original option and having one exercise date
less. To estimate the sensitivities of the original, discretely exercisable, option, we apply the
likelihood ratio on the corresponding European option. Since, in order to apply the likelihood
ratio algorithm, we need to know the value of the corresponding European option, which
delivers a new, discretely exercisable, option, we use the duality based Monte-Carlo algorithm
for approximating prices of discretely exercisable options. Judicious use of the confidence
intervals for the option price then leads to confidence intervals for the option sensitivities.

In addition to proposing the LRD algorithm, we provide estimates of the asymptotic width
of the confidence intervals of the option price sensitivities in terms of the simulation parame-
ters and the available computer budget. We demonstrate that, choosing the simulation parame-
ters optimally, the width of the confidence interval for the option price sensitivities decreases
with an increase in the computer budget at the same rate as the width of the confidence interval
for the option prices themselves, computed by the duality based algorithm.2

We also compare the LRD algorithm to alternative algorithms for calculating option price
sensitivities, also entirely based on Monte-Carlo simulation. A comparison with an algorithm
based on the duality algorithm for estimating confidence intervals for option prices and finite
differences for approximating option price sensitivities, shows that the LRD algorithm is su-
perior in terms of both accuracy and speed. We also propose a heuristic algorithm that does
not produce confidence intervals but can be faster than the LRD algorithm. With the aid of the
LRD algorithm, we evaluate the heuristic alternative in numerical examples, and establish its
accuracy.

The remainder of the paper is organized as follows: in Section I we describe the asset
market, and review the literature on the calculation of sensitivities for the case of European
options and on the confidence intervals for the price of discretely exercisable options. In
Section II we describe the LRD algorithm that combines the two algorithms of Section I to
provide confidence intervals for the values of sensitivities of discretely exercisable options
and obtain the simulation parameters that provide the tightest confidence interval for a given
computer budget. In Section III we propose two alternative algorithms and compare them to

2This result is similar to the case of European options, where the width of the confidence interval for option
price decreases at the same rate as the width of the confidence interval for option price sensitivities computed
using the likelihood ratio algorithm.
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the LRD algorithm. Section IV provides numerical examples and Section V concludes. The
proofs of the propositions are presented in the appendices.

I. Model Setup and Literature Review

We consider a market with n tradable risky assets with prices S and one riskless asset with
deterministic instantaneous return rate r(t). We assume that there are n independent sources
of uncertainty. The risk-neutral dynamics for the price of the risky and the riskless assets is
given by

dSi(t) = r(t)Si(t)dt +σ(S, t)Si(t)dWi , Si(0) = xi, i = 1, . . . ,n

dB(t) = r(t)B(t)dt , B(0) = 1
(1)

where we assume that all the components Wi of the Wiener process W are independent.3 We
also assume that the volatility matrix σ is invertible.

For the market model given in Equation (1), we consider an option with payoff function
h(S). For the case of a European option, with a single exercise date, T , the price of the option
is given by

Q0(x) = E0

[
h(S(T ))

B(T )

]
.

whereE0 is the expectation under the risk neutral measure conditional on S(0)= x, and B(T )=
exp(

R T
0 r(t)dt).

When there are multiple, discrete, exercise opportunities, we use the dynamics of the
stock prices in Equation (1) to determine a vector-valued discrete time Markov process S(t) =
(S1(t), . . . ,Sn(t)) onRn

+ with fixed initial state x, taking values at times 0 = t0 < t1 < t2 < .. . <

td = T . Assuming that the option can be exercised at times t1, t2, . . . , td , the problem of pricing
this option reduces to solving the optimal stopping problem:

Primal : Q0 = sup
τ
E0

[
h(S(τ))

B(τ)

]
(2)

where τ is a stopping time taking values in the finite set τ ∈ {t1, t2, . . . , td}, and h(S(t)) is the
payoff from exercise at time t. The quantity h(S(τ))/B(τ) is the exercise value measured in
time 0 dollars.

3The assumption of independence is made without loss of generality. When the components Wi are not
independent, one can first perform a transformation to construct a process with independent components. We
present a numerical example with correlated assets in Section IV.C.
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Below we review results from the literature on how to calculate option price sensitivities
for European options, and on how to obtain a confidence interval for the option price for
options with multiple, discrete, exercise dates.

A. Sensitivities of European Options: The Likelihood Ratio Algorithm

Broadie and Glasserman (1996) present an algorithm based on Monte-Carlo simulation for
estimating sensitivities of European options. The algorithm, called the likelihood ratio al-
gorithm, is based on the observation that, for a European option, the price of the option Q0

satisfies:

∆i(x) =
dQ0

dxi

∣∣∣∣
S(0)=x

=
d

dxi
E0

[
e−

R T
0 r(t)dth(S(T ))

]

=
d

dxi

[Z
e−

R T
0 r(t)dth(S(T ))g(S(T ),x)dS(T )

]

=
Z

e−
R T

0 r(t)dth(S(T ))
∂g(S(T ),x)

∂xi
dS(T )

=
Z

e−
R T

0 r(t)dth(S(T ))
∂ lng(S(T ),x)

∂xi
g(S(T ),x)dS(T )

= E0

[
e−

R T
0 r(t)dth(S(T ))

∂ lng(S(T ),x)
∂xi

]

(3)

where all expectations are conditional on S(0) = x, g(S(T ),x) is the transition density of
reaching S(T ) given S(0) = x, and we are assuming that g satisfies standard regularity condi-
tions that allow the interchange of the order of differentiation and integration. Equation (3)
indicates that it is possible to express the sensitivity of the option price with respect to the
initial condition as a weighted expectation of the payoff function.

For the simple case of geometric Brownian motion with constant coefficients, the ith com-
ponent of the first derivative of the option price with respect to the initial stock price for asset
i, ∆i, is given by

∆i(x) = E0

[
e−

R T
0 r(t)dth(S(T ))

Wi(T )
xiσiT

]
, (4)

where σi is the diagonal element of the ith row of the volatility matrix. The i jth component of
the second derivative of the option price with respect to the initial prices of assets i and j, Γi j

is given by

Γi j = E0

[
e−

R T
0 r(t)dt h(S(T ))

xix jσiσ jT

{
Wi(T )Wj(T )

T
−δi j (1+σiWi(T ))

}]
, (5)
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where δi j is equal to one if i = j, and zero otherwise.

From Equations (4), (5) we have that the weights that allow the sensitivities of the Euro-
pean option price to be expressed as an expectation of the payoff are given by:

∆i(x) = E0

[
e−

R T
0 r(t)dth(S(T ))(ξ∆)i

]
, (ξ∆)i =

Wi(T )
xiσiT

Γi j(x) = E0

[
e−

R T
0 r(t)dth(S(T ))(ξΓ)i j

]
, (ξΓ)i j =

1
xix jσiσ jT

{
Wi(T )Wj(T )

T
−δi j (1+σiWi(T ))

}

(6)

We note that the algorithm fails when the time to expiration tends to zero, T → 0, since the
variance of the weights tends to infinity.4

B. Primal-Dual Algorithm for Computing Confidence Intervals for Prices
of Discretely Exercisable Options

Davis and Karatzas (1994) and later Rogers (2002) and Haugh and Kogan (2004) introduced a
methodology for obtaining confidence intervals for the price of a discretely exercisable option
based on the dual representation of the option pricing problem described in Equation (2).5

While Rogers (2002) was able to apply the method by judiciously choosing functions that
approximate the true option price in a case by case basis, Haugh and Kogan (2004) and An-
dersen and Broadie (2004) described an algorithm that is independent of the option payoff.
We present below an overview of the algorithm as described in Andersen and Broadie (2004).

4An alternative algorithm for calculating sensitivities of options as weighted expectations of option payoffs
was developed by Fournié, Lasry, Lebuchoux, Lions, and Touzi (1999). The algorithm described in Fournié,
Lasry, Lebuchoux, Lions, and Touzi (1999) is based on Malliavin calculus. While both algorithms demonstrate
that a derivative can be expressed in terms of a weighted expectation of the payoff, the algorithms are not iden-
tical. The algorithm based on Malliavin calculus may produce more than one weight function for each sensitivity
and can lead to easier analytic computations when the coefficients of the diffusion process are not constant. On
the other hand, the likelihood ratio algorithm depends only on the regularity of the transition density and can be
used in cases when the underlying stochastic process includes jumps. The weights provided by Fournié, Lasry,
Lebuchoux, Lions, and Touzi (1999) for the case of geometric Brownian motion with constant coefficients are
identical to the ones calculated using the likelihood ratio algorithm. In this paper we focus on the representation
of the sensitivities of option prices as weighted expectations of the option payoffs and are agnostic regarding the
algorithm used to derive the weights.

5These options are also called Bermudan, or, in the limit where the time between possible exercises tends to
zero, American.
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As described in Equation (2), the price of a discretely exercisable option at time 0, is the
solution to an optimal stopping problem. More generally, the option price at time tk < T is
given by:

Qtk = max
(

htk ,Etk

[
Btk

Btk+1

Qtk+1

])
. (7)

where Etk is the expectation, conditional on information up to and including time tk, and we
use the notation htk = h(S(tk)).

Equation (7) states that the option price at time tk, Qtk , is the maximum of the immediate
exercise value htk(Stk), and the expected present value of not exercising and following an
optimal exercise policy in the future. The process Qtk/Btk is the smallest supermartingale
which dominates htk/Btk at the possible exercise times; i.e., is the Snell envelope of htk/Btk .
The terminal condition is QT = hT .

In order to estimate the option price at time 0, Q0, we have that for any specific exercise
strategy τ, the value achieved by following this exercise strategy is dominated by the value
achieved by the optimal strategy τ∗

E0

[
hτ
Bτ

]
≤ E0

[
hτ∗

Bτ∗

]
= Q0

i.e, any algorithm which gives a stopping rule can be used to compute a lower bound on the
price Q0.

In order to find an upper bound for Q0, consider an arbitrary, adapted, martingale πtk .
Then, we have:

Q0 = sup
τ
E0

[
hτ
Bτ

+πτ−πτ

]
= π0 + sup

τ
E0

[
hτ
Bτ
−πτ

]
≤ π0 +E0

[
max

k

(
htk
Btk
−πtk

)]
(8)

where the second equality follows from the martingale property of πtk and the inequality fol-
lows from the optional sampling theorem. Since πtk is an arbitrary, adapted, martingale, we
can achieve an upper bound on the option price by taking any adapted martingale. Davis and
Karatzas (1994), Rogers (2002), Haugh and Kogan (2004), and Andersen and Broadie (2004)
show that taking the infimum over all adapted martingales in (8) results in equality; i.e.,

Q0 = inf
π

(
π0 +E0

[
max

k

(
htk
Btk
−πtk

)])
(9)
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This result implies that the “duality gap”; i.e., the difference between the solution of the dual
problem (9) and the primal problem (2) is zero.6

Andersen and Broadie (2004) suggest that to get tight lower and upper bounds, we need
to find an exercise policy which is close to the optimal policy τ∗. Assuming that we have
chosen some exercise policy τ, we define an adapted exercise indicator process 1tk that equals
1 if exercise should take place at time tk and 0 otherwise. For all 0 ≤ t ≤ T we define the
tk-indexed stopping times τk as:

τk = inf{u ∈ τ∩ [tk,T ] : 1u = 1}

Thus τk denotes the first instance, either at time tk or later, at which the option should be
exercised according to a given strategy. With this definition, the process Ltk defined as

Ltk
Btk

= Etk

[
hτk

Bτk

]

provides a lower bound to the option price process.

