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The Impact of Large Changes in Asset Prices on 
Intra-Market Correlations in the 

Domestic and International Markets 
 
  

1. Introduction 
 

Effective portfolio diversification is one of the fundamental goals of portfolio 

management, requiring a judicious combination of evaluating expected returns, volatilities 

and correlations. This paper focuses on that third component, correlations, and the sensitivity 

of that statistic to “large” changes in asset values.  

Specifically, in his 1988 Presidential Address to the American Finance Association, 

“ 2R ,” Roll (1988) was concerned with the predictive ability of asset pricing models such as 

the CAPM and the APT:  

Even with hindsight, the ability to explain stock price changes is modest…The 
average adjusted 2R s are only about 35% with monthly data and 20% with daily 
data…The paucity of explanatory power represents a significant challenge to our 
science. 
 

This paper contributes to the literature by calculating the relevant market-model s on days 

of large and small price moves. It is shown that, for domestic and international stock-market 

returns, on the large-move days when (presumably) one is more concerned with a model’s 

predictive ability, the

2R

2R s are significantly larger than on days when small changes occur.  

Hedging an interest rate book, an options book or an equity book is of critical 

importance to many and varied financial institutions, including commercial and investment 

banks, which are exposed to one or more of these risks. In this context, the institutional 

hedger typically has larger exposure on days of “large” moves in asset prices, up or down, 

than he or she does on days when asset price movements are “small.” Consequently, the 

hedger has a greater interest in conditional correlation — conditional on the absolute 
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magnitude of asset price movements, irrespective of sign — than he or she does in the 

unconditional correlation.1  

Thus, consider an institution hedging an interest rate book. The work of Litterman 

and Scheinkman (1988) considers three factors, “level, steepness and curvature [emphasis in 

original].” They note that these “explain — at a minimum — 96% of the variability of excess 

returns of any zero” coupon bond. Consistent with these empirical results, the two-factor 

interest rate model of Brennan and Schwartz (1982) explicitly allows for a non-perfect 

correlation between the long- and short-term rates of interest. Similarly, Longstaff and 

Schwartz (1992) and Fong and Vasicek (1991) consider two-factor models in which interest 

rates and interest rate volatility are both stochastically changing through time; Heath, Jarrow 

and Morton (1990, 1992) provide a rigorous theoretical framework for one- and multi-factor 

no-arbitrage interest rate models. These papers permit a non-perfect correlation between the 

long- and short-term rates of interest.  

Given the importance of level changes in interest rates, and the widely-prevalent use 

of duration-type measures for hedging in practice, the need for multi-factor hedging remains 

an open question. Indeed, one of the critical issues of this paper is whether, for practical 

purposes, such multi-factor hedging is required. This paper demonstrates that a one-factor 

model of level (but not parallel) shifts adequately describes interest rate movements for large 

changes. Thus, this paper addresses the following important question: Are time periods of 

large changes in asset prices different from those of smaller changes?  

In an investigation into the return comovements of U. S. and Japanese stock using 

ADRs, Karolyi and Stulz (1996) focus on “the key role in international finance” played by 

stock return cross-country covariances. Inter alia, they observe that:     

                                                 
1 Balyeat and Muthuswamy compare hedging portfolios formed based on unconditional and 
conditional correlations and find that the unconditional analysis leads to strategies that are 
not optimal, frequently by more than 10%.  
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Comovements [between U. S. and Japanese stocks] are high when contemporaneous 
absolute returns of national indices are high…Our evidence shows that covariances 
are high when markets move a lot. This suggests that international diversification 
does not provide as much diversification against large shocks to national indices as 
one might have thought.     
 

This paper presents the theoretical result and subsequent empirical verification that 

demonstrates that correlations conditional on the magnitude of asset price changes differ 

from unconditional correlations.  

The issue of conditional correlations has been analyzed by several papers, especially 

in the context of the sensitivity of the correlation to downside vs. upside market moves. Ang 

and Chen (2000) and Longin and Solnik (2001) conclude that correlations tighten in bear but 

not bull markets. This issue also arises inter alia in the discussion of contagion, as in 

Rigobon (2000) and Forbes and Rigobon (2001), where the authors attempt to separate 

contagion effects from other statistical (e.g., heteroscedasticity and omitted variables) effects. 

In contrast, our paper considers both domestic and international equity as well as interest rate 

markets in quantifying the presence of conditional correlations distinct from their 

unconditional analogues, and in considering their Value-at-Risk and 2R  implications. We 

also provide results that quantify Value-at-Risk of a portfolio composed of instruments that 

depend linearly on two normally distributed random factors, as well as the expected loss 

beyond Value-at-Risk, with respect to the correlation of the random factors.2  

The paper is organized as follows. First, we present the framework and the theoretical 
                                                 
2 Boyer, Gibson and Loretan (1999) and Loretan and English (2000), independently of our 
work, have also investigated the issue of conditional correlations. While our paper is similar 
to these papers in their argument regarding the impact conditioning has on correlations, there 
are differences:  Boyer, Gibson and Loretan discuss the impact of conditioning on the 
correlation and present empirical results for exchange rates; Loretan and English take the 
theoretical results from that predecessor paper, and present empirical results for the 
conditional correlation for equity and bond returns, and for exchange rates.  In contrast, our 
paper formalizes the impact of conditioning on R2 and Value-at-Risk calculations; our 
empirical section examines the impact of conditioning on factor analysis for bond returns, 
hedging effectiveness of bond portfolios, Roll’s R2 estimates for domestic equities and 
implications for the CAPM, and on the R2 for international indices vs. the S&P 500. 
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results relating the conditional correlation to the absolute value of the change in asset prices. 

We also discuss the relation between Value-at-Risk, expected loss beyond Value-at-Risk, and 

correlation, and outline the implications for various aspects of financial economics. Second, 

we report empirical results pertaining to the bond market. In this portion, we also 

demonstrate the interest rate hedging implications of our analysis. Third, we apply the 

research methodology to stock market data, including a consideration of Roll’s 2R  analysis. 

Fourth, we conduct a similar 2R  analysis for international market returns. Finally, we 

summarize and discuss the implications of our results.  

 

2. Conditional correlations 
 

The fundamental theoretical result is due to Stambaugh:3  

Theorem (Stambaugh):  

1. Assume x  and  are distributed according to a bivariate normal distribution, 

and .

y

( ) 0=E y 4  

2. Define the unconditional covariance matrix  

[ ]
2

2
Cov

σ σ
σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎛ ⎞⎡ ⎤
, =⎜ ⎟⎢ ⎥

⎣ ⎦⎝ ⎠

x xy

xy y

x
x y

y
, (1) 

where the parameters σ x , σ xy , σ y  are assumed constant. 

3. Define  

                                                 
3 Rob Stambaugh presented this result in his discussion of the Karolyi and Stulz (1996) paper 
at the May 1995 NBER Conference on Financial Risk Assessment and Management. 
4 This assumption can be relaxed without loss of generality. In the case of non-zero means, 
the following additional translation needs to be performed: ( )′ ≡ −y y E y . 
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2 2

2

σδ
σ
−

≡ .x

x

a  (2) 

 Then the correlation between x  and , conditional on y 2 2=x a , is  

1 2
2 2

2

1Corr
1

δ ρ
δρ

/
⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞+
, = = ⎜ ⎟+⎝ ⎠

x y x a . (3) 

 

It is easy to verify that this conditional correlation increases (decreases) with a given positive 

(negative) unconditional correlation. Although the result engenders the intuition, empirical 

comparisons are not possible due to the lack of multiple observations of a given value for x. 

However, if the conditioning is changed to values ( ),x y  such that | |≥x a , then it is possible 

to carry out empirical tests.  

We will denote the correlation of x  and  conditional on the absolute value of y x  being 

greater than a cutoff value, a, as:  

 

 ( ) Corr(Corr , ≡ , :| |≥a )x y x y x a . (4) 

 

Theorem 1:  

Under the conditions of the previous theorem, the conditional correlation ( )Corr ,a x y  

is given by  

 

1 2

2

( ) ( )( )Corr ( ) ( )
ξ ξ ξ ρ
ξ ρ ξ ξ

/
⎛ ⎞− +

, = ⎜ ⎟− +⎝ ⎠
a

N nx y
N n

, (5) 

 

where  and  are, respectively, the standard normal density and the standard normal 

cumulative density functions, and 

n N

ξ σ= / xa .  

