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A. Proof of Proposition I.1

Assume that(c,(x,z)) is a feasible strategy for initial conditions(Wt ,Yt). Then, for allα > 0, we show

that(αc,(αx,αz)) is a feasible strategy for initial conditions(αWt ,αYt). Consider the dynamics for the

wealth processWα, with initial conditions(αWt ,αYt), following the consumption and investment plan

(αc,(αx,αz)). We have

dWαs = αWsds−αcsds+αYsds+αzᵀs(µ− r1)ds+αzᵀsσdws = αdWs,

therefore,Wαs = αWs. Similarly, we haveYαs = αYs. The investment strategy satisfies the margin

requirement sinceλᵀ(αz) = αλᵀz≤ αW. It follows that

F(αW,αY)≤ α1−γF(W,Y), (1)

since the utility function in homogenous of degree 1− γ. In addition

F(W,Y) = F(α−1αW,α−1αY)≤ αγ−1F(αW,αY),

so given (1) in fact we haveF(αW,αY) = α1−γF(W,Y).

B. Proof of Proposition I.2

To show thatF is non-decreasing in(Wt ,Yt) is simple, since given an initial endowment(Wt ,Yt), it

is easy to see that starting with wealthW′
t > Wt or incomeY′

t > Yt at timet, the optimal strategy for

the initial condition(Wt ,Yt) is still admissible and potentially non-optimal for the problem with initial

conditions(W′
t ,Y

′
t ). This implies thatF is non-decreasing inW andY. To show concavity, consider

two initial conditions(Wt ,Yt) and(W′
t ,Y

′
t ) andα ∈ (0,1). Denote(c,(x,z)) and(c′,(x′,z′)) the optimal

strategies respectively for the two initial conditions. Then, the strategyS : (αc+(1−α)c′ ,αx+(1−

α)x′,αz+ (1− α)z′) is admissible for the initial conditionI : (αWt + (1− α)W′
t ,αYt + (1− α)Y′

t ).

DenotingWα the wealth process associated with strategySand initial conditionI , for all timess, we
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haveWα
s = αWs+(1−α)W′

s and similarly for the income processYα
s = αYs+(1−α)Y′

s. The margin

constraint is satisfied since

λᵀ(αz+(1−α)z′) = αλᵀz+(1−α)λᵀz′ ≤ αW+(1−α)W ≤W,

as bothzandz′ are feasible. Finally, by strict concavity of the utility functionu, we have

Et

[∫ ∞

t
u
(
αcs+(1−α)c′s

)
e−θsds

]
> Et

[∫ ∞

t

(
αu(cs)+ (1−α)u(c′s)

)
e−θsds

]
,

which implies that

F(αWt +(1−α)W′
t ,αYt +(1−α)Y′

t )> αF(Wt ,Yt)+ (1−α)F(W′
t ,Y

′
t ).

C. Proof of Proposition I.3

As mentioned in the text, the margin constraint is equivalent to 2N linear constraints of the form

λᵀ
z

W
≤ 1,

whereλᵀ = (λ1,λ2, ...,λN) with λk ∈ {λ+,−λ−} for k= 1,2, ...,N. Each linear constraint is defined by

its vectorλ. Note thatat most Nconstraints can be binding at the same time. If exactly 2 constraints,

constraintsp andq respectively defined by vectorsλ(p) andλ(q), are binding, it must be the case that

vectorsλ(p) andλ(q) haveN−1 components in common; if thekth componentλp
k 6= λq

k, thenz∗k = 0,

i.e. assetk is dropped out of the portfolio. More generally, if exactlyK +1 constraints are binding,K

assets have been dropped out of the portfolio; i.e., their allocation is zero, and the vectors
{