To calculate the upper bound, we make use of the lower bound process Ltk . We define a
process πtk by π0 = L0, and for 0≤ k ≤ d−1:

πtk+1 = πtk +
Ltk+1

Btk+1

− Ltk
Btk
−1 tk Etk

[
Ltk+1

Btk+1

− Ltk
Btk

]
(10)

We note that, conditional on no exercise at time tk; i.e., when 1tk = 0, we have that

Etk

[
Ltk+1

Btk+1

]
=

Ltk
Btk

thus the process πtk is a martingale.

We have:

L0 ≤ Q0 ≤U0 = L0 +E0

[
max

k

(
htk
Btk
−πtk

)]
:= L0 +δ0 (11)

As described above, the method produces upper and lower bounds for the option prices. Since
Monte-Carlo simulation is used for estimating these bounds, the end result is a confidence
interval for the option price.

6We refer the reader to Davis and Karatzas (1994), Rogers (2002), Haugh and Kogan (2004) and Andersen
and Broadie (2004) for the proof.
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The algorithm proposed by Andersen and Broadie (2004) can be summarized as follows:7

Algorithm 1: calculation of a confidence interval for the price of discretely exercisable options

Step 1. Find an approximate exercise strategy τ. Several algorithms for finding such strate-
gies are available. One popular algorithm, proposed by Longstaff and Schwartz (2001)
(see also Carriere (1996) and Tsitsiklis and Van Roy (1999)), uses Monte-Carlo simula-
tion and projection of the option price function on a set of approximating functions.

Step 2. Once an approximate exercise strategy is selected, perform Monte-Carlo simula-
tion for the stock and bond prices with NL simulation paths, and estimate a confidence
interval of the lower bound for the option price.

Step 3. Generate an additional Nδ simulation paths for the stock price, to be used for esti-
mating the upper bound. Along these paths, at each exercise date k = 1, . . . ,d, check
whether the option is exercised or not.

Step 3a. If the option is exercised on date k, set Ltk/Btk = htk/Btk and generate Ni paths
for the stock and bond prices, to estimate Etk [Ltk+1/Btk+1] =Etk [hτk+1/Bτk+1], where
τk+1 is the first stopping time at, or after time tk+1.

Step 3b. If the option is not exercised on date k, generate Ni simulation paths for the
stock and bond prices and estimate Ltk/Btk = Etk [hτk/Bτk ].

Step 4. Find the maximum value in Equation (11) along each of the Nδ paths and estimate a
confidence interval for δ0.

Figure 1 illustrates the procedure.

Based on the algorithm, a confidence interval for the option price can be calculated by
taking the estimated values for the upper and lower bounds and subtracting and adding an
appropriate number of standard errors, computed from the variance of the upper and lower
bounds from the simulation.

The approximate computer time required by steps 2 through 4 is

NLTpath +(d−1)NδNiTpath

7We note that the algorithm for the estimation of a confidence interval for the option price described in
Haugh and Kogan (2004) appears, according to the numerical results in Haugh and Kogan (2004) to be faster
than the one used in Andersen and Broadie (2004). One of the differences between the algorithms is that the
Haugh and Kogan (2004) algorithm is based on neural networks and low discrepancy sequences. The use of such
methods results in a considerable speed-up, but, unfortunately, makes it difficult to estimate the complexity of
the algorithm. In this paper we use the Andersen and Broadie (2004) algorithm since it allows us to optimize the
choice of simulation parameters for a given computer budget.
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where Tpath is the time required to generate one path of the underlying process, and d the
number of exercise opportunities. The term NLTpath corresponds to the time necessary for ge-
nerating the NL paths for estimating the lower bound. The term (d−1)NδNiTpath approximates
the time required to generate Ni paths on each of the d− 1 exercise opportunities along each
of the Nδ paths used to estimate the upper bound for the option price.

II. Sensitivities for discretely exercisable options

In this section we combine the formulas for the calculation of sensitivities of European options
with the algorithm that computes bounds for the price of discretely exercisable options in order
to obtain an algorithm that computes confidence intervals for the sensitivities. Assuming
that the option is not exercised at time t0, discretely exercisable options can be thought of as
European options that expire on the first exercise date. These European options have a payoff
with value equal to the price of a new option which can be exercised on either that date, or any
subsequent exercise date.8

The price of the option is given by:

Q0 = E0

[
Qt1
Bt1

]

which is the same as the price of a European option with the payoff function h(St1)= Qt1(St1)/Bt1 ,
suggesting that the sensitivities ∆ and Γ can be computed via the formulas given for the Euro-
pean case. Hence we obtain:

∆i = E0

[
(ξ∆)i

Qt1(St1)
Bt1

]

Γi j = E0

[
(ξΓ)i j

Qt1(St1)
Bt1

]

where the weights ξ∆,ξΓ are given in Equation (6).

The formulas above can be used to calculate ∆ and Γ by Monte-Carlo simulation. However,
the formulas are based on the assumption that the values for the option price at time t1, Qt1 ,
are known. Knowing the option price is equivalent to knowing the optimal exercise policy for
the option, and is not achievable with the methods we have presented. Instead, as discussed in
Section I.B, tight confidence intervals for the option prices can be obtained via the primal-dual

8The exclusion of exercise at time t0 is not a restriction, since it is trivial to calculate the sensitivity of an
option price for an option that is exercised immediately.
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algorithm. We use these confidence intervals for the option price to calculate the confidence
intervals for the option price sensitivities. We denote the upper and lower bounds for the price
of the option at time tk as Utk and Ltk respectively. For time t1 we have:

Lt1 ≤ Qt1 ≤Ut1

Then, the upper and lower bound for the ith component of ∆, ∆i is given by:

E0

[
1 ξ∆i<0 ξ∆i

Ut1
Bt1

+1 ξ∆i≥0 ξ∆i

Lt1
Bt1

]
:= ∆l

i ≤ ∆i ≤ ∆u
i := E0

[
1 ξ∆i≥0 ξ∆i

Ut1
Bt1

+1 ξ∆i<0 ξ∆i

Lt1
Bt1

]

(12)
where 1 A is equal to one if A is true and zero otherwise. A similar expression can be used to
bound the components of Γ. The gap between the upper and lower estimate of the sensitivities
is directly related to the gap between the upper and lower estimate of the prices, since

∆u
i −∆l

i = E0

[
1 ξ∆i≥0 ξ∆i

Ut1
Bt1

+1 ξ∆i<0 ξ∆i

Lt1
Bt1

]
−E0

[
1 ξ∆i<0 ξ∆i

Ut1
Bt1

+1 ξ∆i≤0 ξ∆i

Lt1
Bt1

]

= E0

[
1 ξ∆i>0 ξ∆i

(
Ut1
Bt1

− Lt1
Bt1

)
+1 ξ∆i<0 ξ∆i

(
Lt1
Bt1

−Ut1
Bt1

)]

= E0

[
|ξ∆i|

(
Ut1
Bt1

− Lt1
Bt1

)]

A. Confidence interval for sensitivities of discretely exercisable options

The algorithm for estimating a confidence interval for the option sensitivities extends Algori-
thm 1, and is described below.

Algorithm 2: calculation of a confidence interval for the sensitivities of discretely exercisable
options

Step 1. Find an approximate exercise strategy.

Step 2. Simulate No Monte-Carlo paths for the stock and bond prices between time t0 and
time t1. This stage will be referred to as the “outer loop” of the simulation. For each
path i out of No, get the approximate bounds for the price at time t1, L̄i

t1 and Ū i
t1 using

steps 2-4 of Algorithm 1. The simulations at this stage involve generating NL sample
paths for the estimation of the lower bound of the price and Nδ intermediate paths, and
Ni inner paths for each intermediate path at each time t2, . . . , td−1, for the estimation of
the upper bound of the price.

10



Step 3. Average the results from step 2 according to Equation (12), and compute approximate
upper and lower bounds, as well as the standard deviation of the upper and lower bounds.

Figure 2 illustrates the algorithm.

The computer time required for the algorithm is approximately given by

No
[
NLTpath +(d−1)Nδ

(
NiTpath +Tpath

)
+T0→1

]

where T0→1 is the computer time necessary to generate one of the outer loop paths. The terms
NLTpath and (d− 1)Nδ

(
NiTpath +Tpath

)
correspond to the time spent calculating the approxi-

mate bounds Lt1 and Ut1 , respectively. Since these bounds are calculated for each of the No pa-
ths that end at t1, the total computational time is given by No

[
NLTpath +(d−1)Nδ

(
NiTpath +Tpath

)]
.

The term NoT0→1 corresponds to the time spent generating the outer loop paths.

We have the following proposition:

Proposition II.1. With at least q2 probability the value of a sensitivity of a discretely exerci-
sable option, G, is in the interval

[
1

No

No

∑
j=1

Ḡl
j−

zqσ(Ḡl)√
No

,
1

No

No

∑
j=1

Ḡu
j +

zqσ(Ḡu)√
No

]

where Ḡu
i , Ḡ

l
i are the computed upper and lower bounds for G, σ(Ḡl),σ(Ḡu) the standard

deviations for the computed upper and lower bounds, and j is the index for the outer loop
paths and where the barred quantities are inner loop sample averages.

The value zq is the z-value for the standard normal distribution, corresponding to a centered
confidence interval with probability q; e.g., for q = 95%,zq = 1.96. The confidence level
can be made as close to 100% as desired by using the appropriate multiple of the standard
deviations σ(Ḡl),σ(Ḡu).

The proof is provided in Appendix A.

B. Optimization of the LRD Algorithm

The width of the confidence interval depends on two types of biases. The first type can be
referred to as the “policy bias”. This bias is independent of the choice of the sampling para-
meters, and is attributed to the fact that the exercise policy used to calculate the confidence
interval for the option price may not be optimal. As a consequence, in general, there is a
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nonzero “duality gap”, which results in a finite distance between the lower and upper bounds
for the price, and hence in a non-zero difference between the lower and upper bounds for
sensitivities even when samples of infinite size are used at each stage of the simulation.