Proof:  See Appendix A.  

It can also be verified that this conditional correlation increases (decreases) for a 
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given cut-off a, with positive (negative) unconditional correlation. Two special cases are 

shown in Figure 1. A way to empirically test for the increase in correlation, independent of 

estimating variances and covariances, is by splitting any sample into subsets, ordered by the 

size of moves in one of the variables. We use this technique in our empirical study in 

Sections 3, 4 and 5. Figure 2 shows the anticipated increase in conditional correlation over 

unconditional correlation when the sample is split in two equal subsamples.  

Insert Figure 1 about here 

 

Theorem 1 makes possible pairwise comparisons and inferences based on these 

comparisons. These results can be extended for more general, non-normal distributions. In 

particular, given a set of  observations in two variables,{N },i iY X , ordered by the absolute 

distance of one of the variables from its mean, the 2R  of regression analysis decreases as 

more observations are included.  

Theorem 2:  

Let the set  contain the ( )S n ≤n N  observations with the greatest values of − .iY Y  

For  denote by  ( )∈ ,i S NX

 

( )
the predicted value of using

( )
⎧ ⎫ ⎧ ⎫

.⎨ ⎬ ⎨ ⎬
⎩ ⎭⎩ ⎭

)

)
i

in

Y

Y

S N
Y

S n
 (6) 

 

Further, let ≡ /∑ iY Y N  and 
( )∈

≡ ∑ in i S n
Y nY / . Assume that the average value of  is the 

same whether one uses  or 

Y

( )S N ( ).S n , i.e.,  

 

( )∈≅ ≡
n i S nY YY .  (7) 

 

Further, assume that the intercept and slope coefficients are identical for the unconditional 
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regression [using ] and the conditional regression [using ], ( )S N ( )S n

  

( ) .∈≅ ≡
) ) )
i in i S nY Y Y  (8) 

 

Then the 2R  of the regression is decreasing in   .n

Proof: See Appendix B.  

Insert Figure 2 about here 

 

Another area where large moves will have a disproportionate impact is in the risk 

management of large portfolios of financial instruments. A common tool for estimating the 

risk of such portfolios is the calculation of the Value-at-Risk of the portfolio, i.e., the 

maximum loss of the portfolio value over a fixed time horizon, at a certain confidence level.  

Consider a portfolio with $a invested in asset 1 and $b invested in asset 2. The returns 

on assets 1 and 2 are described by two random variables, X and Y, respectively, which are 

distributed according to the bivariate normal distribution with means equal to zero,5 standard 

deviations σ σ,x y  and correlation ρ .  

Theorem 3:  

Under the assumptions outlined above, the Value-at-Risk at a given confidence level, 

α , for any two correlations 0 1ρ ρ< , satisfies  

 

1 22 2 2 2
1

1 0 2 2 2 2
0

2
( ) ( )VaR VaR

2α α

σ σ ρ σ σ
ρ ρ

σ σ ρ σ σ

/
⎛ ⎞+ +

= ⎜ ⎟⎜ ⎟+ +⎝ ⎠

x y x y

x y x y

a b ab
a b ab

. (9) 

 

The expected loss, beyond Value-at-Risk, is given by  

 

                                                 
5 As stated above, this assumption is not crucial and can be relaxed. In the case of non-zero 
means, an additional translation needs to be performed. 
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1 22 2 2 2 2

2 2 2 2

Daily Loss Daily Loss VaR

2 VaRexp
2 22

α

ασ σ ρ σ σ
σ σ ρ σ σπ

⎛ ⎞
⎜ ⎟
⎝ ⎠

/

⎛ ⎞
⎜ ⎟
⎝ ⎠

≥

⎧ ⎫⎛ ⎞+ + ⎪ ⎪= −⎜ ⎟ ⎨ ⎬⎜ ⎟ + +⎪ ⎪⎝ ⎠ ⎩ ⎭

x y x y

x y x y

E

a b ab
a b ab

. (10) 

 

Proof: See Appendix C.  

Theorem 3 quantifies the magnitude of the expected loss beyond the VaR limits and 

can also be used as a means of calibrating VaR calculations, based on behavior on the tails, 

rather than on the overall distribution.  

 

3. Empirical results — Interest rates 

3.1 Treasuries 
 
Let r be the on-the-run three-month Treasury Bill rate. We consider the distribution of the 

variables  and  where we are implicitly considering Normal and Lognormal 

distributions for interest rate changes.

Δr r rΔ / ,

6 We stratify the sample into two sub-samples using the 

following criterion: those with the 50% smallest, and those with the 50% largest values of 

rΔ  and Δ /r r ; these identify the SMALL-change and LARGE-change dates. 

Let l  be a longer-maturity interest rate, where ∈l {6 mo., 1 yr., 2 yrs., 3 yrs., 5 yrs., 7 

yrs., 10 yrs., 20 yrs.} For the period January 1, 1990 to December 31, 2005, we compute the 

correlations, ( )Corr  andΔ , Δr l ( )Corr Δ / ,Δ /r r l l , for the overall sample, as well as the  

SMALL-change and the LARGE-change samples.7  

                                                 
6 Clearly, the one- and two-factor continuous-time interest rate processes that model dr or 
dr/r imply that empirical correlations should be computed with respect to changes, and not 
levels, of interest rates. 
7 An important question that arises here is the requirement of a multi-factor arbitrage-free 
model of interest rate movements that allows for a constant unconditional correlation 
between interest rate movements. Candidates for such models include Brennan and Schwartz 
(1982) or Duffie and Kan (1995). 
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The results of this analysis are reported in Table 1 Panels A and B.8  From the table, 

we observe that the conditional correlations ( )Corr Δ ,Δr l  and ( )C orr Δ / , Δ /r r l l  are greater 

for the LARGE-change relative to the SMALL-change days.     

Next, we explicitly test for the differences in the correlations.  Since the distribution 

of Pearson correlation is skewed, we use Fisher’s z-transformation that converts the 

distribution of sampled correlations to a normal distribution: 

[ ]Corr .5 ln(1 Corr) ln(1 Corr)′ = + − − , (11) 

Corr 1/ 3σ ′ = N − , and (12) 

1 2

1 2

Corr Corr
1/( 3) 1/( 3)

′ ′−
=

− + −
z

N N
, (13) 

 

where N is the sample size.  In Panels C and D, we report our findings of the tests of 

correlation differences.  We observe that, in general, the differences in correlations between 

the OVERALL-SMALL and LARGE-SMALL sub-samples are positive and significant, 

whereas the LARGE-OVERALL comparison is less conclusive.  This suggests that 

unconditional correlations are mostly driven by the co-movements in the LARGE-change 

days and that the SMALL-change days have little or no effect.  This result is further 

reinforced in tests related to hedging effectiveness presented in Tables 6 and 7.   

Insert Table 1 Panel A about here 

Insert Table 1 Panel B about here 

Insert Table 1 Panel C about here 

                                                 
8 The distributions for changes and percentage changes in interest rates are skewed (either 
positively or negatively) and exhibit significant kurtosis, and therefore deviate significantly 
from normality. We use the method proposed by Tabachnick and Fidell (1996) to estimate 
standard errors for skewness and kurtosis.  By symmetrically stratifying the sample, the 
methodology we employ does not address the asymmetry in conditional correlations that is 
discussed in Ang and Chen (2002), and thus underestimates the correlation differences 
reported in the table in the downside. 
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Insert Table 1 Panel D about here 

 

In order to further empirically validate the result in Theorem 1, we investigate how 

the conditional correlation between the change in the three-month rate and the ten-year rate is 

affected, when the cut-off point, ξ , is varied from 0.5 to 2.5 standard deviations.  The 

resulting conditional correlations for daily and weekly samples are plotted in Figure 3.  

Figure 3 is directly comparable to the theoretical result portrayed in Figure 1.  We observe 

that the general patterns in Figures 1 and 3 are similar.  From this analysis, we conclude that 

the conditional correlations in the bond markets are, indeed, monotonically increasing in the 

scaled cut-offξ .   