λ(i)
}K+1

i=1

of the binding constraints must haveN−K components in common. One important implication is that

if one asset is optimally dropped out of the portfolio, it is never optimal to hold this asset again when
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more constraints are binding. The Hamilton-Jacobi-Bellman equation for the primal value functionF

is

θF = max
z

W∈Q

γ(F1)
γ−1

γ

1−γ +(rW +Y)F1+mYF2+ ΣᵀΣ
2 Y2F22

+zᵀ
(
(µ− r1)F1+σΣYF12

)
+ zᵀσσᵀz

2 F11

Recall thatF(W,Y) =Y1−γ f (W
Y ), andy=−WF11

F1
=− v f ′′(v)

f ′(v) . The maximization program is equivalent

to

max
ω∈Q

ωᵀ(η+yσΣ)− y
2ωᵀσσᵀω, (2)

with ω = z/W. Program (2) is well defined, since, fory> 0, the objective function is strictly concave

and the margin constraint is convex, so there is a unique solution. Observe that fory> 0 small enough,

assumingη 6= 0, the obvious optimal solution isω∗ = (0, ...,ω∗
k, ...,0), with ω∗

k = 1/λk, where assetk

is such thatηk/λk = max
i=1,..,N

(ηi/λi). Fory small enough, only one asset is held in the portfolio.

Case η = 0.

In this case, program (2) is independent of the parametery, so the fraction of wealth invested in each

asset is constant. The unconstrained allocation isz/W = (σσᵀ)−1σΣ. If max
λ∈Λ

(
λᵀ(σσᵀ)−1σΣ

)
≤ 1, the

margin constraint is never binding, soz∗/W=(σσᵀ)−1σΣ. If, on the other hand, max
λ∈Λ

(
λᵀ(σσᵀ)−1σΣ

)
>

1, the constraint is always binding. Depending of the parameters values,K assets are optimally held in

the portfolio, withK = 1, ...,N. More specifically, assuming that assetN is first dropped out, followed

by assetN−1 and so on,K assets remain in the portfolio if and only if for exactlyK assets

max
λ∈Λ

(
λke

ᵀ

k IK
z∗

W

)
> 0, k= 1, ...,K

with

IK
z∗

W
=

(IKσσᵀIᵀK)
−1IKσΣ+(1−λᵀIᵀK(IKσσᵀIᵀK)

−1IKσΣ)IKλ
λᵀIᵀK(IKσσᵀIᵀK)

−1IKλ

andz∗k = 0 for k= K+1, ...,N. The proof is the same as in the caseη 6= 0 and is therefore omitted.

Case η 6= 0.
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Since we intend to achieve a maximum, the smaller the number of constraints that are binding,

the higher the maximum value. First we look at the values ofy such that the margin constraint is not

binding.

Non-Binding Region. The first order condition leads to

z∗

W
=

(σσᵀ)−1

y
(η+yσΣ). (3)

To satisfy the margin constraint, we must have

max
λ∈Λ

(ω∗)ᵀλ ≤ 1. (4)

Given 0< y< γ, define

λ∗(y) = argmax
λ∈Λ

λᵀ(σσᵀ)−1

y
(η+yσΣ).

SinceΛ is a discrete set,λ∗(y) exists, is unique and is continuous iny. Clearly, condition (4) is violated

for y> 0 small enough. Then define

yN+1,N+1 = max
0<y<γ

{(λ∗(y))ᵀ
(σσᵀ)−1

y
(η+yσΣ)≥ 1}.

Observe that the map

ϒ : y 7−→ (λ∗(y))ᵀ
(σσᵀ)−1

y
(η+yσΣ)

is a continuous function withϒ(γ) < 1 (by assumption) and lim
y→0

ϒ(y) = ∞. We can conclude that

yN+1,N+1 exists and is unique, and therefore so isλ∗(yN+1,N+1). In the sequel, to lighten notation, we

shall writeλ∗ in place ofλ∗(yN+1,N+1), so that

yN+1,N+1 =
(λ∗)ᵀ(σσᵀ)−1η

1− (λ∗)ᵀ(σσᵀ)−1σΣ
,

and the margin constraint is not binding for ally> yN+1,N+1. Next, recall that we assume thatγ−1(λ∗)ᵀ(σσᵀ)−1η<