The second type of bias is the “sampling bias”, which is due to the finite number of paths
used at each stage of the simulation. While it might be hard to control the policy bias, it is
possible to reduce the sampling bias by choosing optimally the sampling parameters No, NL,
Nδ and Ni. This optimization is important, particularly since the LRD algorithm involves a
triply-nested Monte-Carlo simulation, and can be, potentially, time consuming. In calcula-
tions we do not report we have estimated the asymptotic width of the confidence interval in
terms of the parameters No, NL, Nδ and Ni. Our calculations show that, for a fixed computer
budget, increasing the number of the outer and inner paths — No and Ni respectively — has the
biggest impact on the width. On the other hand, the number of paths, NL, used for calculating
the lower bound, is of secondary importance. The role of intermediate paths, Nδ, is ambiva-
lent: it appears that, for a fixed computer budget, an increase in Nδ results in wider confidence
intervals. This paradoxical phenomenon is due to the fact that increasing the number of in-
termediate paths necessitates a decrease in the number of inner and outer loop paths, in order
to keep the computer budget fixed. This calculation suggests that the number of intermediate
paths should be rather small.

Based on this intuition, we set the number of intermediate paths to 1, effectively reducing
the complexity of algorithm to a doubly-nested simulation. For this choice we were able to
estimate the asymptotic width of the confidence interval for the option price sensitivities.

Proposition II.2. When the number of intermediate paths is set to Nδ = 1, there exist nonne-
gative constants, c1,c2 independent of the sampling parameters No,NL,Ni, such that, with at
least q2-probability, asymptotically in No,NL,Ni, the width D̄ of the confidence interval for the
difference between the upper and lower bounds for the sensitivity of a discretely exercisable
option satisfies

D̄−D∞ ≤ c1√
No

+
c2√
Ni

+o
(

1√
No

,
1√
Ni

)

where D∞ is the policy bias in the limit of using an infinite number of simulation paths.

The proof of the proposition is given in Appendix B. While it is surprising that we are able
to compute asymptotic bounds for the confidence interval even though one of the simulation
parameters is set to 1, the intuition behind the proof of Proposition B is that sampling the state
space with No outer paths between times t0 and t1, as well as with Ni inner paths for each of
the intermediate paths starting at time t1, compensates for the lack of intermediate sampling.
The proof of the proposition uses probabilistic estimates for the different random variables
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involved, and Lindeberg’s theorem for the limiting distribution of the sum of independent, but
not necessarily identically distributed, random numbers, to bound the sampling error.

For a fixed computer budget, B , we choose the simulation parameters No,Ni,NL, so that
the width of the confidence interval for an option sensitivity of interest is minimized. This
objective is formulated as

Choose No,Ni,NL to minimize :
c1√
No

+
c2√
Ni

under the constraint : No
{

NLTpath +(d−1)(NiTpath +T0→1)+T0→1
}≤ B

(13)

The solution can be found using Lagrange multipliers. It is given by

No =
c1

c2

√
B

(d−1)Tpath

Ni =
c2

c1

√
B

(d−1)Tpath

(14)

from which we observe that, asymptotically

No

Ni
=

c2
1

c2
2

= λ

i.e., the ratio of the number of outer loop paths to inner loop paths is independent of the
computer budget B . The optimal choice balances the sampling bias due to the outer loop
simulations with the sampling bias due to the inner loop simulations.9

Corollary II.3. For a fixed computer budget B , choosing the simulation parameters according
to Equation (14), results in a confidence interval with width of the order O(B−1/4).

To numerically implement the algorithm, we start with a small fraction of the total compu-
ter budget and choose different ratios of the sampling parameters No/Ni, keeping the computer
budget fixed. For each value of the ratio, we run trial simulations, keeping track of the width
of the confidence interval. We choose the ratio that minimizes the width of the confidence in-
terval, and then scale the values of No,Ni, to the extent permitted by the total computer budget.
The procedure is further discussed in Section IV.D.

We note that for the optimal choice of the simulation parameters the asymptotic order
of convergence of the LRD algorithm, with respect to the computer budget, is the same as

9The choice of NL is restricted to be less than O(
√

B), but does not otherwise influence the width of the
confidence interval for the option price sensitivities, to first order in the computer budget.

13



the asymptotic order of convergence of the duality based algorithm for computing confidence
intervals for option prices.10 Intuitively, this similarity is due to the fact that the algorithm
for estimating a confidence interval for option prices relies on a doubly-nested simulation,
which can not be further reduced, while, setting Nδ = 1, reduces the computational burden of
estimating the confidence interval for option price sensitivities to a doubly-nested simulation
as well. We point out that even though the asymptotic width of the confidence interval with
the computer budget is of the same order with respect to the computer budget, the confidence
intervals for prices are typically smaller, due to the larger variance of the weights involved in
the calculation of the sensitivities.

III. Alternative Algorithms

A. An Algorithm Based on Monte-Carlo Simulation and Finite Differe-
nces

An alternative algorithm for estimating a confidence interval for the sensitivities of option
prices is to rely only upon the confidence intervals obtained using the primal-dual algorithm
for the option price. We illustrate the idea for the case of one dimension.

To estimate the first derivative of the option price at a point x0, assuming that for x in
a small neighborhood of x0 the approximate option price Q̂, satisfies |Q̂(x)−Q(x)| < ε, we
can approximate the first derivative of Q at x0 by the centered difference (Q̂(x0 +h)− Q̂(x0−
h))/2h. We have

∣∣∣∣
Q̂(x0 +h)− Q̂(x0−h)

2h
−Q′(x0)

∣∣∣∣ =

∣∣∣∣∣

[
Q̂(x0 +h)−Q(x0−h)

]− [
Q̂(x0−h)−Q(x0−h)

]

2h

+
Q(x0 +h)−Q(x0−h)

2h
−Q′(x0)

∣∣∣∣

≤ ε
h

+
∣∣∣∣
Q(x0 +h)−Q(x0−h)

2h
−Q′(x0)

∣∣∣∣
10The estimation of the asymptotic width of the confidence interval for option prices follows arguments si-

milar to the ones used to estimate the asymptotic width of the optimal confidence interval for the option price
sensitivities.
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Assuming that in a neighborhood of x0, Q has continuous, bounded, third derivatives, we have,
from Taylor’s theorem

Q(x0 +h) = Q(x0)+hQ′(x0)+
h2

2
Q′′(x0)+

h3

6
Q′′′(y+)

Q(x0−h) = Q(x0)−hQ′(x0)+
h2

2
Q′′(x0)+

h3

6
Q′′′(y−)

for y+ ∈ [x0,x0 +h],y− ∈ [x0−h,x0]. If |Q′′′(x)| ≤ α for x ∈ [x0−h,x0 +h], we have

∣∣∣∣
Q̂(x0 +h)− Q̂(x0−h)

2h
−Q′(x0)

∣∣∣∣≤
ε
h

+
αh2

6

We can minimize the error by choosing h = (ε/2α)1/3, achieving accuracy of

∣∣∣∣
Q̂(x0 +h)− Q̂(x0−h)

2h
−Q′(x0)

∣∣∣∣≤ ε2/3

((
1

2α

)1/3

+
α1/3

22/3

)
(15)

If confidence intervals are used for the lower and upper bounds, then the algorithm leads
to a confidence interval for the value of the first derivative.

Algorithm 3: alternative calculation of confidence intervals for the sensitivities of discretely
exercisable options

Step 1. Find approximate exercise strategies τ(S(0)), conditional on starting at initial condi-
tions S(0) = x−h,S(0) = x+h.

Step 2. Use steps 2-4 of Algorithm 1, to obtain confidence intervals for the upper and lower
bounds for the option price, L0(x−h),L0(x+h),U0(x−h),U0(x+h).

Step 3. Use Equation (15) to obtain a confidence interval for the first derivative of the option
price.

Although Algorithm 3 is easier to implement than the LRD algorithm, we can show that it
is asymptotically less efficient, both in terms of speed and in terms of accuracy. For the price
bounds from Algorithm 1, we have that, asymptotically, the difference between the upper and
lower bounds, δ0, defined in Equation (11) can be expressed as

δ0 = Policy bias+O
(

1√
NL

)
+O

(
1√
Nδ

)
+O

(
1√
Ni

)
.
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The computer budget B for algorithm 1, is equal to

B = NLTpath +(d−1)Nδ(NiTpath +Tpath) .

Minimizing the width of the confidence interval for a fixed budget B we have

Choose Nδ,NL to minimize : δ0

under the constraint : NLTpath +(d−1)Nδ(NiTpath +Tpath)≤ B
(16)

The solution is given by:

Nδ = O(Ni) = O

(√
B

Tpath(d−1)

)

NL = O

((
B

Tpath

)5/6 1
(d−1)1/6

)
.

Assuming the policy bias is zero gives

δ0 ≈ O

((
Tpath

B

)1/4
)

The difference |Q̂(x)−Q(x)| can be approximated by δ0. The width of the confidence interval
achieved for the first order price sensitivity, ∆, is obtained by Equation (15) and is described
by the following corollary.

Corollary III.1. If the policy bias is equal to zero, for a fixed computer budget B , Algorithm
3 achieves an asymptotic order of convergence of the order O

(
B−1/6

)
.

Similarly, if the policy bias D∞ is not zero, the width of the confidence interval is described
by the following corollary.

Corollary III.2. If the policy bias D∞ is greater than zero, for a fixed computer budget B ,

Algorithm 3 achieves an asymptotic order of convergence of the order O
(

D∞ +B−1/6
)2/3

.

We point out that, based on the discussion in the previous section, the LRD algorithm
dominates the alternative. In particular, in the case of zero policy bias, the asymptotic width
of the confidence interval, computed using the LRD algorithm is O(B−1/4). For non-zero
policy bias, the asymptotic width of the confidence interval computed using the LRD algori-
thm is D∞ + O(B−1/4). If we require that the two algorithms achieve the same width for the
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confidence interval for the first sensitivity ∆, Algorithm 3 requires the time required by the
LRD algorithm, raised to the power 3/2. Thus the LRD algorithm dominates Algorithm 3
both in terms of accuracy and in terms of computer time. We point out that in the case of
higher order derivatives, the LRD algorithm has an even larger advantage over Algorithm 3.

B. A Fast, Heuristic, Alternative Algorithm

To speed up the calculation of sensitivities we propose a heuristic algorithm together with
some justification for its accuracy. While the algorithm does not achieve a confidence interval
for the sensitivities, it requires significantly less time, and we can use the confidence intervals
produced by the LRD algorithm to numerically study the accuracy of the heuristic algorithm.

Algorithm 4: heuristic estimation of option price sensitivities

Step 1. Find an approximate exercise strategy.

Step 2. Simulate N Monte-Carlo paths for the stock and bond prices between time t0 and
time t1. For each path i, calculate, at time t1, ξi

∆,ξi
Γ, as well as the approximation to the

option price Ai, according to the approximate exercise strategy from step 1.

Step 3. To estimate the option price sensitivities at time t0, average the results from step 2
according to Equation (6), using ξi

∆,ξi
Γ and the approximate prices Ai from step 2.11

We note that Step 2 requires the calculation of approximate option prices Ai for N different
initial values for the stock price. This calculation may require additional, nested, Monte-Carlo
simulations. However, if one uses the algorithm proposed by Longstaff and Schwartz (2001),
these additional nested simulations are unnecessary, as an approximate lower bound for the
option price can be obtained using the regression coefficients of the basis functions at time
t1. An alternative algorithm would be to choose an approximate exercise policy and then
treat the discretely exercisable option as an Asian-style option, with the payoff given by the
random time when the path crosses the approximate exercise boundary.12,13 This algorithm
would have the advantage of not requiring an approximation to the option price at time t1 for
all states, but is otherwise similar to Algorithm 4.