Insert Figure 3 about here 

3.2 Principal component analysis — Treasuries 
 
Another way to investigate the correlation structure of interest rates is to conduct principal 

component analysis.  We can indirectly infer conditional correlations by comparing the 

principal components (or factors) in the LARGE-change relative to the SMALL-change days.  

In Table 2 we present our findings of the principal-component analysis conducted 

over the entire sample and then the two sub-samples.  For brevity, we report the results for 

three factors.  Note that the first factor explains the majority of variation in interest rates in 

the overall sample as well as the LARGE-change and SMALL-change days. Furthermore, for 

the LARGE-change days, the variance explained by the first factor is greater than that of the 

other two samples, indicating the importance of a single factor for such days.  We observe 

that the large-move days provide evidence supportive of the hypothesis that large-move days 

reflect more of a level shift in interest rates. 

Insert Table 2 about here 
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3.3. Regression analysis — Treasuries 

Let be the treasury rate for maturity T, where Tl { }10 yrs 20 yrs∈ ., . .T  Similar to our analysis 

in the section above, we divide the sample into two sub-samples by the magnitude of Δr  or 

Δ /r r , respectively, and estimate the following regressions:  

 

α βΔ = + Δ Tr l , and (14) 

/ ( / )α βΔ = + Δ T Tr r l l  (15) 

 
 

across the overall, SMALL- and LARGE-change sub-samples from 1990 to 2005.  

Table 3 reports the result of these regressions. Note that the R2 for the LARGE-

change sub-sample is much higher than that of the SMALL-change sub-sample. Once again, 

these results confirm the relationship between magnitude of changes and the conditional 

correlation. Table 3 demonstrates that although level changes are of increasing importance as 

the magnitude of the change increases, they are not parallel changes as implied in duration-

type hedging. Rather, a more accurate hedge of these level changes would take into account 

the estimated coefficient of the long-term bond, which is significantly less than one.  

 

Insert Table 3 about here 

3.4. Interest rates — The “exceptional” days  
 
Consider the days for which:  

( )2 5 StdΔ > . . Δr r and (16) 

20 0Δ Δ <r l . (17) 

 

That is, days in which the change in the short-term rate was of significant magnitude, and yet 
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the 20-yr. rate of interest moved in the opposite direction.  20l

Table 4 demonstrates that the set of days in which the comovements of short- and 

long-term rates were not aligned, despite the large magnitude of the short-term rate’s change, 

constitutes days in which significant political or monetary events took place.9 These days 

may well warrant further analysis and suggest a pure-hedging rationale for an exotic option: a 

“range floater” that compensates the holder whenever the slope of the term structure changes 

“significantly.” While pricing such a derivative may be non-trivial, it would be a useful tool 

in hedging an interest-rate book in conjunction with a duration-style hedge of the book’s 

value.  

Insert Table 4 about here 

 

3.5. One- and two-factor hedging of interest rate risk 
 
Consider the problem of hedging the change in the yield of the on-the-run par-bond of 

maturity  for  , ii dy , { }0 25 0 5 1 2 3 5 7 10 20∈ . , . , , , , , , , .i  For the one-factor case, assume that the 

hedge vehicle is the two-year security (i.e., ). For the two-factor case, consider the use of 

 and the change in the yield-curve slope 

2dy

2dy ( )10 2 10 2− ≡ −d y y dy dy .  As before, we consider 

the hedging of interest-rate changes for all observations, as well as the upper 50% of the 

large-move days only. In the one-factor case, we regress  on idy 2 ,dy  subtract the predicted 

value ,)idy  and compute the standard deviation of the residual, ( )σ − .) )
i idy dy  In the two-

factor case, we regress  on  and idy 2dy 10 2− ,dy dy  and similarly compute the standard 

deviation of the residual. We employ the two-factor model for the overall sample, and the 
                                                 
9 Perhaps surprisingly, there were no “exceptional” days in the 2001 - 2005 period, where 
exceptional is defined as days in which the change in the short-term rate was of significant 
magnitude; i.e., greater than two and a half standard deviations, and yet the change in the 
thirty-year rate moved in the opposite direction from the change in the short-term rate. 
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one-factor model for the large-magnitude sample.10  

Table 5 reports the results of this analysis for the period January 1, 1990 to December 

31, 2005. The previous analyses have highlighted the importance of a single-factor in the 

LARGE-change days. Consistent with these analyses, one-factor hedging using the two-year 

maturity in the LARGE-magnitude sample achieved a greater reduction in the volatility of the 

shorter-maturity issues (0.25, 0.5, one and three-year) than was accomplished by the two-

factor model for the overall sample.  

Insert Table 5 about here 

 

Letting  denote the price of a maturity i  bond, we consider a price-based hedge of 

a five-year par bond using either a two-year bond or a two-year/ten-year portfolio. The 

analysis below may be considered more purely ex-ante than its Table 5 predecessor, as it 

does not make use of any time-series properties.  

iP

In a large-move day, contrast the performance of the one-factor hedge portfolio,  

 

5 5 2
5 5 2

2 5 2

Dollar Duration0
Dollar Duration

Π = −Δ = ⇒ Δ = = ≡
dP dP dPd dP dP
dP dy dy

5

2

 (18) 

 

with the analogous performance of a two-factor hedge portfolio,  

 

5 2
5 5 2 2 10 10 5 2 2 10 10

5 2 10

0Π = −Δ −Δ = −Δ −Δ =
dP dPdPd dP dP dP dy dy dy
dy dy dy

10

10

                                                

, and (19) 

5 2 2 10= +dy w dy w dy  (20) 

 

for weights , which sum to unity. We now have two equations in two unknowns:  2 10w w,

 

 
10By definition, this process eliminates all residual volatility for the two-year security in the 
one-factor case, and the two-year and 10-year securities in the two-factor case. 
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5 2 5
2 2 2 2

5 2 2

5 10
10 10 10 10

5 10

Dollar Duration0
Dollar Duration

Dollar Duration0
Dollar Duration

⎧ ⎧−Δ = Δ =⎪ ⎪
⎪ ⎪⎪ ⎪⇒⎨ ⎨
⎪ ⎪
⎪ ⎪−Δ = Δ =
⎪ ⎪⎩⎩

dP dPw w
dy dy

dP dPw w
dy dy

5

10

 (21) 

 

where in the implementation we set  

 

10 5
2

10 2

Dollar Duration Dollar Duration
Dollar Duration Dollar Duration

−
=

−
w , and (22) 

10 21= − .w w  (23) 

 

Defining hedging effectiveness by the proportional reduction in residual variance, 

/ 1σ σΠ −
i id dP , Table 6 reports on the result of the analysis.11

As in Table 5, for intermediate maturities of three and five years the hedging 

effectiveness of the one-factor hedge on the large-move days is close to, or actually 

outperforms,  the two-factor model in the overall sample.  

Insert Table 6 about here 

 

4. Stock market 

4.1. Stock market returns 
 
We consider the returns itR  on the 100 largest market-cap companies traded on the NYSE/ 

AMEX with complete data for the period January 1, 1990 to December 31, 2005, and define 

tR  to be the 100 stocks’ value-weighted average return. We sort the data by the magnitude of 

                                                 
11 We note that, for the two-year maturity in the one-factor model on the large-move days; 
and the two- and ten-year maturities for the two-factor model in the overall sample, the 
hedging effectiveness is by definition -100% since we are taking an offsetting position in one 
or both of the underlying factors. 
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tR  and divide the sample days into two subsets as LARGE-change days and SMALL-

change days. On each trading day, we observe the sign of tR⎛⎜
⎝

⎞
⎟
⎠
 and the signs of ( )itR . The 

percentage number, and the percentage market value of the stocks whose returns have the 

same sign as tR , are recorded for the overall, SMALL- and LARGE-change days in the 

sample period in Table 7.  Figure 4 displays the value weighted proportions of stocks that 

moved in the same direction as the index as the absolute magnitude of the change in  is 

varied from 0.5 to 2.5 standard deviations. Similar to Figure 3, these results again confirm 

the increasing comovement of stocks as the magnitude of “market” move increases.  

tR

Insert Table 7 about here 

Insert Figure 4 about here 

4.2. Roll’s  2R
 
As noted in the introduction, Roll (1988) was concerned with the profession’s empirical 

inability to explain cross-sectional stock price movements. This may, however, be 

attributable to market microstructure effects, which are pervasive on the SMALL-change 

days. In a partial attempt to address this issue, we extract daily returns for 24 companies (the 

ones used by Roll) from the CRSP tapes. For each stock, daily returns are regressed on the 

value weighted index of all the companies listed in the New York and American Stock 

Exchanges on the entire data set and on the large- and small-move days of this index. The 

resultant 2R s are tabulated in Table 8.  