1− (λ∗)ᵀ(σσᵀ)−1σΣ. If 1− (λ∗)ᵀ(σσᵀ)−1σΣ < 0, then we have

(λ∗)ᵀ(σσᵀ)−1η
1− (λ∗)ᵀ(σσᵀ)−1σΣ

> γ,
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i.e. yN+1,N+1 > γ, which is impossible. Hence 0< γ−1(λ∗)ᵀ(σσᵀ)−1η < 1− (λ∗)ᵀ(σσᵀ)−1σΣ. At

y= yN+1,N+1, the margin constraint starts binding and we can assume thatasset allocations given by

relationship (3) are all different from zero. Using relationship (3), we obtain the following Hamilton-

Jacobi-Bellman equation

(
θ+(γ−1)(m− γ

ΣᵀΣ
2

)

)
f (v) =

γ
1− γ

(
f ′(v)

) γ−1
γ + f ′(v)+B−1v f ′(v)−

1
2

ηᵀ(σσᵀ)−1η
( f ′(v))2

f ′′(v)
. (5)

Consider the following change of variables:x = f ′(v),v = −J′(x) and f (v) = J(x)− xJ′(x). Using

relationship (5), we find that the functionJ must solve the following linear ODE

(
θ+(γ−1)(m− γ

ΣᵀΣ
2

)

)
J(x) =

γ
1− γ

x
γ−1

γ +x+(θ−B−1+(γ−1)(m− γ
ΣᵀΣ
2

)xJ′(x)

+
1
2

ηᵀ(σσᵀ)−1ηx2J′′(x).

The general solution is

J(x) =
γAx

γ−1
γ

1− γ
+Bx+

γK
β−1+ γ

x
β−1+γ

γ +
γL

δ−1+ γ
x

δ−1+γ
γ , (6)

whereK andL are constants andβ andδ are respectively the positive and negative root of the quadratic1

1
2γ2

(
ηᵀ(σσᵀ)−1η

)
x2+

(
A−1−B−1−

1
2γ2 ηᵀ(σσᵀ)−1η

)
x= A−1.

Differentiating (6) with respect tox and using the fact thatx= f ′(v) andv=−J′(x) leads to

v+B= A f ′(v)−
1
γ +K f ′(v)

β−1
γ +L f ′(v)

δ−1
γ .

1Note that ifx is a root of the quadratic
(

θ+(γ−1)(m− γ
ΣᵀΣ

2
)

)
= (θ−B−1+(γ−1)(m− γ

ΣᵀΣ
2

)x+
1
2

η>(σσᵀ)−1ηx2

thenz= γ(x−1)+1 is a root of the quadratic

1
2

(
η>(σσᵀ)−1η

)
x2+

(
A−1−B−1−

1
2

η>(σσᵀ)−1η
)

x= A−1.
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Then, whenv is large, the margin constraint is irrelevant: asymptotically, the solution f ′(v) must be the

same as in the unconstrained case, sof ′(v)−
1
γ ∼

∞
A−1v. Sinceδ−1< 0, we must haveL = 0. Finally,

K must be positive, otherwise for allv in the non-binding region we havef ′(v)< f ′0(v), where f0 is the

unconstrained, reduced, value function. Integrating thisrelationship fromv to M > v, we find that

f0(v)< f (v)+ f0(M)− f (M).

Since when wealth goes to infinity, constrained and unconstrained value functions coincide, for any

givenv the previous relationship implies thatf0(v)< f (v), which is impossible.

Binding Region. We now assume thaty ≤ yN+1,N+1. When exactly one constraint among the 2N

linear constraints is binding, the Lagrangian for the maximization problem is

L = ωᵀ(η+yσΣ)−
1
2

yωᵀσσᵀω−ψ(ωᵀλ∗−1),

whereψ ≥ 0 is the Lagrange multiplier associated with the constraint. Let ψK denote the value of the

Lagrange multiplierψ when exactlyK assets are held in the portfolio. The first order condition leads

to
z∗

W
=

(σσᵀ)−1

y
(η+yσΣ−ψNλ∗). (7)

Since the margin constraint is binding,(λ∗)ᵀω∗ = 1, we obtain that

ψN =
(λ∗)ᵀ(σσᵀ)−1η− (1− (λ∗)ᵀ(σσᵀ)−1σΣ)y

(λ∗)ᵀ(σσᵀ)−1λ∗
. (8)

This derivation is valid as long as for alli = 1, ...,N, zi/λi ≥ 0. At y= yN+1,N+1,ψN = 0, the sign of the

margin coefficientλi must be the same as the sign ofeᵀi (σσᵀ)−1(η+yN+1,N+1σΣ), for all i = 1,2, ...,N.