Algorithm 4 is based on the following argument: if we let ∆approximate denote the approxi-
mate value of ∆ calculated using the algorithm, V the true option price at time t1, and θ the

11The values Ai play the role of the payoff h(S(T )) in Equation (6).
12Fournié, Lasry, Lebuchoux, Lions, and Touzi (1999) provide the appropriate weights for the case of an Asian

option.
13We thank the associate editor for suggesting this alternative.

17



difference between V and the approximation price A, θ = V −A, then, from Equation (6), we
have that

∣∣∣∆(x)−∆(x)approximate
∣∣∣ =

∣∣∣E0

[
e−

R t1
t0

r(t)dt(V (S(t1))−A(S(t1))ξ∆

]∣∣∣

=
∣∣∣E0

[
e−

R t1
t0

r(t)dtθ(S(t1))ξ∆

]∣∣∣

≤
(
E0

[(
e−

R t1
t0

r(t)dtθ(S(t1))
)2

])1/2 (
E0

[
(ξ∆)2])1/2

where the last line follows from the Schwartz inequality.

Estimating the expectation E0

[(
e−

R t1
t0

r(t)dtθ(S(t1))
)2

]
requires an algorithm similar to

the LRD algorithm.14

One important advantage of having developed the LRD algorithm is that we can use the
confidence intervals obtained by it as a measure of accuracy for Algorithm 4. For example,
for a particular option of interest, one could calculate accurate confidence intervals using the
LRD algorithm, and then compare the results with those obtained from Algorithm 4. If the
accuracy of Algorithm 4 is satisfactory, then it can be used for the calculation of option sensi-
tivities in similar situations. In Section IV.E we undertake such an approach and numerically
study the performance of Algorithm 4.

IV. Numerical Results

In this section we present numerical results of the behavior of the LRD Algorithm and the
heuristic Algorithm 4. Our examples are similar to the ones described in Andersen and Broadie

14Unlike the LRD algorithm, Algorithm 4 does not provide rigorous confidence intervals for the sensitivities
of option prices. To obtain such estimates one would need to show a relation of the form

E0

[(
e−

R t1
t0

r(t)dtθ(S(t1))
)2

]1/2

≤U0−L0 (17)

where U0,L0 are the upper and lower bounds for the option price at time t0. Then, Algorithm 4 combined with the
estimates of U0,L0, would produce confidence intervals for the sensitivities. However, we point out that verifying
(17) can be as time consuming as the LRD algorithm itself: as discussed in Section II.B, for the same computer
budget the width of the confidence interval achieved for U0−L0 is asymptotically of the same order as the width
of the confidence interval for the sensitivities computed by the LRD algorithm. This means that the width of
confidence intervals computed using Algorithm 4 and an estimate of U0−L0, would decrease at the same speed
as the width of the confidence interval computed using the LRD algorithm.

18



(2004), but, in contrast to Andersen and Broadie (2004), we focus on the sensitivities of option
prices rather than the prices themselves.

A. Effect of the Number of Assets

The interest in using Monte-Carlo simulation is mostly driven by the possibility of working
with options that depend on many underlying assets since, in this case, alternative algorithms
based on partial differential equations and multidimensional lattices suffer from an exponen-
tial increase in effort for a linear increase in the number of underlying assets. To study the
performance of the LRD algorithm for a large number of underlying assets, we consider an
example of an option written on the maximum of n risky assets. The option payoff is given by

h(S1, . . . ,Sn) = (max(S1, . . . ,Sn)−K)+,

and is called a max-call option. We consider the case where the assets S1, . . . ,Sn follow the
dynamics

dSi

Si
= (r−δ)dt +σdWi, i = 1, . . . ,n

where the Wi are standard, uncorrelated, Brownian motions under the risk-neutral measure and
the initial conditions for the asset prices are taken to be equal; i.e, Si(0) = S0, i = 1, . . . ,n. We
concentrate on a set of parameters used in the paper by Andersen and Broadie (2004), where
the interest rate is r = 5% per year, the dividend rate is δ = 10% per year, the annualized
volatility is σ = 20%, and the strike price is K = $100. The option can be exercised at times
T/d,2T/d, . . . ,T , where d = 9 and T = 3 years.

In order to calculate confidence intervals for the prices and the sensitivities we construct
an exercise strategy based on the algorithm by Longstaff and Schwartz (2001), using the fol-
lowing basis functions: a constant function, the largest and second largest asset prices, mono-
mials of degree one, two, and three in the asset prices, the price of a European max-call option
on the largest of n assets, and the square and cube of this price.

In Table I we present our numerical results for the cases of 2, 3, 5, and 10 assets, and for
initial conditions that are out-of-the-money (all initial asset prices equal to $90), at-the-money
(all initial asset prices equal to $100), and in-the-money (all initial asset prices equal to $110).
We implemented the algorithm in a parallel cluster of CPUs, access to which was provided
by the Texas Advanced Computing Center, and verified that the algorithm was scalable; i.e.,
that computational speed increased approximately linearly with an increase in the number of
processors. The computer time for all cases was set to the equivalent of 10 CPU hours for a
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single processor 3.3 GHz PC computer. The calculations were performed using between 16
and 32 1 GHz processors, for a total time between 1 and 2 hours.

The results indicate that, even for a large number of assets, one can achieve tight con-
fidence intervals for both the option prices and the sensitivities of the option prices.15 In
percentage terms, the tightness of the confidence intervals does not appear to depend on the
moneyness of the option. We point out that the results in Table I indicate that the approximate
exercise strategies are relatively accurate, given the tightness of the confidence intervals for
the sensitivities.

The tightness of the bounds deteriorates with the order of the sensitivity. This deterioration
is expected, and a direct consequence of the fact that the variance of the weights used to
estimate the sensitivities increases with the order of the sensitivity.

B. Effect of the Number of Exercise Opportunities

To investigate the effect of the number of exercise opportunities on the accuracy of the LRD
algorithm, we consider the same example as in the previous section and vary the number of
exercise opportunities, keeping the time to expiration fixed at three years. Since the magnitude
of the weights ξ∆,ξΓ, from Equation (6), increases as the time between exercise opportunities
decreases, and since we keep the computer budget fixed, we expect a deterioration of the
sensitivity estimates as the number of exercise opportunities increases.

We point out that when there are only 2 exercise opportunities, the LRD algorithm automa-
tically produces tight estimates of the upper bound of the option price sensitivities. Indeed, for
the option payoff we consider, the upper bound for the option price, calculated from Algorithm
1, is independent of the exercise policy. This result is stated in the following proposition.

Lemma IV.1. For the case of a twice-exercisable option at times t1, t2, with 0 < t1 < t2 = T ,
the upper bound for the option price, obtained by Algorithm 1, described in Section II.B, is
independent of the choice of the exercise strategy, and is an unbiased estimate of the true price
of the discretely exercisable option.

Appendix C provides the proof of Lemma IV.1 in detail.

The intuition behind Lemma IV.1 is that, with only two exercise opportunities, the only
non-trivial decision is made on the next-to-last exercise date. Since the optimal decision at

15The estimates of the lower and upper bounds and the standard errors reported in Table I take into account
the symmetry in the payoff of the options, and in the dynamics of the asset prices — for example, only one value
for ∆ and only two values for Γ are reported.

20



that time is based on the comparison between the immediate exercise value and the discounted
continuation value, and since the nested Monte-Carlo simulation used in calculating the upper
bound provides an unbiased estimate of the discounted continuation value, the estimate of the
upper bound is an unbiased estimate of the true option price. Since the upper bound for the
option price is an unbiased estimate of the true option price, the upper bound for the sensitivity
of the option price is also close to the true sensitivity (although it is not an unbiased estimate).
This is due to the fact that in order to obtain an upper bound for the ∆ and Γ we multiply either
the upper, or the lower, bound for the option price by a weight function, depending on the
sign of the weight function. For the max-call payoff we consider, positive values of the weight
function correspond to situations where the option is in-the-money, and negative values to
situations when the option is out-of-the money. Since out-of-the-money options are relatively
cheap, the biggest contribution to the upper bound of the option price sensitivities arises from
cases when the weight is positive. Since in those cases the weight multiplies the upper bound
for the option price, which is an unbiased estimate of the true price, the upper bound for the
sensitivity of the option price is affected relatively little by the exercise strategy.

The confidence intervals for the option price sensitivities, with a varying number of exe-
rcise opportunities, are given in Table II. The confidence intervals remain relatively tight, even
as the number of exercise opportunities increases. The computer budget was the same in all
cases, set to the equivalent of 10 CPU hours for a single processor 3.3 GHz PC computer. As
in the previous subsection, the calculations were performed using between 16 and 32 1 GHz
processors, for a total time between 1 and 2 hours.

C. Correlated Assets

In Table III we study the behavior of the LRD algorithm for the case of an option on the
maximum of two correlated assets, for different values of the correlation. We are interested in
whether the confidence intervals for the various sensitivities vary with the correlation between
the assets. The model for the asset prices is given by

dS1

S1
= (r−δ)dt +σdW1

dS2

S2
= (r−δ)dt +σdW2

where W1,W2 are standard correlated Brownian motions, with correlation ρ. The initial values
of the two assets are set to the same value S1(0) = S2(0) = S.
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For this case, we need to slightly modify the weights given in Equation (6) to account for
the correlation. The new weights are given by

ξ∆1 =
W1(t1)−W2(t1)

Sσt1(1−ρ2)

ξ∆2 =
W2(t1)−W1(t1)

Sσt1(1−ρ2)

ξΓ11 =
(W1(t1)−W2(t1)ρ)2 + t1(ρ2−1)(1+W1(t1)σ−W2(t1)ρσ)

t2
1 S2(ρ2−1)2σ2

ξΓ22 =
(W2(t1)−W1(t1)ρ)2 + t1(ρ2−1)(1+W2(t1)σ−W1(t1)ρσ)

t2
1 S2(ρ2−1)2σ2

ξΓ12 = ξΓ21 =
W1(t1)W2(t1)(1+ρ2)+ t1ρ(1−ρ2)− (W 2

1 (t1)+W 2
2 (t1))ρ

t2
1 S2(ρ2−1)2σ2

(18)

where t1 is the first exercise date of the discretely exercisable option.

In Table III we vary the correlation between the two assets from −75% to 75%. For
each case the computer budget is set to the equivalent of 1 CPU hour of a single processor
3.3 GHz computer. We note that while the width of the confidence intervals for the option
price sensitivities remain relatively small as the correlation changes, the widths increase as the
correlation tends to ±100%. This increase is due to the increased variance of the correlated
weights, as can be observed from Equation (18).