Table 8 demonstrates a significant increase in 2R  between the SMALL- and 

LARGE-change days:12 The SMALL-change days have 2R  on the order of 1% – 5%, 

                                                 
12 We also report the skewness and the kurtosis of the overall stock return distributions in 
Table 8. Note that out of the 24 companies, three exhibit significant negative skewness and 
all have significantly leptokurtic return distributions. 
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whereas the LARGE-change days evidence 2R  in the vicinity of 10% to 45%. Clearly, an 

attempt to address Roll’s concerns requires a follow-up to this type of analysis; nevertheless, 

there may be hope here that CAPM/APT models can explain a larger variation of movement 

on days “when it matters,” than was thought possible.  

Insert Table 8 about here 

 

5. International markets 
 
We now consider an analysis analogous to the one in Section 3 for the case of returns in 

international — both emerging13 and developed — markets. The results are presented in 

Table 9. The sample period extends from January 1, 1990 to December 31, 2005. 

The use of weekly data is preferred because daily data suffer from frictions that are 

especially pronounced in an emerging markets setting. Furthermore, daily data would induce 

noise due to time-zone differences in the countries analyzed. Roll (1988) points out 

statistically significant lead and lag effects of time-zone differences in the comovement of 

international equities.  

The analysis proceeds in the following stages: First, weekly returns are generated from 

the weekly values of the dollar denominated country indices. Second, the dataset is split in 

two subsamples, based on the behavior of the U.S. index: days of LARGE-changes and days 

of SMALL-changes. Third, for each country, we regress the returns of the country index vs. 

the U.S. index for (a) the whole dataset, (b) the dataset with the LARGE-changes, (c) the 

dataset with the SMALL-changes.  

                                                 
13 Since our sample includes emerging markets, there is a concern that there may be 
complications with the operation of newly established stock markets such that the data are 
not reliable or price movements are not indicative of value-relevant information.  The newest 
stock market (Turkey) in our data set is four years old in 1990 at the beginning of our sample 
period. 
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The results are reported in Table 9.14 The regressions for the small days have an 2R  of 

the order of 0% - 7%, while the regressions for the large days have 2R  between 0% - 40% 

for the developing markets, and 10% - 40% for the developed markets.  

    Insert Table 9 about here 

 

6. Summary and implications 
 

We have derived and tested the implications of the correlation between two assets, 

conditional on the value of one of the assets making a large move. We have shown that the 

absolute magnitude of the conditional correlation is increasing in the size of the move. The 

paper confirms the empirical regularity of these results in the bond, stock and international 

markets. Specifically, bond markets are relatively more influenced by level changes on large-

, rather than small-, move days. On the equity side, markets are more likely to move 

uniformly on high-, vs. low-, volatility days. Also, the market model has greater explanatory 

power on days when the market has made a substantial move. 

The economic interpretation for the equity-market results appears straightforward: on 

the large-move days, economic factors — political, macroeconomic, and industry-wide, etc. 

— dominate, whereas on the small-move days, additional factors, including those of market 

microstructure, prevail.  

The implicit assumption of this paper is that only large moves “matter.” There are 

several areas of financial economics where conditional-correlation analysis may have an 

impact:  

1. Hedging interest rate risk: A one-factor model, reflecting level (though not 

                                                 
14 In Table 9, we also report the skewness and the kurtosis of the overall country return 
distributions. Note that almost all country returns exhibit significant skewness and kurtosis.  
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parallel) changes, may be adequate for hedging an interest rate book composed 

primarily of non-callable bonds. The intuition behind this result is that the 

effective number of important factors decreases as one conditions on larger 

moves.  

 
2. Tests of asset pricing models, including CAPM, CCAPM, and such models as the 

three-factor Fama/French model. Recall that the models of Ingersoll (1975) and 

Kraus and Litzenberger (1976) emphasized the role of additional moments, such 

as skewness, in asset pricing models. An explicit modeling of aversion to large 

asset price changes, incorporating kurtosis, may yield new insights in this area. At 

the least, it would be interesting to see the efficacy of asset pricing models when 

tested separately over large- and small-change sample days.  

 
3. Roll’s R2 analysis: The explanatory power of CAPM/APT may usefully be 

conducted separately over days in which asset price changes are large and small. 

On large-move days, conditional correlations tighten, and portfolio managers’ 

ability to diversify decreases.  

 

4. Value-at-Risk: Risk measurement in portfolios containing derivatives has become 

an important research and public-policy issue. The concept of Value-at-Risk 

depends on historical volatility and (unconditional) correlations for the calculation 

of confidence intervals for losses. Yet, if one is concerned with regulatory 

implications for systemic losses, the distinction among conditional and 

unconditional variances, covariances and correlations is an important one. 

Conditional correlations indicate more accurately the impact of a large negative 

shock. The use of unconditional moments may provide an unjustified, downward-
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biased degree of confidence in the estimate of losses incurred on large-move days. 

Value-at-Risk might be more accurately computed by focusing on large move 

days, rather than the overall sample. We leave these extensions for future work. 
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A.  Proof of Theorem 1 

Let  (  be distributed as  ),X Y

2
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Then we have the following result15:  
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2 ( ) 1
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where  and  are standard normal density and standard normal cumulative density 

functions respectively, and  

n N
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= :| |≥
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We start with the conditional variance of x :  
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2 ( )

− ∞
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The unconditional variance is given by:  

                                                 
15The interested reader is referred to Johnson, Kotz and Balakrishnan (1994). 
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Now, we have  

( )

( )

( )( )

2

2 2

2

2

2

2

2 ( ) 1 Var( )
( )Var 2 ( )

2 ( )2 ( ) 1 1
2 ( ) 1

2 ( )

2 ( )1 (2 ( ) 1) 1
2 ( ) 1

2 ( )
1 2 ( ) 1 2 ( )

2 ( )
2 (1 ( ) ( ))

2 ( )
1 ( ) ( )

( )

σ ξ
ξ

ξ ξσ ξ σ
ξ

ξ

ξ ξσ ξ
ξ

ξ

σ ξ ξ ξ
ξ

σ ξ ξ ξ
ξ

ξ ξ ξσ
ξ

− − :| |<
=

−

⎛ ⎞
− − −⎜ ⎟−⎝ ⎠=

−

⎛ ⎞⎛ ⎞
− − −⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠=

−

− − +
=

−

+ −
=

−
+ −

=
−

=

x
a

x x

x

x

x

x

N X X
X

N

nN
N

N

nN
N

N
N n

N
n N

N
n N
N

a

2

2

( ) ( )
( )

( ) 1 .
( )

ξ ξ ξσ
ξ

ξ ξσ
ξ

+ −
−

⎛ ⎞
= +⎜ ⎟−⎝ ⎠

x

x

n N
N

n
N

 

(A7) 

 

For  and , define:  (Cov ,a X Y )

d

( )Vara Y

( ) ( )  an
( ) ( ).
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a

a

f x y f x y x a
f x f x x a

 (A8) 

  

We have  
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or  
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and it follows that  
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Now,  
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and  
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Rewriting the second integral as:   
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and letting σ
σρ= − y

x
u y x  we have 
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Returning to the original integral,  
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and finally  
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or  

1 2

2

( ) ( )( )Cor ( ) ( )a
N nX Y

N n
ξ ξ ξ ρ
ξ ρ ξ ξ

/
⎛ ⎞− +

, = ⎜ ⎟− +⎝ ⎠
. (A17) 

 

Q.E.D.  
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B. Proof of Theorem 2 

By the definition of  in the statement of the theorem, on average ( )S n
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Furthermore, under the assumption of homoscedasticity, on average, 
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In conclusion, we have  
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Now consider the explanatory power of the overall regression 2 ,NR  which, by definition, is 
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Using equations (B6) and (B7), 
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Q.E.D.  
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C. Proof of Theorem 3 