This providesN conditions to pin down vectorλ∗. Exactly one constraint is binding and all asset

allocations are different from zero untily becomes small enough. More precisely, from relationships

(7) and (8), it is easy to verify thatz∗i = 0 exactly wheny= yi,N with

yi,N =

(
λ∗− (λ∗)ᵀ(σσᵀ)−1λ∗

eᵀi (σσᵀ)−1λ∗ ei

)
ᵀ

(σσᵀ)−1η

1−
(

λ∗− (λ∗)ᵀ(σσᵀ)−1λ∗

eᵀi (σσᵀ)−1λ∗ ei

)>
(σσᵀ)−1σΣ

.
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We can assume thatyN,N = max
i=1,..,N

{yi,N} andyN,N > 0. Wheny= yN,N, z∗N = 0 and a second linear con-

straint becomes binding. Hence, we can conclude that foryN,N < y< yN+1,N+1, the margin constraint is

binding and all assets are optimally held in the portfolio. For all y< yN,N, at least two linear constraints

are binding and allocation in assetN must be zero. As mentioned earlier, the vectorsλ of these two

linear constraints have theirN−1 first components in common and only their last components differ.

However, since the allocation in risky assetN is zero and will remain at zero for ally < yN,N, these

two constraints are actually identical. This implies that for y< yN,N, we have to solve the same maxi-

mization problem as before whenyN,N < y< yN+1,N+1, but with N−1 risky assets. The maximization

problem becomes

max
ω

(IN−1ω)ᵀIN−1(η+yσΣ)−
y
2
(IN−1ω)ᵀ(IN−1σσᵀI>N−1)IN−1ω

such that(IN−1ω)ᵀ(IN−1λ∗)≤ 1.

Optimal risky allocations are given by

IN−1
z∗

W
=

(IN−1σσᵀI>N−1)
−1

y
IN−1(η+yσΣ−ψN−1λ∗), (9)

whereψN−1 is the Lagrange multiplier. Using the fact that the constraint is binding; i.e.,(IN−1ω)ᵀ(IN−1λ∗)=

1, we obtain that the value ofψN−1 is given by

ψN−1 =
(IN−1λ∗)ᵀ(IN−1σσᵀIᵀN−1)

−1IN−1η− (1− (IN−1λ∗)ᵀ(IN−1σσᵀIᵀN−1)
−1IN−1σΣ)y

(IN−1λ∗)ᵀ(IN−1σσᵀIᵀN−1)
−1IN−1λ∗

.

Plugging back the value ofψN−1 into relationship (9) leads to

IN−1
z∗

W
=

(IN−1σσᵀIᵀN−1)
−1IN−1(σσᵀ+σΣ(λ∗)ᵀ−λ∗(σΣ)ᵀ)IᵀN−1(IN−1σσᵀIᵀN−1)

−1IN−1λ∗

(IN−1λ∗)ᵀ(IN−1σσᵀIᵀN−1)
−1IN−1λ∗

+
(IN−1σσᵀIᵀN−1)

−1IN−1 (η(λ∗)ᵀ−λ∗ηᵀ) IᵀN−1(IN−1σσᵀIᵀN−1)
−1IN−1λ∗

(IN−1λ∗)ᵀ(IN−1σσᵀIᵀN−1)
−1IN−1λ∗

1
y
.
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Without loss of generality, the next threshold value of the lifetime relative risk aversiony at which the

next asset is dropped out of the portfolio isyN−1,N−1 = max
i=1,..,N−1

{yi,N−1, 0< yi,N−1 < yN,N}, where

yi,N−1 =

(
λ∗−

(IN−1λ∗)ᵀ(IN−1σσᵀIᵀN−1)
−1IN−1λ∗

eᵀi IᵀN−1(IN−1σσᵀIᵀN−1)
−1IN−1λ∗ ei

)ᵀ
IᵀN−1(IN−1σσᵀIᵀN−1)