D. Numerical Performance of the LRD Algorithm

D.1. Determining the optimal simulation parameters

In Section II.B we described a framework for choosing the optimal simulation parameters
based on the asymptotic scaling of the confidence intervals. One parameter that needs to be
determined numerically is the ratio of the number of outer simulation paths No to the number
of inner simulation paths Ni, denoted by λ. Panel A of Table IV presents the dependence of the
width of the confidence interval for different choices of this ratio, for the case of a max-call
option on five identical assets. In each case we have fixed the total computer budget to less
than 1 minute, and calculated the width of the confidence interval for the ∆ of the option. We
then used interpolation to find the optimal value of λ. In particular, we fitted the width of the
confidence intervals to the least squares quadratic polynomial of the logarithm of the ratio λ.
The minimum of that polynomial corresponds to the value λ = 75.
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While the optimal value of λ depends on the characteristics of the options; e.g., number of
assets, moneyness, etc., in computations we do not report we verified that even choices that are
not optimal do not lead to significantly larger confidence intervals. This observation allows us
to scale the values of the simulation parameters with the value of the computer budget without
fine-tuning the value of λ. We have also verified that increasing the computer budget does
not significantly change the estimate of the optimal value of λ. Once the optimal value is
determined for a small computer budget, we fix the ratio of the number of outer simulation
paths No to the number of inner simulation paths Ni to that value, and scale the values of No,Ni

to exhaust the computer budget.

D.2. Scaling of the Width of the Confidence Intervals

In Section II.B, we showed that, for an optimal choice of the simulation parameters, the width
of the confidence interval for a sensitivity is inversely proportional to the fourth power of the
computer budget. To determine whether in our numerical implementation the width of the
confidence interval follows this scaling relationship, we compute the values of option ∆’s for
different computer budgets, keeping the ratio of the number of outer simulation paths to inner
simulation paths, λ, fixed.

In Table IV, panel B, we present the widths of the confidence intervals for ∆, for the case
of a max-call option on five identical assets. From the table, we can estimate the speed at
which the width of the confidence interval decreases with an increase in the computer budget
by regressing the logarithm of the width of the confidence interval on the logarithm of the
computer budget. The strength of the relationship, measured by R2, indicates the extent to
which asymptotic estimates are valid, while the value of the coefficient of the logarithm of the
computer budget the extent to which we achieve the theoretical value of −0.25. The results
are encouraging, since the estimate of R2 is 99.98%, and the estimate of the coefficient of the
logarithm of the computer budget −0.232±0.002. The slight loss of efficiency, indicated by
the slight deviation from the theoretical value of −0.25, can be attributed to two reasons: (a)
to an inaccurate choice of the optimal value of λ; and (b) to efficiency losses in the paralle-
lization of the program due to increased communication needs as the number of processors
and the workload per processor increases. For this particular algorithm communication needs
are not significant, since only a few values need to be communicated between the different
processors.16

16When calculating an expected value using Monte Carlo simulation in parallel one does not need to commu-
nicate all the option values calculated along each path. Instead, only the number of paths used by each processor
and the average value and variance need to be communicated.
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E. Numerical Study of the Accuracy of Algorithm 4

To determine the accuracy of Algorithm 4, we perform a numerical study similar to that of
Section IV.A. For the same option payoff and the same parameter values, we estimate the
sensitivities ∆ and Γ of the option using Algorithm 4 and compare the results to the confidence
intervals obtained by the LRD algorithm. The results are presented in Table V.

From Table V, we note that the values estimated by Algorithm 4 in all cases fall within the
confidence intervals. In addition, the time required for Algorithm 4 is only a fraction of that
required for the LRD algorithm. One needs to use caution however. For example, the standard
errors produced by Algorithm 4 are misleading. Indeed, the limit to which the sensitivities
computed using Algorithm 4 converge is not necessarily the correct sensitivity value. It is
important to note that having the confidence intervals computed using the LRD algorithm, is
what enables us to determine whether Algorithm 4 is accurate. After validating the accuracy
of Algorithm 4 in several cases, it can be used to quickly estimate sensitivity values in similar
situations.

V. Conclusions

We have presented a new algorithm, called the LRD algorithm, for obtaining confidence inter-
vals for the values of sensitivities of the price of a discretely exercisable option with respect
to the initial price of the underlying assets. The algorithm combines a Monte-Carlo algorithm
for computing sensitivities for European options, and a Monte-Carlo algorithm that obtains
a confidence interval for the price of discretely exercisable options based on the dual repre-
sentation of the optimal stopping problem associated with the calculation of the option price.
The only input necessary for the algorithm is an approximate exercise policy, which can also
be obtained using Monte-Carlo simulation. We have shown that the accuracy and speed of
the LRD algorithm is asymptotically of the same order as the accuracy and speed for the
duality-based algorithm, proposed by Andersen and Broadie (2004) for estimating confidence
intervals for the price of the option. We have also shown that the LRD algorithm is superior,
both in terms of speed and accuracy to an alternative algorithm based on a finite-difference
approximation of the option price sensitivities.

The LRD algorithm can be applied in cases with complicated price dynamics, and, largely,
arbitrary payoff functions. It can be used for options with a large number of underlying assets.
In contrast to algorithms using finite difference discretization of partial differential equations
and high dimensional lattice algorithms it does not suffer from the curse of dimensionality.
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In addition, the LRD algorithm can be used to evaluate the accuracy of alternative algori-
thms. Based on such an evaluation we have described a simpler, faster, heuristic, alternative
algorithm. Although the alternative algorithm does not provide confidence intervals, using
the LRD algorithm as a measure of accuracy, we have found the alternative to be accurate in
numerical simulations.

In future work, we plan to extend the algorithm to estimate confidence intervals for the
values of sensitivities of the value function for other stochastic control problems with optimal
stopping.
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Appendix A. Proof of Proposition (II.1): Construction of the
Confidence Interval

To estimate the asymptotic distance between the upper and lower bounds of the option sensitivities, in
terms of the number of simulation paths used, we first show that the Monte-Carlo estimate of the lower
bound for an option sensitivity Gl , Ḡl , taken by sampling over No paths, is a low-biased estimator of Gl ,
and that, similarly, the Monte-Carlo estimate of the upper bound for an option sensitivity Gu, Ḡu, is a
high-biased estimator. Based on the estimates of the upper and lower bound, we construct a confidence
interval for the option sensitivity.

We consider the Monte-Carlo estimation of the lower bound for an option sensitivity.

Proposition A.1. The expression:

Ḡl :=
1

No

No

∑
j=1

(
1 ξ>0 ξ j

L̄ j
t1

Bt1
+1 ξ<0 ξ j

Ū j
t1

Bt1

)

where Ū j
t1 and L̄ j

t1 are the Monte-Carlo samples for the upper and lower bounds for the price of an
option at the first possible exercise time, provides a low-biased estimator for the lower bound Gl:

Gl := E0

(
1 ξ>0 ξ

Lt1

Bt1
+1 ξ<0 ξ

Ut1

Bt1

)

Proof. From the Central Limit Theorem we have:

Ḡl :=
1

No

No

∑
j=1

(
1 ξ>0 ξ j

L̄ j
t1

Bt1
+1 ξ<0 ξ j

Ū j
t1

Bt1

)
∼N

(
E0

(
1 ξ>0 ξ j

L̄ j
t1

Bt1
+1 ξ<0 ξ j

Ū j
t1

Bt1

)
,
σ2(Ḡl)

No

)

where by N (µ,σ2) we denote the normal distribution with mean µ and variance σ2, and where σ(Ḡl)
is the asymptotic variance for the samples 1 ξ>0 ξ L̄t1

Bt1
+1 ξ<0 ξŪt1

Bt1
.

Once the policy is fixed, we compute the value of L̄t1/Bt1 as a sample average of the discounted
payoffs. It is clear that Et1 (L̄t1) = Lt1 , and hence:

E0

[
1 ξ>0 ξ

L̄t1

Bt1

]
= E0

[
1 ξ>0 ξ

Lt1

Bt1

]
(A1)

due to the fact that ξ and Bt1 are measurable random variables with respect to the time t1 filtration.
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We now consider the term E0[1 ξ<0 ξŪt1 ]. It was shown in Andersen and Broadie (2004), that
Et1 [Ūt1 ] is a high-biased estimator for the upper bound Ut1 regardless of the number of paths taken in
intermediate Monte-Carlo simulations. Hence, since 1 ξ<0 ξ < 0 the following inequality holds:

E0

[
1 ξ<0 ξ

Ut1

Bt1

]
≥ E0

[
1 ξ<0 ξ

Ūt1

Bt1

]
,

which, together with (A1) shows that with at least q probability, the value of the lower bound for a
sensitivity, Gl is higher than the value:

1
No

No

∑
j=1

Ḡl
j−

zqσ(Ḡl)√
No

where zq is the z-value for the standard normal distribution, corresponding to a centered confidence
interval with probability q; e.g., for q = 95%,zq = 1.96.

The case with the upper bound of a sensitivity, Gu, is similar. With at least q probability, the value
of the upper bound for a sensitivity, Gu is lower than the value:

1
No

No

∑
j=1

Ḡu
j +

zqσ(Ḡu)√
No

.

This concludes the proof of proposition II.1.

Appendix B. Proof of Proposition (II.2):Width of the Confi-
dence Interval

The width of the confidence interval depends on the estimation of the policy bias, i.e. the estimation of
the difference between the upper and lower bound, and the estimation of the standard error of the upper
and lower bound. We estimate, asymptotically, the magnitude of the sampling error in the policy bias,
and also the magnitude of the sampling bias for the standard error of the lower and upper bounds.

From the definition of Ḡl and Ḡu we have that the width D̄ of the estimated confidence interval is
given by:

D̄ =
1

No

No

∑
j=1
|ξ j|

δ̄ j
t1

Bt1
+

zq√
No

(σ(Ḡu)+σ(Ḡl)) , (B2)
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where δ̄ j
t1 are the Monte-Carlo estimates of the expectation of the difference between the lower and

upper bounds, given in formula (11):

δ̄ j
t1 :=

1
Nδ

Nδ

∑
p=1

max
k≥1

(
hp

k

Bp
k
− π̄p

k

)
(B3)

where π̄p
k are the Monte-Carlo samples of the martingales πk defined in equation (10), and where the

index p denotes the path contributing to the calculation of the expectation.17

We now obtain the asymptotic expression for an upper bound for the width of the interval (B2), in
terms of No,Ni.