Under the conditions in the theorem, the density of the distribution is given by  

( ) ( )22
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The Value-at-Risk VaRα  of the portfolio is defined as  

Prob(Dailyloss VaR )α α≥ =  (C2) 

for α  a constant number, signifying the probability of losses greater than VaRα  over one 

day (typical values of α  are 5%, 1% and 0.1%). The daily change of the value of the 

portfolio is given by  

 +aX bY  (C3) 

and VaRα  can be implicitly determined from  
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In order to identify the dependence of VaRα  on the correlation level, equation (C4) can be 

transformed to a standard form through a series of changes of variables. Consider  

  

 
1

1

2 2 , and
2 2

2 2 .
2 2

σ σ

σ σ

= +

= − +

x y

x y

x yx

x yy
 (C5) 

Then, equation (C4) becomes  
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where  
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A second change of variables (rescaling), with 
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transforms (C6) into  
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An additional rotation by an angle φ  with  
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brings equation (C9) to its canonical form,  
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Conceptually, the changes of variables performed can be seen to affect the level sets of the 

joint probability distribution in the following way:  

• The first change of variables corresponds to a rotation of the level sets of f  by / 4π  

and a rescaling of the coordinates by σ x andσ y . The level sets of 1f  are ellipses, with 

semi-axes parallel to the 1 1,x y  axes.  

• The second change of variables transforms the level sets of 1f  to circles.  

• The last rotation does not affect the level sets of 2f , but rotates the line of 
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interest VaRα+ =ax by , so that it is perpendicular to the 2x  axis.  

From the final form of the integral that defines Value-at-Risk we can deduce that, if 

0( )VaRα ρ  is known, then, for a different correlation 1ρ   
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1 0 2 2 2 2

0

2
( ) ( )VaR VaR

2α α

σ σ ρ σ σ
ρ ρ

σ σ ρ σ σ

/
⎛ ⎞+ +

= ⎜ ⎟⎜ ⎟+ +⎝ ⎠

x y x y

x y x y

a b ab
a b ab

. (C13) 

Another way to interpret the above result is to notice that, for normally distributed variables, 

VaR is scaled by the standard deviation corresponding to the distribution of the value of the 

portfolio.  

For increasing correlations, 1 0 0ρ ρ> ≥ , we have   

 1 0( ) ( )VaR VaRα αρ ρ> . (C13) 

To calculate the expected losses conditional on the losses exceeding the Value-at-Risk, we 

have  
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where  
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Q.E.D.  
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Figures 

 

Figure 1  
 
Conditional correlation as a function of the cutoff 
 
Figure 1 shows the parametric plots of conditional correlation as a function of the cutoff 
value for two values of the unconditional correlation, 0.05 and 0.5. 
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Figure 2  

Conditional correlation as a function of the initial correlation 
Figure 2 shows the anticipated change in conditional correlation over unconditional 
correlation when the sample is split into two equal-sized subsamples after being ranked.  
Conditional correlation plot is for the “LARGE”-change subsample.
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Figure 3  
 
Correlations conditional to large moves for interest rate data 
 
Figure 3 provides an emprical validation of the result in Theorem 1. Using daily and weekly 
samples, we compute the conditional correlation between the change in the three-month rate 
and the ten-year rate, when the cut-off point is varied from 0.5 to 2.5 standard deviations. 
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Figure 4 
  
Value-weighted percentage of stocks that move in tandem with the index, conditional on 
large index moves 
 
Figure 4 displays the value weighted proportions of the 100 largest market capitalization 
stocks traded in the NYSE/AMEX that moved in the same direction as a value-weighted 
index of the same stocks, as the absolute magnitude of the change in index value is varied 
from 0.5 to 2.5 standard deviations. The results shown are with daily and weekly samples. 
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Tables 

Table 1 
  
Conditional correlations 
 
Panel A. Correlations on OVERALL, SMALL-, and LARGE-change samples, 1990-2005 
 
We report the unconditional (OVERALL sample) and conditional (SMALL- and LARGE-change samples) 
correlations after stratifying the sample into two sub-samples based on change in the on-the-run three-month 
Treasury-Bill rate.  Skewness and Kurtosis parameter estimates are also reported for the OVERALL sample. 
The standard error for skewness is given by 6 /#  of observations , while the standard error for kurtosis is given 
by 8 /#  of observations . 
 

OVERALL          

(N=3936 days) 3-mo. 6-mo. 1-yr. 2-yr. 3-yr. 5-yr. 7-yr. 10-yr. 20-yr. 

3-mo. 1         

6-mo. 0.708 1        

1-yr. 0.462 0.725 1       

2-yr. 0.329 0.614 0.845 1      

3-yr. 0.305 0.588 0.821 0.936 1     

5-yr. 0.274 0.545 0.765 0.873 0.926 1    

7-yr. 0.233 0.475 0.683 0.798 0.854 0.925 1   

10-yr. 0.208 0.441 0.647 0.76 0.822 0.903 0.949 1  

20-yr. 0.143 0.344 0.535 0.635 0.696 0.789 0.871 0.886 1 
Skewness -0.496*** -0.753*** -0.492*** -0.470*** 0.125*** 0.202*** 0.327*** 0.351*** 0.334*** 

Kurtosis 20.033*** 10.548*** 6.833*** 3.794*** 3.161*** 2.281*** 2.057*** 2.016*** 1.560*** 

          

SMALL           

(N=1968 days) 3-mo. 6-mo. 1-yr. 2-yr. 3-yr. 5-yr. 7-yr. 10-yr. 20-yr. 

3-mo. 1         

6-mo. 0.154 1        

1-yr. 0.100 0.519 1       

2-yr. 0.072 0.446 0.721 1      

3-yr. 0.049 0.39 0.687 0.861 1     

5-yr. 0.036 0.372 0.638 0.795 0.874 1    

7-yr. 0.049 0.321 0.555 0.700 0.79 0.893 1   

10-yr. 0.039 0.304 0.519 0.645 0.742 0.848 0.919 1  

20-yr. 0.029 0.249 0.415 0.497 0.577 0.699 0.79 0.827 1 

          

LARGE          

(N=1968 days) 3-mo. 6-mo. 1-yr. 2-yr. 3-yr. 5-yr. 7-yr. 10-yr. 20-yr. 

3-mo. 1         

6-mo. 0.715 1        

1-yr. 0.497 0.774 1       

2-yr. 0.359 0.658 0.865 1      

3-yr. 0.327 0.628 0.834 0.937 1     

5-yr. 0.296 0.578 0.773 0.877 0.929 1    

7-yr. 0.246 0.500 0.685 0.793 0.860 0.929 1   

10-yr. 0.221 0.46 0.639 0.744 0.817 0.903 0.954 1  

20-yr. 0.138 0.346 0.506 0.587 0.657 0.759 0.838 0.874 1 

    
***, ** and * indicate statistical significance at the 0.01, 0.05 and 0.1 levels. 
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Panel B. Correlations on OVERALL, SMALL and LARGE-change samples, 1990-2005 
 
We report the unconditional (OVERALL sample) and conditional (SMALL- and LARGE-change samples) 
correlations after stratifying the sample into two sub-samples based on the percentage change in the on-the-run 
three-month Treasury-Bill rate.  Skewness and Kurtosis parameter estimates are also reported for the 
OVERALL sample. The standard error for skewness is given by 6 /#  of observations , while the standard error 
for kurtosis is given by 8 /#  of observations . 
 
 
OVERALL          

(N=3936 days) 3-mo. 6-mo. 1-yr. 2-yr. 3-yr. 5-yr. 7-yr. 10-yr. 20-yr. 

3-mo. 1         

6-mo. 0.761 1        

1-yr. 0.540 0.784 1       

2-yr. 0.429 0.688 0.87 1      

3-yr. 0.407 0.667 0.849 0.949 1     

5-yr. 0.361 0.602 0.771 0.859 0.916 1    

7-yr. 0.298 0.518 0.683 0.777 0.838 0.926 1   
10-yr. 0.256 0.467 0.631 0.725 0.792 0.896 0.948 1  

20-yr. 0.173 0.355 0.509 0.589 0.655 0.771 0.864 0.88 1 

Skewness -0.739*** -0.483*** 0.290*** 0.539*** 0.600*** 0.534*** 0.549*** 0.490*** 0.307*** 

Kurtosis 19.321*** 15.325*** 11.822*** 9.295*** 8.101*** 5.457*** 3.878*** 3.060*** 2.410*** 

          

SMALL-change          

(N=1968 days) 3-mo. 6-mo. 1-yr. 2-yr. 3-yr. 5-yr. 7-yr. 10-yr. 20-yr. 

3-mo. 1         

6-mo. 0.241 1        

1-yr. 0.202 0.589 1       

2-yr. 0.198 0.528 0.767 1      

3-yr. 0.170 0.477 0.733 0.888 1     

5-yr. 0.116 0.420 0.648 0.790 0.870 1    

7-yr. 0.116 0.369 0.562 0.691 0.783 0.900 1   

10-yr. 0.097 0.348 0.518 0.638 0.731 0.855 0.922 1  

20-yr. 0.045 0.266 0.39 0.473 0.552 0.694 0.787 0.824 1 

          

LARGE-change          

(N=1968 days) 3-mo. 6-mo. 1-yr. 2-yr. 3-yr. 5-yr. 7-yr. 10-yr. 20-yr. 

3-mo. 1         

6-mo. 0.781 1        

1-yr. 0.594 0.824 1       

2-yr. 0.483 0.726 0.884 1      

3-yr. 0.457 0.703 0.859 0.951 1     

5-yr. 0.410 0.639 0.782 0.870 0.925 1    

7-yr. 0.330 0.544 0.686 0.780 0.846 0.930 1   

10-yr. 0.282 0.482 0.622 0.716 0.791 0.898 0.955 1  

20-yr. 0.152 0.325 0.446 0.524 0.599 0.728 0.822 0.859 1 

 
 
***, ** and * indicate statistical significance at the 0.01, 0.05 and 0.1 levels.
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Panel C. Significance of correlation differences, 1990-2005 
 
We test for the differences in correlations reported in Table 1 Panel A.  Since the distribution of Pearson 
correlation is skewed, we use Fisher’s z-transformation that converts the distribution of sampled correlations to a 
normal distribution, where: [ ]Corr .5 ln(1 Corr) ln(1 Corr)′ = + − − , Corr 1/ 3σ ′ = −N , and 

1 2

1 2

Corr Corr
1/( 3) 1/( 3)

′ ′−
=

− + −
z

N N
. 

 
OVERALL-SMALL         

(N=3936 days) 3-mo. 6-mo. 1-yr. 2-yr. 3-yr. 5-yr. 7-yr. 10-yr. 

6-mo. 0.554***        

1-yr. 0.362*** 0.206***       

2-yr. 0.257*** 0.168*** 0.124***      

3-yr. 0.256*** 0.198*** 0.134*** 0.075***     

5-yr. 0.238*** 0.173*** 0.127*** 0.078*** 0.052*    

7-yr. 0.184*** 0.154*** 0.128*** 0.098*** 0.064** 0.032   

10-yr. 0.169*** 0.137*** 0.128*** 0.115*** 0.080*** 0.055** 0.030  

20-yr. 0.114*** 0.095*** 0.120*** 0.138*** 0.119*** 0.090*** 0.081*** 0.059** 

         

LARGE-OVERALL         

(N=1968 days) 3-mo. 6-mo. 1-yr. 2-yr. 3-yr. 5-yr. 7-yr. 10-yr. 

6-mo. 0.007        

1-yr. 0.035 0.049       

2-yr. 0.030 0.044* 0.020      

3-yr. 0.022 0.040 0.013 0.001     

5-yr. 0.022 0.033 0.008 0.004 0.003    

7-yr. 0.013 0.025 0.002 -0.005 0.006 0.004   

10-yr. 0.013 0.019 -0.008 -0.016 -0.005 0.000 0.005  

20-yr. -0.005 0.002 -0.029 -0.048* -0.039 -0.030 -0.033 -0.012 

         

LARGE-SMALL         

(N=1968 days) 3-mo. 6-mo. 1-yr. 2-yr. 3-yr. 5-yr. 7-yr. 10-yr. 

6-mo. 0.561***        

1-yr. 0.397*** 0.255***       

2-yr. 0.287*** 0.212*** 0.144***      

3-yr. 0.278*** 0.238*** 0.147*** 0.076**     

5-yr. 0.260*** 0.206*** 0.135*** 0.082** 0.055*    

7-yr. 0.197*** 0.179*** 0.130*** 0.093*** 0.070** 0.036   

10-yr. 0.182*** 0.156*** 0.120*** 0.099*** 0.075** 0.055* 0.035  

20-yr. 0.109*** 0.097*** 0.091*** 0.090*** 0.080** 0.060* 0.048 0.047 

 
 
***, ** and * indicate statistical significance at the 0.01, 0.05 and 0.1 levels. 
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Panel D. Significance of correlation differences, 1990-2005 
 
We test for the differences in correlations reported in Table 1 Panel B.  Since the distribution of Pearson 
correlation is skewed, we use Fisher’s z-transformation that converts the distribution of sampled correlations to a 
normal distribution, where: [ ]Corr .5 ln(1 Corr) ln(1 Corr)′ = + − − , Corr 1/ 3σ ′ = −N , and 

1 2

1 2

Corr Corr
1/( 3) 1/( 3)

′ ′−
=

− + −
z

N N
. 

 
OVERALL-SMALL         

(N=3936 days) 3-mo. 6-mo. 1-yr. 2-yr. 3-yr. 5-yr. 7-yr. 10-yr. 

6-mo. 0.520***        

1-yr. 0.338*** 0.195***       

2-yr. 0.231*** 0.160*** 0.103***      

3-yr. 0.237*** 0.190*** 0.116*** 0.061**     

5-yr. 0.245*** 0.182*** 0.123*** 0.069** 0.046*    

7-yr. 0.182*** 0.149*** 0.121*** 0.086*** 0.055** 0.026   

10-yr. 0.159*** 0.119*** 0.113*** 0.087*** 0.061** 0.041 0.026  

20-yr. 0.128*** 0.089*** 0.119*** 0.116*** 0.103*** 0.077*** 0.077*** 0.056** 

         

LARGE-OVERALL         

(N=1968 days) 3-mo. 6-mo. 1-yr. 2-yr. 3-yr. 5-yr. 7-yr. 10-yr. 

6-mo. 0.020        

1-yr. 0.054* 0.040       

2-yr. 0.054* 0.038 0.014      

3-yr. 0.050* 0.036 0.010 0.002     

5-yr. 0.049* 0.037 0.011 0.011 0.009    

7-yr. 0.032 0.026 0.003 0.003 0.008 0.004   

10-yr. 0.026 0.015 -0.009 -0.009 -0.001 0.002 0.007  

20-yr. -0.021 -0.030 -0.063** -0.065** -0.056** -0.043 -0.042 -0.021 

         

LARGE-SMALL         

(N=1968 days) 3-mo. 6-mo. 1-yr. 2-yr. 3-yr. 5-yr. 7-yr. 10-yr. 

6-mo. 0.540***        

1-yr. 0.392*** 0.235***       

2-yr. 0.285*** 0.198*** 0.117***      

3-yr. 0.287*** 0.226*** 0.126*** 0.063**     

5-yr. 0.294*** 0.219*** 0.134*** 0.080** 0.055*    

7-yr. 0.214*** 0.175*** 0.124*** 0.089*** 0.063** 0.030   

10-yr. 0.185*** 0.134*** 0.104*** 0.078** 0.060* 0.043 0.033  

20-yr. 0.107*** 0.059* 0.056* 0.051 0.047 0.034 0.035 0.035 
 

 

***, ** and * indicate statistical significance at the 0.01, 0.05 and 0.1 levels.
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Table 2 
 
Principal components factor analysis, 1990-2005 
 
We report the results of Principal Components Factor Analysis of the Treasury rates in the 
OVERALL, SMALL-, and LARGE-change samples. LARGE- and SMALL-change 
subsamples are based on the change in the three-month Treasury rate. 
 