An upper bound for the term 1
No

∑No
j=1 |ξ j| δ̄ j

t1
Bt1

Proposition B.1. With at least q2 probability, there exist nonnegative constants α(q)
1 , α(q)

2 , independent
of the simulation parameters No,Ni, such that the following bound holds asymptotically in No,Ni

1
No

No

∑
j=1
|ξ j|

δ̄ j
t1

Bt1
≤ E0

[
|ξ| δt1

Bt1

]
+

α1√
Ni

+
α2√
No

+o
(

1√
No

,
1√
Ni

)

Proof. Upper Bound for δ̄ j
t1/Bt1

For each path let π̄p
k = πp

k +εpip
k
, where πp

k is the corresponding true value and εpip
k

is the estimation
error. Then we can bound the max function in (B3) as follows:

max
k≥1

(
hp

k

Bp
k
− π̄p

k

)
≤max

k≥1

(
hp

k

Bp
k
−πp

k

)
+max

k≥1

(
1 επp

k
<0 |επp

k
|
)

(B4)

hence a bound for δ̄ j
t1/Bt1 reads:

δ̄ j
t1

Bt1
≤ 1

Nδ

Nδ

∑
p=1

max
k≥1

(
hp

k

Bp
k
−πp

k

)
+

1
Nδ

Nδ

∑
p=1

max
k≥1

(
1 επp

k
<0 |επp

k
|
)

(B5)

We have that

1
Nδ

Nδ

∑
p=0

max
k≥1

(
hp

k

Bp
k
−πp

k

)
=

δt1

Bt1
+ εδ,

1
Nδ

Nδ

∑
p=1

max
k≥1

(
1 επp

k
<0 |επp

k
|
)

= Et1 max
k≥1

(
1 επp

k
<0 |επp

k
|
)

+ επ

17We note that index j corresponds to the No paths between times t0, t1. Index p corresponds to the Nδ paths
starting at time t1 at each of the ending positions of the No paths. In the following, we suppress the dependence
of the paths that start at time t1 on the index j.
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where εδ,επ are random variables with zero mean.

Combining the inequalities (B4), (B5) we get:

δ̄ j
t1

Bt1
≤ δt1

Bt1
+Et1

(
max
k≥1

1 επp
k
<0 |επp

k
|
)

+ εδ + επ

In the limit of large Ni, επk is normally distributed around zero with the same variance as the
asymptotic sample variance for πp

k :
επp

k
∼N

(
0,σ2(πk)

)

From equation (10) we note that the variance σ2(πk) for k = 1, asymptotically is given by:

σ2(π1) =
σ2(L1/B1)

Ni

and for 2≤ k ≤ d, given the asymptotic variance for the quantities Lk/Bk and Ek−1 (Lk/Bk):

σ2(πk) =
σ2

(
Lk
Bk

)
+∑k−1

j=2 1 j

(
σ2

(
E j

[
L j+1
B j+1

])
+σ2

(
L j
B j

))

Ni
(B6)

where 1 j is equal to one when the option is exercised at time t j and zero otherwise. We have:

Et1

(
max
k≥1

1 επk <0 |επk |
)

= Et1

[
E

(
max
k≥1

(
1 επk <0 |επk |

) ∣∣∣ σ2(π1),σ2(π2), . . . ,σ2(πd)
)]

where we condition on the particular values of the variances σ2(πk). When the variances are given, the
inner expectation becomes:

E
(

max
k≥1

(
1 επk <0 |επk |

) ∣∣∣ σ2(π1),σ2(π2), . . . ,σ2(πd)
)

=
Z ∞

−∞
. . .
Z ∞

−∞
max
k≥1

(1 xk<0 |xk|)Pg(x1,σ2(π1))dx1 . . .Pg(xd,σ2(πd))dxd

=
d

∑
j=1

Z ∞

0

{
x jPg(x j,σ2(π j))Πk 6=i

Z x j

−∞
dxkPg(xk,σ2(πk))

}
dx j

≤
d

∑
j=1

σ(π j)√
2π

=
β
(

σ
(

L1

B1

)
, . . . ,σ

(
Ld

Bd

)
,σ

(
E1

L2

B2

)
, . . . ,σ

(
Ed−1

Ld

Bd

))

√
Ni

where Pg
(
x j,σ2(π j)

)
is the Gaussian probability density function for variable x j, with mean zero and

variance σ2(π j), and where we defined the function β in the obvious way, from equation (B6). Note
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that β does not depend on any one of No, NL, Ni and can be estimated with arbitrary precision via
equation (B6). We have also used that

1
2d−1 ≤∏

k 6= j

Z x j

−∞
dxkPg(xk,σ2(πk))≤ 1

Therefore we have the bound:

Et1

(
max
k≥1

1 επk <0 |επk |
)
≤ Et1β√

Ni

Note that the variance σ2
(

maxk≥1 1 επk <0 |επk |
)

can be bounded in the same way:

σ2
(

max
k≥1

1 επk <0 |επk |
)
≤ Et1

(
max
k≥1

1 επk <0 επk

)2

≤ Et1 β̃
Ni

(B7)

Collecting everything together, we conclude that the computed δ̄t1 is bounded above by:

δ̄t1

Bt1
≤ δt1

Bt1
+
Et1β√

Ni
+ εδ + επ (B8)

Upper Bound for 1
No

∑No
j=1 |ξ j| δ̄ j

t1
Bt1

Using result (B8) for the bound for the computed δ̄t1/Bt1 we obtain:

1
No

No

∑
j=1
|ξ j|

δ̄ j
t1

Bt1
≤ 1

No

j=No

∑
j=1

|ξ j|
δ j

t1
Bt1

+
1

No

j=No

∑
j=1

|ξ j|ε j
δt1

+
1

No

j=No

∑
j=1

|ξ j|ε j
π +

1
No
√

Ni

j=No

∑
j=1

|ξ j|Et1β (B9)

In the limit of large No,Ni we have:

1
No

j=No

∑
j=1

|ξ j|
δ j

t1
Bt1

∼N


E0

[
|ξ| δt1

Bt1

]
,

σ2
(
|ξ| δt1

Bt1

)

No




1
No
√

Ni

j=No

∑
j=1

|ξ j|Et1β∼N
(
E0 (|ξ|Et1β)√

Ni
,

σ2(|ξ j|Et1β)
NoNi

)

Using (B7) we have:

E0

[
ξ2σ2(max

k≥1
|επk |)

]
≤
E0

[
ξ2Et1 β̃

]

Ni
.

To bound the terms 1
No

∑ j=No
j=1 |ξ j|ε j

δ,
1

No
∑ j=No

j=1 |ξ j|ε j
π, we cannot resort to asymptotics for large Nδ.

Instead, we use Lindeberg’s theorem, in the limit of large No (see Dudley (2002), section 9.6). Lin-
deberg’s theorem is an extension of the central limit theorem to the case of random variables that are
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independent, but not necessarily identically distributed. The only additional condition for showing that
the sums above are normally distributed with variance proportional to 1/No is that the random variables
ξ jε

j
δ and ξ jε

j
π have bounded variance, an assumption that is satisfied for well behaved payoffs. Then,

the result follows from the example on pages 317-318 of Dudley (2002).

Collecting all the terms, at the limit of large No,Ni, with at least q2-probability, we have the fol-
lowing upper bound:

1
No

No

∑
j=1
|ξ j|

δ̄ j
t1

Bt1
≤ E0

[
|ξ| δt1

Bt1

]
+
E0 (|ξ|Et1β)√

Ni
+

zqσ
(
|ξ| δt1

Bt1

)
√

No
+

zqcNδ√
No

+o
(

1√
No

,
1√
Ni

)
.

where cNδ a number depending on the value of Nδ.

An upper bound for the term 1√
No

(
σ(Ḡu)+σ(Ḡl)

)

Proposition B.2. There exist nonnegative constants aL, ai and aδ independent of the simulation para-
meters such that the following bound holds asymptotically in Ni,No,NL:

1√
No

(σ(Ḡu)+σ(Ḡl))≤ 1√
No

(
σ(Gu)+σ(Gl)

)
+

1√
No

(
aL

NL
+

ai√
Ni

+aδ

)
+o

(
1√
No

)

In the proposition the quantities σ(Ḡu) and σ(Ḡl) represent the asymptotic (in No) standard devia-
tions for the computed bounds of a sensitivity while σ(Gu) and σ(Gl) are the true standard deviations
for the bounds of the sensitivities, i.e. when all the intermediate Monte-Carlo estimations are carried
out with infinite number of paths.

Proof. By the definition:

σ2(Ḡu) = σ2
(

1 ξ>0
Ūt1

Bt1
ξ+1 ξ<0

L̄t1

Bt1
ξ
)

= σ2
(

1 ξ>0
Ūt1

Bt1
ξ
)

+σ2
(

1 ξ<0
L̄t1

Bt1
ξ
)
−E0

(
1 ξ>0 ξ

Ut1

Bt1

)
E0

(
1 ξ<0 ξ

Lt1

Bt1

)

where we have used the fact that E0
(
1 ξ>0 1 ξ<0 ξ2Lt1Ut1

)
= 0 as well as the properties Et1Ūt1 = Ut1 ,

Et1 L̄t1 = Lt1 . By the Central Limit Theorem in the limit of large NL:

L̄t1 = Lt1 + εLt1
,
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where the random variable εLt1
is normally distributed with mean zero and variance σ2

L/NL. Hence,

σ2
(

1 ξ<0 ξ
L̄t1

Bt1

)
= σ2

(
1 ξ<0 ξ

Lt1

Bt1

)
+
E0

(
1 ξ<0 ξ2σ2

(
Lt1
Bt1

))

NL
,

where we used the fact that Et1εLt1
= 0.

For σ2
(

1 ξ>0 ξŪt1
Bt1

)
we have:

σ2
(

1 ξ>0 ξ
Ūt1

Bt1

)
= E0

(
1 ξ>0 ξ2Ū2

t1

B2
t1

)
−E2

0

(
1 ξ>0 ξ

Ūt1

Bt1

)
(B10)

Using inequality (B8) we obtain that, with probability q

E0

(
1 ξ>0 ξ2Ū2

t1

B2
t1

)
≤ E0

(
1 ξ>0 ξ2U2

t1

B2
t1

)
+

zq√
Ni
E0

(
1 ξ>0 ξ2Ut1

Bt1
Et1β

)
+

1
Ni
E0

(
1 ξ>0 ξ2E2

t1β
)

+E0


1 ξ>0 ξ2


σ2

(
Lt1
Bt1

)

NL
+αδ







Also, we need to bound the term E2
0
(
1 ξ>0Ūt1ξ

)
from below:

E2
0
(
1 ξ>0Ūt1ξ

)
= E2

0
(
1 ξ>0 ξEt1Ūt1

)≥ E2
0
(
1 ξ>0Ut1ξ

)
, (B11)

where we have used that Et1Ūt1 is higher than Ut1 (as argued in Andersen and Broadie (2004)). Using
the previous two inequalities we obtain:

σ2
(

1 ξ>0 ξ
Ūt1

Bt1

)
≤ σ2

(
1 ξ>0 ξ

Ut1

Bt1

)
+

zq√
Ni
E0

(
1 ξ>0 ξ2Ut1

Bt1
Et1β

)
+

1
Ni
E0

(
1 ξ>0 ξ2E2

t1β
)

+E0


1 ξ>0 ξ2


σ2

(
Lt1
Bt1

)

NL
+αδ







Combining everything we have:

σ2(Ḡu)≤ σ2(Gu)+
E0

(
ξ2σ2

(
Lt1
Bt1

))

NL

+
zq√
Ni
E0

(
1 ξ>0 ξ2Ut1

Bt1
Et1β

)
+

1
Ni
E0

(
1 ξ>0 ξ2E2

t1β
)

+E0
(
1 ξ>0 ξ2αδ

)
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This inequality gives the bound for the variance σ2(Ḡu) in terms of the variance computed with infinite
precision for σ2(Gu) = σ2

(
1 ξ>0 ξUt1

Bt1
+1 ξ<0 ξ Lt1

Bt1

)

The bound for the variance σ2(Ḡl) can be obtained along the same lines. The only difference is
the lower bound for the term E2

0
(
1 ξ<0 ξŪt1

)
, in an expression similar to (B10). But the bound is easily

seen to be exactly the same as in (B11). Therefore, the upper bound for σ2(Ḡl) reads:

σ2(Ḡl)≤ σ2(Gl)+
E0

(
ξ2σ2

(
Lt1
Bt1

))

NL
+

zq√
Ni
E0

(
1 ξ<0 ξ2Ut1

Bt1
Et1β

)
+

1
Ni
E0

(
1 ξ<0 ξ2E2

t1β
)

+E0
(
1 ξ<0 ξ2αδ

)

In the expression for the distance D̄, σ(Ḡu) and σ(Ḡl) enter as the combination zq√
No

(σ(Ḡu) +

σ(Ḡl)). Asymptotically, to leading order, we obtain:

zq√
No

(σ(Ḡu)+σ(Ḡl)) . zq√
No

(σ(Gu)+σ(Gl))+
1√
No

(
aL

NL
+

ai√
Ni

+αδ

)

Collecting all the terms, we have Proposition II.2.