OVERALL 
(N= 3936days) Factor1 Factor2 Factor3 Commonality
3-mo. 0.752 0.646 0.122 0.997
6-mo. 0.831 0.553 0.056 0.998
1-yr. 0.918 0.392 0.004 0.996
2-yr. 0.974 0.203 -0.091 0.998
3-yr. 0.993 0.071 -0.095 0.999
5-yr. 0.985 -0.145 -0.084 0.998
7-yr. 0.966 -0.24 -0.079 0.997
10-yr. 0.927 -0.372 0.008 0.997
20-yr. 0.845 -0.508 0.158 0.997
   
Variance 8.26 1.636 0.078 8.641
     
SMALL  
(N= 1968days) Factor1 Factor2 Factor3 Commonality
3-mo. 0.873 -0.464 0.142 0.999
6-mo. 0.897 -0.436 0.066 0.999
1-yr. 0.93 -0.362 -0.026 0.997
2-yr. 0.978 -0.184 -0.097 0.999
3-yr. 0.994 -0.045 -0.099 1
5-yr. 0.976 0.205 -0.063 0.999
7-yr. 0.949 0.309 -0.026 0.997
10-yr. 0.898 0.438 0.028 0.999
20-yr. 0.794 0.593 0.12 0.997
   
Variance 7.668 1.253 0.064 8.221
     
LARGE  
(N= 1968days) Factor1 Factor2 Factor3 Commonality
3-mo. 0.776 0.619 0.101 0.997
6-mo. 0.85 0.523 0.046 0.998
1-yr. 0.927 0.37 0.006 0.997
2-yr. 0.978 0.19 -0.08 0.999
3-yr. 0.994 0.063 -0.084 0.999
5-yr. 0.986 -0.147 -0.073 0.998
7-yr. 0.968 -0.235 -0.072 0.998
10-yr. 0.934 -0.354 0.005 0.998
20-yr. 0.869 -0.471 0.144 0.998
   
Variance 8.449 1.468 0.061 8.752
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Table 3  
 
Regression of long-term Treasuries on 3-month Treasury, Data period for 20-year, 
10/1993 – 12/2005; Data period for 10-year, 1990 – 2005 
 
We report the R2s from regressions of the long-term rate on the three-month Treasury rate in 
the OVERALL, SMALL, and LARGE-change samples.  In separate regressions, we use 20-
year and 10-year Treasury rates as independent variables.  SMALL- and LARGE-change 
subsamples are based on the change and the percentage change in the three-month Treasury 
rate. Two tailed t-values are in parentheses. 
 
  20-year Treasury and 3-month Treasury 

Difference  R2  Constant Coefficient N(Days) 
OVERALL  0.0704 -0.0006 0.3031 3062 

  (0.63) (15.23)***  
SMALL  0.0315 0.0004 1.1862 1532 

  (0.32) (6.58)***  
LARGE  0.1078 -0.0011 0.2929 1532 

  (0.89) (14.44)***  
 
 

Per. change  R2  Constant Coefficient N(Days) 
OVERALL  0.0756 -0.0001 0.1818 3062 

  (0.68) (15.82)***  
SMALL  0.0360 0.0000 0.4252 1532 

  (0.14) (7.05)***  
LARGE  0.1147 -0.0002 0.1724 1532 

  (0.85) (14.96)***  
 
 
  10-year Treasury and 3-month Treasury 

Difference  R2  Constant Coefficient N(Days) 
OVERALL  0.1180 -0.0005 0.4333 4001 

  (0.55) (23.13)***  
SMALL  0.0353 0.0012 1.2856 2000 

  (0.91) (7.87)***  
LARGE  0.1699 -0.0014 0.4230 2001 

  (1.18) (21.71)***  
 
 

Per. change  R2  Constant Coefficient N(Days) 
OVERALL  0.1217 -0.0001 0.2882 4001 

  (0.62) (23.54)***  
SMALL  0.0409 0.0002 0.5675 2000 

  (0.78) (8.50)***  
LARGE  0.1825 -0.0003 0.2782 2001 

  (1.32) (22.68)***  
 
***, ** and * indicate statistical significance at the 0.01, 0.05 and 0.1 levels.
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Table 4  

Interest Rates — The “exceptional” days, 1990-2005 
 
We report the significant news that appeared on the days in which the change in the three-
month Treasury rate was more than 2.5 standard deviations, and the short-term and the 20-yr. 
rates of interest moved in opposite directions. Note that, perhaps surprisingly, there were no 
“exceptional” days in the 2001-2005 period satisfying the above criterion.  
 
 

Date  WSJ article   
Jan. 9, 1991  Flight to quality, as Secretary of State Baker reports “nothing that 

suggested any Iraqi flexibility”   
Aug. 21, 1991  Flight from quality, as “investors hailed collapse of coup in the Soviet 

Union”   
Feb. 10, 1992  “Short-term rates dropped in reaction to a surprisingly gloomy 

employment report, … but bond prices plummet[ed] later in the day after 
the Federal Reserve took no immediate action to cut rates”   

Nov. 16, 1994  Reaction to Federal Reserve tightening 0.75 percentage points, “sending 
bond prices whipsawing wildly in the final 90 minutes of trading”   

Dec. 8, 1994  Flight to quality, as “investors grappled with fallout from the Orange 
County bankruptcy-law filing”  

Dec. 29, 1995 Thin trading and some weak economic data pushed longer-term treasuries 
higher. 

May 21, 1997 “Longer-term treasuries fell amid rumors of hedge fund selling and 
renewed concerns about inflation and the strength of the economy” 

Feb. 4, 1998 “Longer-term treasuries were marginally higher as the Fed, as expected, 
left rates unchanged.  The bond market was stronger early in the day as the 
Treasury Dept. weighed using the budget surplus to repurchase bonds.” 

Oct. 8, 1998 “Speculation that Japan would undertake an economic stimulus package 
created a flight to yen.  Japanese investors were pulling money from the 
U.S. and some hedge funds were rumored to be unwinding leveraged bets 
against the yen” 

Aug. 12, 1999 “The Beige Book report relieved some inflation fears that had prompted 
economists to advance the prospect of a rate hike in August” 

May 17, 2000 “A falling stock market drove some investors into shorter term securities 
while long rates rose slightly in anticipation of continued Fed tightening. 
The Fed raised both the discount and fed-funds rate by 50 bps on 5/16/00”

May 18, 2000 “Long rates rose on the concern that the Fed would continue to raise rates”
May 22, 2000 “Continued weakness in the stock market prompted some flight to quality. 

Long rates were slightly lower on speculation that Fed would leave rates 
unchanged at next meeting” 

June 2, 2000 “Long rates fell on economic news suggesting the Fed may become less 
aggressive in raising rates” 

Jul. 3, 2000 “Long rates fell marginally as the NAPM release showed only modest 
growth. Pre-holiday trading was very thin” 

Jan. 3, 2001 “The Fed unexpectedly cut the fed-funds rate by 50 bps. and the discount 
rate by 25 bps. The stock market rallied and money moved from longer-
term treasuries to stocks” 
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Table 5  
 
Test of hedging effectiveness, 1990-2005 
 
Hedging effectiveness is measured as the residual volatility from two different models: 1) 
One-factor model, where the factor is the change in two-year Treasury rate, and 2) Two-
factor model, where the factors are the change in the two-year rate and the change in the 
slope of the yield curve, which is defined as the change in the difference between the 10-year 
and two-year rates.  Reported results are based on the OVERALL and LARGE-change 
samples. 
 
 

Move 
magnitude 

(1) 

Maturity 
years 
(2) 

Standard 
deviation 

(3) 

One-factor residual 
volatility 

(4) 

Percentage 
change 

(5) = (4)/(3) – 1

Two-factor residual 
volatility 

(6) 

Percentage 
change 

(7) = (6)/(3) – 1 
OVERALL 0.25 3.69% – – 3.48% -5.76% 

LARGE 0.25 4.28% 3.97% -7.22% – – 
OVERALL 0.5 3.30% – – 2.77% -16.11% 

LARGE 0.5 3.98% 3.27% -17.78% – – 
OVERALL 1 3.63% – – 2.12% -41.62% 

LARGE 1 4.14% 2.47% -40.31% – – 
OVERALL 2 4.23% – – 0% 100% 

LARGE 2 4.19% 0% 100% – – 
OVERALL 3 4.31% – – 1.41% -67.32% 

LARGE 3 4.52% 1.84% -59.38% – – 
OVERALL 5 4.31% – – 1.41% -67.35% 

LARGE 5 4.59% 2.56% -44.12% – – 
OVERALL 7 4.17% –  1.22% -70.77% 

LARGE 7 4.55% 3.06% -32.75% – – 
OVERALL 10 3.94% – – 0% -100% 

LARGE 10 4.33% 3.13% -27.60% – – 
OVERALL 20 3.57% – – 1.54% -56.89% 

LARGE 20 3.97% 3.18% -19.93% – – 
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Table 6  

Analysis of ex-ante hedging effectiveness, 1990-2005 
 
Ex-ante hedging effectiveness is defined as the proportional reduction in residual variance of 
the hedge portfolio.  The one-factor hedge uses the two-year Treasury instrument.  The two-
factor hedge uses the two-year and ten-year instruments.  Reported results are for the 
OVERALL and LARGE-change samples. 
 

Maturity  LARGE-change 
days  

OVERALL   

(years)  1-factor:   2P 2-factors: ,2 10P P   
0.25  −15.7%  24.1%   
0.5  −19.2%  −6.2%   
1  −56.3%  −47.6%   
2  −100.0%  −100.0%   
3  −83.9%  −81.5%   
5  −70.4%  −74.4%   
7  −48.0%  −82.7%   
10  −37.9%  −100.0%   
20  79.6%  −55.6%  
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Table 7 
 
Percentage number and value of stocks positively co-moving with the index, 1990-2005 
 
We report the percentage number and the percentage market capitalization of the 100 largest 
stocks traded in the NYSE/AMEX that moved in the same direction as a value-weighted 
index of the same stocks in the OVERALL, SMALL- , and LARGE-change samples. 
 
Percentage number Mean Std. dev. No. of days

OVERALL 57.00% 9.94% 4091 
SMALL 51.24% 6.63% 2046 
LARGE 62.77% 13.32% 2045 

    
    

Percentage Value Mean Std. dev. No. of days
OVERALL 63.00% 4.54% 4091 

SMALL 55.57% 2.68% 2046 
LARGE 71.27% 6.78% 2045 
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Table 8 
 
Roll’s stocks: R2 on the OVERALL, SMALL- and LARGE-change samples, 1990-2005 
 
We report the R2 from the market-model regression of daily returns for a sample of stocks 
used by Roll (1988) in the OVERALL, SMALL-, and LARGE-change samples.  The market 
is defined as the value-weighted index of all the stocks listed in the NYSE/AMEX. The 
standard error for skewness is given by 6 /#  of observations , while the standard error for 
kurtosis is given by 8 /#  of observations . 
 
 
  R 2     
 OVERALL SMALL LARGE  Skewness Kurtosis 
Miscellaneous Companies       
BOEING 15.88% 1.32% 25.96% -0.282*** 6.094*** 
GENERAL MILLS 6.30% 1.01% 10.18% 0.111*** 3.441*** 
GOODYEAR TIRE 14.20% 1.19% 23.60% 0.145*** 4.622*** 
INTERNATIONAL PAPER 15.28% 2.31% 25.30% 0.335*** 2.934*** 
ITT 12.64% 2.19% 29.19% 0.349*** 4.302*** 
UNION CARBIDE 8.60% 1.12% 13.61% 0.817*** 6.096*** 
    
Oil Companies    
EXXON 9.11% 2.67% 10.61% 0.210*** 3.237*** 
PENNZOIL 5.77% 1.09% 7.40% 2.598*** 47.032*** 
    
Transportation - Railroad and Airlines    
CSX 15.13% 2.21% 24.51% 0.134*** 4.749*** 
DELTA AIRLINES 16.24% 1.43% 25.04% -0.399*** 23.051*** 
NORFOLK SOUTHERN 15.97% 2.48% 28.31% 0.380*** 4.457*** 
UNION PACIFIC 12.15% 1.77% 23.68% 0.091** 2.121*** 
    
Utilities    
AMERICAN ELECTRIC POWER 9.88% 2.14% 12.46% -0.027        31.680*** 
COMMONWEALTH EDISON 6.94% 1.88% 11.30% 0.053 3.542*** 
GTE CORP 12.82% 1.56% 16.77% 0.218*** 2.471*** 
PACIFIC  GAS & ELECTRIC 5.78% 1.02% 7.21% -0.609*** 62.900*** 
SOUTHERN CALIFORNIA EDISON 4.51% 0.74% 6.28% 0.440*** 61.573*** 
    
Retailers    
JC PENNEY 15.50% 2.38% 20.86% 0.592*** 4.886*** 
SEARS 16.21% 1.78% 27.57% 0.010 17.059*** 
    
Financial Services    
BANK OF AMERICA CORP 3.82% 0.50% 5.60% 0.004 2.941*** 
CIGNA COR 13.29% 1.79% 19.05% 0.575*** 9.229*** 
GENERAL RE CORP 2.25% 0.25% 40.17% 1.114*** 13.612*** 
JP MORGAN 35.30% 4.92% 43.19% 0.371*** 4.503*** 
    
Average R 2 11.89% 1.73% 19.91%   
 
***, ** and * indicate statistical significance at the 0.01, 0.05 and 0.1 levels.
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Table 9 
  
International markets: R2 on the OVERALL, SMALL and LARGE-change samples, 
1990-2005 
 
We report the R2 from the market-model regression of weekly returns for a sample of 
international stock market indices in the OVERALL, SMALL-, and LARGE-change 
samples.  The market is defined as the value-weighted index of all the stocks listed in the 
NYSE/AMEX. The standard error for skewness is given by 6 /#  of observations , while the 
standard error for kurtosis is given by 8 /#  of observations . 
 
  R 2       
Developing Markets OVERALL SMALL LARGE  Skewness  Kurtosis 
ARGENTINA 4.19% 2.29% 7.11% 0.672*** 7.536*** 
BRAZIL 9.99% 1.25% 17.12% -0.317*** 5.894*** 
CHILE 11.27% 1.29% 17.72% -0.039 1.118*** 
JORDAN 0.04% 0.07% 0.17% 0.564*** 2.107*** 
KOREA 7.96% 0.91% 11.94% 0.473*** 2.945*** 
MALAYSIA 4.33% 1.45% 5.91% 2.475*** 35.228*** 
MEXICO 25.17% 2.67% 40.00% -0.308*** 4.329*** 
PHILIPPINES 5.17% 0.63% 7.94% 0.642*** 6.565*** 
TAIWAN 6.01% 2.07% 9.43% -0.020 2.446*** 
THAILAND 5.62% 0.40% 7.68% 1.902*** 16.754*** 
TURKEY 2.06% 0.24% 3.04% 0.311*** 2.315*** 
PORTUGAL 7.19% 1.52% 11.53% 0.123 1.289*** 
Average R2 7.42% 1.23% 11.63%   
 
 
    

     

  R 2       
Developed Markets OVERALL SMALL LARGE  Skewness  Kurtosis 
AUSTRALIA 18.41% 2.40% 28.60% -0.199*** 0.915*** 
GERMANY 33.44% 6.94% 44.03% -0.145 2.205*** 
JAPAN 6.28% 2.69% 10.57% 0.403*** 2.734*** 
SINGAPORE 14.23% 5.93% 18.78% -0.115 9.515*** 
SWITZERLAND 27.12% 6.25% 38.18% -0.324*** 2.041*** 
UK 29.07% 6.72% 42.90% 0.000 2.322*** 
Average R 2 21.43% 5.16% 30.51%   
 
***, ** and * indicate statistical significance at the 0.01, 0.05 and 0.1 levels. 

 47


	1. Introduction
	2. Conditional correlations
	3. Empirical results — Interest rates
	3.1 Treasuries
	3.2 Principal component analysis — Treasuries
	3.3. Regression analysis — Treasuries
	3.4. Interest rates — The “exceptional” days 
	3.5. One- and two-factor hedging of interest rate risk

	4. Stock market
	4.1. Stock market returns
	4.2. Roll’s  

	5. International markets
	6. Summary and implications
	 A.  Proof of Theorem 1
	 B. Proof of Theorem 2
	 C. Proof of Theorem 3