Appendix C. Proof of Lemma (IV.1)

Recall that:

U0 = L0 +δ0 , where δ0 = E0

[
max

k

(
htk

Btk
−πtk

)]
.

Using the explicit expressions for the π’s, we obtain:

π0 = L0 , πt1 =
Lt1

Bt1
, πt2 =

ht2

Bt2
−1 t1 Et1

[
ht2

Bt2
− Lt1

Bt1

]
,

where we used the fact that Lt2 = ht2 for 2 exercise dates (the price of the option at final exercise date is
the value of the payoff). Therefore we have:

δ0 = E0

[
max

{
h0−L0,

ht1

Bt1
− Lt1

Bt1
, 1 t1 Et1

[
ht2

Bt2
− Lt1

Bt1

]}]
.

Now we have the following two cases:
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(i) The option is not exercised at time t1 according to the chosen policy. Note that in this case:

Lt1

Bt1
= Et1

[
ht2

Bt2

]

Also note, that 1 t1 = 0, and the max function in the previous expression becomes:

max
{

h0−L0,
ht1

Bt1
− Lt1

Bt1
, 1 t1 Et1

[
ht2

Bt2
− Lt1

Bt1

]}
=

(
ht1

Bt1
− Lt1

Bt1

)
1 ht1

Bt1
>

Lt1
Bt1

which follows since the lower bound at time 0 is at least equal to the value of immediate exercise.

(ii) The option is exercised at time t1. In that case

Lt1

Bt1
=

ht1

Bt1

Then 1 t1 = 1, and the max function is:

max
{

h0−L0,
ht1

Bt1
− Lt1

Bt1
, 1 t1 Et1

[
ht2

Bt2
− Lt1

Bt1

]}
=

(
Et1

[
ht2

Bt2

]
− Lt1

Bt1

)
1Et1

ht2
Bt2

>
ht1
Bt1

Note that in both cases

L0 = E0

[
Lt1

Bt1

]
,

which is the consequence of no-exercise condition at time 0. Combining the cases (i) and (ii) we obtain:

U0 = E0

[
(1−1 t1 )

{
Lt1

Bt1
+

(
Et1

(
ht2

Bt2
− Lt1

Bt1

))
1 ht1

Bt1
>

Lt1
Bt1

}
+1 t1

{
Lt1

Bt1
+

(
Et1

[
ht2

Bt2

]
− Lt1

Bt1

)
1Et1

ht2
Bt2

>
ht1
Bt1

}]

= E0

[
ht1

Bt1
1Et1

ht2
Bt2
≤ ht1

Bt1

+Et1

[
ht2

Bt2

]
1Et1

ht2
Bt2

>
ht1
Bt1

]
= Q0

which concludes the proof.
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Figure 1. Graphical representation of Algorithm 1.
Starting at time t0, NL paths are generated for the calculation of the lower bound of the option
price, and Nδ paths for the calculation of the upper bound on the option price. For each time
t1, . . . , td−1, (starting at each square) an additional Ni inner paths are generated along the Nδ
paths, to estimate the martingales necessary for calculating the upper bounds on the price.
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Figure 2. Graphical representation of the LRD Algorithm.
No outer paths are generated from time t0 to time t1. Starting at the end of each of the No paths
(from each circle), NL paths are generated for the calculation of the lower bound of the option
price, and Nδ intermediate paths for the calculation of the upper bound on the option price.
For each time t2, . . . , td−1, (starting at each square) an additional Ni inner paths are generated,
to estimate the martingales necessary for calculating the upper bounds on the price.



Table I
Bounds for Sensitivities of High Dimensional Options

Bounds for prices and sensitivities of Bermudan max-call options with n = 2,3,5,10 assets.
The payoff of the option is (max(S1(t), . . . ,Sn(t))−K)+. The parameters are: K = 100,r =
5%,δ = 10%,T = 3,σ = 20%. The initial price vector is S(0)= (S0, . . . ,S0), with S0 = 90,100,
or 110, as indicated in the table. There are 9 exercise opportunities, that are equally spaced,
at ti = iT/d, i = 1, . . . ,9,d = 9. The lower and upper bounds for the option price are provided
(L0,U0 respectively), as well as the lower and upper bounds for the first derivative, ∆, of the
option price with respect to the initial asset price, and lower and upper bounds for the second
derivative, Γ, with respect to the initial asset price. Since the problem is symmetric with
respect to the n assets, we only provide the first component of ∆, ∆1, and one diagonal term
(the second derivative with respect to the initial asset price of the first asset, Γ11) and one
off-diagonal term (the second derivative with respect to the initial asset prices of the first and
second assets, Γ12) for Γ. Standard errors are given in parentheses below the estimated values.
The 3.3 GHz-PC-equivalent computational time, for all the calculations of the sensitivities was
set to 10 hours. The calculations were performed using between 16 and 32 1 GHz processors
in parallel, for a total time between 1 and 2 hours.

n = 2
S0 L0 U0 (∆1)lower (∆1)upper (Γ11)lower (Γ11)upper (Γ12)lower (Γ12)upper
90 8.062 8.079 0.246 0.248 0.0117 0.0120 −0.0028 −0.0026

(0.003) (0.003) (0.002) (0.002) (0.0003) (0.0003) (0.0002) (0.0002)
100 13.890 13.913 0.331 0.334 0.0125 0.0130 −0.0055 −0.0052

(0.003) (0.003) (0.002) (0.002) (0.0003) (0.0003) (0.0002) (0.0002)
110 21.327 21.362 0.404 0.412 0.0127 0.0135 −0.0077 −0.0071

(0.004) (0.004) (0.003) (0.003) (0.0004) (0.0004) (0.0003) (0.0003)

n = 3
S0 L0 U0 (∆1)lower (∆1)upper (Γ11)lower (Γ11)upper (Γ12)lower (Γ12)upper
90 11.266 11.287 0.213 0.215 0.0101 0.0103 −0.0021 −0.0019

(0.003) (0.003) (0.002) (0.002) (0.0003) (0.0003) (0.0001) (0.0001)
100 18.667 18.705 0.273 0.277 0.0103 0.0108 −0.0031 −0.0028

(0.004) (0.004) (0.002) (0.002) (0.0003) (0.0003) (0.0002) (0.0002)
110 27.528 27.586 0.314 0.319 0.0101 0.0107 −0.0041 −0.0037

(0.004) (0.004) (0.003) (0.003) (0.0003) (0.0003) (0.0002) (0.0002)

n = 5
S0 L0 U0 (∆1)lower (∆1)upper (Γ11)lower (Γ11)upper (Γ12)lower (Γ12)upper
90 16.614 16.649 0.173 0.177 0.0084 0.0088 −0.0013 −0.0011

(0.004) (0.004) (0.001) (0.001) (0.0002) (0.0002) (0.0001) (0.0001)
100 26.107 26.171 0.200 0.205 0.0079 0.0085 −0.0016 −0.0013

(0.004) (0.004) (0.002) (0.002) (0.0002) (0.0002) (0.0001) (0.0001)
110 36.711 36.805 0.218 0.224 0.0076 0.0083 −0.0017 −0.0013

(0.005) (0.005) (0.002) (0.002) (0.0003) (0.0003) (0.0001) (0.0001)

n = 10
S0 L0 U0 (∆1)lower (∆1)upper (Γ11)lower (Γ11)upper (Γ12)lower (Γ12)upper
90 26.218 26.279 0.115 0.121 0.0059 0.0066 -0.0008 -0.0003

(0.004) (0.004) (0.001) (0.001) (0.0002) (0.0002) (0.00005) (0.00005)
100 38.283 38.367 0.121 0.129 0.0053 0.0061 -0.0008 -0.0003

(0.005) (0.005) (0.002) (0.002) (0.0002) (0.0002) (0.00005) (0.00005)
110 50.815 50.921 0.122 0.130 0.0052 0.0060 -0.0008 -0.0003

(0.005) (0.005) (0.002) (0.002) (0.0003) (0.0003) (0.00006) (0.00006)



Table II
Dependence on Number of Exercise Opportunities

Bounds for prices and sensitivities of Bermudan max-call options with n = 5,10 assets, and
number of exercise opportunities between d = 5,10,15,20,30. The payoff and parameters
are the same as in Table I. The lower and upper bounds for the option price are provided
(L0,U0 respectively), as well as the lower and upper bounds for the first derivative, ∆, of
the option price with respect to the initial asset price, and lower and upper bounds for the
second derivative, Γ, with respect to the initial asset price. Since the problem is symmetric
with respect to the n assets, we only provide the first component of ∆, ∆1, and one diagonal
term and one off-diagonal term for Γ, Γ11 and Γ12 respectively. Standard errors are given in
parentheses below the estimated values. The computer budget used for each case is equivalent
to 10 hours on a 3.3 GHz PC computer. The calculations were performed using between 16
and 32 1 GHz processors in parallel, for a total time between 1 and 2 hours.

n = 2
d L0 U0 (∆1)lower (∆1)upper (Γ11)lower (Γ11)upper (Γ12)lower (Γ12)upper

5 13.63 13.64 0.328 0.337 0.0127 0.0135 -0.0050 -0.0044
(0.03) (0.03) (0.001) (0.001) (0.0001) (0.0001) (0.00008) (0.00008)

10 13.92 13.94 0.335 0.338 0.0128 0.0132 -0.0047 -0.0044
(0.03) (0.03) (0.002) (0.002) (0.0003) (0.0003) (0.0002) (0.0002)

15 14.03 14.07 0.339 0.343 0.0128 0.0134 -0.0054 -0.0050
(0.03) (0.03) (0.003) (0.003) (0.0005) (0.0005) (0.0004) (0.0004)

20 14.03 14.07 0.338 0.344 0.0120 0.0129 -0.0059 -0.0053
(0.03) (0.03) (0.004) (0.004) (0.0009) (0.0009) (0.0006) (0.0005)

30 14.09 14.15 0.336 0.348 0.0134 0.0156 -0.0030 -0.0015
(0.03) (0.03) (0.007) (0.007) (0.0016) (0.0016) (0.0011) (0.0011)

n = 3
d L0 U0 (∆1)lower (∆1)upper (Γ11)lower (Γ11)upper (Γ12)lower (Γ12)upper

5 18.41 18.44 0.268 0.276 0.0106 0.0114 -0.0032 -0.0027
(0.04) (0.04) (0.001) (0.001) (0.0002) (0.0002) (0.0001) (0.0001)

10 18.75 18.79 0.268 0.271 0.0106 0.0111 -0.0034 -0.0031
(0.04) (0.04) (0.002) (0.002) (0.0003) (0.0003) (0.0002) (0.0002)

15 18.858 18.913 0.274 0.280 0.0103 0.0110 -0.0034 -0.0029
(0.04) (0.04) (0.002) (0.002) (0.0004) (0.0004) (0.0001) (0.0001)

20 18.913 18.978 0.274 0.283 0.0111 0.0124 -0.0031 -0.0022
(0.04) (0.04) (0.004) (0.004) (0.0008) (0.0009) (0.0004) (0.0004)

30 18.976 19.060 0.263 0.277 0.0060 0.0087 -0.0032 -0.0014
(0.04) (0.04) (0.007) (0.007) (0.0016) (0.0016) (0.0008) (0.0008)



Table II cont.

n = 5
d L0 U0 (∆1)lower (∆1)upper (Γ11)lower (Γ11)upper (Γ12)lower (Γ12)upper

5 25.739 25.791 0.199 0.206 0.0082 0.0088 -0.0017 -0.0013
(0.002) (0.002) (0.001) (0.001) (0.0001) (0.0001) (0.00003) (0.00003)

10 26.161 26.229 0.203 0.208 0.0076 0.0082 -0.0015 -0.0011
(0.002) (0.002) (0.002) (0.002) (0.0003) (0.0003) (0.0001) (0.0001)

15 26.308 26.388 0.197 0.205 0.0071 0.0083 -0.0017 -0.0010
(0.002) (0.002) (0.003) (0.003) (0.0005) (0.0005) (0.0002) (0.0002)

20 26.378 26.472 0.200 0.212 0.0079 0.0099 -0.0024 -0.0011
(0.004) (0.004) (0.005) (0.005) (0.0009) (0.0009) (0.0003) (0.0003)

30 26.453 26.561 0.189 0.210 0.0071 0.0111 -0.0040 -0.0013
(0.004) (0.005) (0.007) (0.007) (0.002) (0.002) (0.0006) (0.0006)

n = 10
d L0 U0 (∆1)lower (∆1)upper (Γ11)lower (Γ11)upper (Γ12)lower (Γ12)upper

5 37.871 37.947 0.116 0.131 0.0051 0.0059 -0.00100 -0.00035
(0.002) (0.002) (0.001) (0.001) (0.0002) (0.0002) (0.00004) (0.00004)

10 38.352 38.446 0.119 0.128 0.0049 0.0059 -0.00093 -0.00031
(0.002) (0.002) (0.002) (0.002) (0.0003) (0.0003) (0.00006) (0.00006)

15 38.524 38.630 0.116 0.129 0.0049 0.0067 -0.0014 -0.0003
(0.002) (0.002) (0.003) (0.003) (0.0006) (0.0006) (0.0001) (0.0001)

20 38.621 38.729 0.117 0.135 0.0055 0.0084 -0.0019 0.0000
(0.005) (0.005) (0.005) (0.005) (0.0009) (0.0009) (0.0002) (0.0002)

30 38.711 38.835 0.102 0.132 0.0033 0.0092 -0.0024 0.0015
(0.005) (0.005) (0.008) (0.008) (0.002) (0.002) (0.0004) (0.0004)



Table III
Correlated Assets

Bounds for prices and sensitivities of Bermudan max-call options on two correlated assets.
The payoff of the option is (max(S1(t),S2(t))−K)+. The parameters are: K = 100,r =
5%,δ = 10%,T = 3,σ = 20%. The initial prices for each asset are set to 100. There are
9 exercise opportunities, that are equally spaced, at ti = iT/d, i = 1, . . . ,9,d = 9. The cor-
relation between the asset varies between −75% and 75%. The lower and upper bounds for
the option price are provided (L0,U0 respectively), as well as the lower and upper bounds for
the first derivative, ∆, of the option price with respect to the initial asset price, and lower and
upper bounds for the second derivative, Γ, with respect to the initial asset price. Since the
problem is symmetric with respect to the 2 assets, we only provide the first component of ∆,
∆1, and one diagonal term (the second derivative with respect to the initial asset price of the
first asset, Γ11) for Γ. Standard errors are given in parentheses below the estimated values.
The 3.3 GHz-PC-equivalent computational time for the calculations of the sensitivities was
set to 1 hour.

Correlation L0 U0 (∆1)lower (∆1)upper (Γ11)lower (Γ11)upper (Γ12)lower (Γ12)upper

-75% 15.440 15.470 0.384 0.390 0.0126 0.0136 −0.0031 −0.0022
(0.003) (0.003) (0.005) (0.005) (0.0009) (0.0009) (0.0008) (0.0008)

-50% 15.014 15.040 0.375 0.379 0.0127 0.0134 −0.0036 −0.0030
(0.003) (0.003) (0.004) (0.004) (0.0006) (0.0006) (0.0005) (0.0005)

-25% 14.508 14.532 0.354 0.358 0.0125 0.0131 −0.0038 −0.0034
(0.003) (0.003) (0.003) (0.003) (0.0005) (0.0005) (0.0003) (0.0003)

0% 13.890 13.913 0.331 0.334 0.0125 0.0130 −0.0055 −0.0052
(0.003) (0.003) (0.002) (0.002) (0.0003) (0.0003) (0.0002) (0.0002)

25% 13.088 13.110 0.310 0.314 0.0134 0.0139 −0.0061 −0.0057
(0.003) (0.003) (0.003) (0.003) (0.0005) (0.0005) (0.0003) (0.0003)

50% 12.141 12.162 0.288 0.292 0.0146 0.0153 −0.0076 −0.0071
(0.003) (0.003) (0.003) (0.003) (0.0005) (0.0005) (0.0004) (0.0004)

75% 10.885 10.909 0.267 0.272 0.0179 0.0189 −0.0109 −0.0101
(0.003) (0.003) (0.004) (0.004) (0.0008) (0.0008) (0.0007) (0.0007)



Table IV
Numerical Performance

Numerical performance of the LRD algorithm for estimating confidence intervals for the sen-
sitivities of Bermudan max-call options with n = 5 assets and d = 9 exercise opportunities.
The payoff and parameters are the same as in Table I. In Panel A, we vary the ratio of outer
to inner simulation paths, λ = No/Ni. We report the lower and upper estimates ∆, the standard
deviations of the estimates, and the confidence interval that corresponds to z = 1.96. The time
allocated to each different value of the ratio is under 1 minute on a 3.3 GHz PC computer.
The value of the ratio that minimizes the width of the confidence interval is approximately
equal to λ = 75. In Panel B, we fix the ratio to λ = 75, and vary the total computer budget
available for estimating the option price sensitivities. We provide the estimate of the lower
and upper bounds for ∆, the standard deviation of the bounds, and the confidence interval that
corresponds to z = 1.96. The computer budget is expressed in terms of CPU hours for a 3.3
GHz PC computer.

Panel A
λ (∆1)lower (∆1)upper Std. Dev. lower Std. Dev. upper CI Width

4 0.190 0.198 0.024 0.024 0.102
25 0.193 0.208 0.016 0.016 0.078

100 0.191 0.215 0.011 0.011 0.067
400 0.182 0.227 0.008 0.008 0.076

1000 0.171 0.241 0.007 0.007 0.097
2500 0.156 0.255 0.005 0.005 0.119

Panel B
Computer Budget (∆1)lower (∆1)upper Std. Dev. lower Std. Dev. upper CI Width

1 0.1990 0.2071 0.0034 0.0034 0.0214
3 0.2013 0.2076 0.0026 0.0026 0.0165
5 0.2035 0.2092 0.0023 0.0023 0.0147

10 0.1998 0.2049 0.0019 0.0019 0.0125



Table V
Estimates of Sensitivities Using a Heuristic Method

This table presents estimates of option sensitivities using the heuristic method of Section III.B.
The option payoff is that of a Bermudan max-call option, with n = 2,3,5,10 assets. The payoff
of the option is (max(S1(t), . . . ,Sn(t))−K)+. The parameters are: K = 100,r = 5%,δ =
10%,T = 3,σ = 20%. The initial price vector is S(0) = (S0, . . . ,S0), with S0 = 100. There
are 9 exercise opportunities, that are equally spaced, at ti = iT/d, i = 1, . . . ,9,d = 9. The
sensitivities are given in columns ∆1,Γ11,Γ12. Time denotes the 3.3 GHz PC computer time
equivalent, expressed in number of hours, used in each case. The probabilistic intervals for ∆1,
Γ11, Γ12, are obtained from the estimates in Table I by subtracting 1.96 standard errors from
the estimate of the lower bound and adding 1.96 standard errors to the estimate of the upper
bound. Standard errors for ∆1,Γ11,Γ12, are given in parentheses below the estimated values.

n Time ∆1 ∆1 LRD interval Γ11 Γ11 LRD interval Γ12 Γ12 LRD interval

2 0.3 0.332 0.327 to 0.338 0.0131 0.0120 to 0.0135 -0.0046 −0.0059 to −0.0048

(0.005) (0.0008) (0.0005)

1 0.333 0.0131 -0.0049

(0.003) (0.0004) (0.0003)

3 0.334 0.0129 -0.0048

(0.002) (0.0002) (0.0002)

3 0.3 0.268 0.269 to 0.281 0.0105 0.0097 to 0.0114 -0.0031 −0.0034 to −0.0025

(0.007) (0.0009) (0.0007)

1 0.266 0.0098 -0.0033

(0.004) (0.0005) (0.0004)

3 0.272 0.0107 -0.0030

(0.002) (0.0003) (0.0002)

5 0.3 0.216 0.196 to 0.209 0.0098 0.0074 to 0.0090 -0.0012 −0.0018 to −0.0011

(0.010) (0.0013) (0.0009)

1 0.208 0.0087 -0.0013

(0.006) (0.0008) (0.0005)

3 0.205 0.0087 -0.0011

(0.003) (0.0004) (0.0003)

10 0.3 0.127 0.117 to 0.133 0.0047 0.0049 to 0.0065 -0.0004 -0.0009 to -0.0002

(0.010) (0.0009) (0.0009)

1 0.120 0.0052 -0.0011

(0.005) (0.0007) (0.0005)

3 0.128 0.0056 -0.0004

(0.003) (0.0003) (0.0003)