−1IN−1η

1−
(

λ−
(IN−1λ∗)ᵀ(IN−1σσᵀIᵀN−1)

−1IN−1λ∗

eᵀi IᵀN−1(IN−1σσᵀIᵀN−1)
−1IN−1λ∗ ei

)ᵀ
IᵀN−1(IN−1σσᵀIᵀN−1)

−1IN−1σΣ
,

and we assume thatyN−1,N−1 > 0. More generally, forK < N andi ∈ {1,2, ...,K}, define

yi,K =

(
λ∗−

(IK λ∗)ᵀ(IK σσᵀIᵀK )
−1IK λ∗

eᵀi IᵀK (IKσσᵀIᵀK )
−1IK λ∗ ei

)ᵀ
IᵀK(IKσσᵀIᵀK)

−1IKη

1−
(

λ∗−
(IKλ∗)ᵀ(IKσσᵀIᵀK )

−1IK λ∗

eᵀi IᵀK (IKσσᵀIᵀK )
−1IK λ∗ ei

)
ᵀ

IᵀK(IKσσᵀIᵀK)
−1IKσΣ

.

Assuming that risky assets can be ordered such that

yK,K = max
i=1,..,K

{yi,K , 0< yi,K < yK+1,K+1},

with yK,K > 0, K = 2, ...N, we have

0= y1,1 < y2,2 < y3,3 < ... < yN,N < yN+1,N+1.

Note that such cutoff values exist since, as we have already shown, fory small enough only one asset is

optimally held in the portfolio. ExactlyK assets are optimally held in the portfolio, andN−K+1 linear

constraints among the 2N possible are binding, whenyK,K < y< yK+1,K+1. The Lagrange multiplierψK

is given by

ψK =
(IKλ∗)ᵀ(IKσσᵀIᵀK)

−1IKη− (1− (IKλ∗)ᵀ(IKσσᵀIᵀK)
−1IKσΣ)y

(IKλ∗)ᵀ(IKσσᵀIᵀK)
−1IKλ∗

,

and risky allocations are given by

IK
z∗

W
=

(IKσσᵀIᵀK)
−1IK(σσᵀ+σΣ(λ∗)ᵀ−λ∗(σΣ)ᵀ)IᵀK(IKσσᵀIᵀK)

−1IKλ∗

(IKλ∗)ᵀ(IKσσᵀIᵀK)
−1IKλ∗

+
(IKσσᵀIᵀK)

−1IK (η(λ∗)ᵀ−λ∗ηᵀ) IᵀK(IKσσᵀIᵀK)
−1IKλ∗

(IKλ∗)ᵀ(IKσσᵀIᵀK)
−1IKλ∗

1
y
.
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Set

LK =
(IKλ∗)ᵀ(IKσσᵀIᵀK)

−1IKη
(IKλ∗)ᵀ(IKσσᵀIᵀK)

−1IKλ∗

MK =
1

(IKλ∗)ᵀ(IKσσᵀIᵀK)
−1IKλ∗

.

Then, we have

IK
z∗

W
=

(IKσσᵀIᵀK)
−1IKη

y
+

(
MK −

LK

y

)
(IKσσᵀIᵀK)

−1IKλ∗.

Using the expressions forz∗/W, we obtain the following, reduced, Hamilton-Jacobi-Bellman equation

(
θ+(γ−1)(m− γ

ΣᵀΣ
2

)

)
f (v) =

γ
1− γ

(
f ′(v)

) γ−1
γ + f ′(v)+ (B−1

K + γΣᵀΣ− γΣᵀIᵀK IKΣ+LK)v f ′(v) (10)

+
1
2

(
ΣᵀΣ+M2

K(λ
∗)ᵀIᵀK(IKσσᵀIᵀK)

−1IKλ∗−2MK(λ∗)ᵀIᵀK(IKσσᵀIᵀK)
−1IKσΣ

)
v2 f ′′(v)

−
1
2

(
ηᵀIᵀK(IKσσᵀIᵀK)

−1IKη−L2
K(λ

∗)ᵀIᵀK(IKσσᵀIᵀK)
−1IKλ∗

) ( f ′(v))2

f ′′(v)
.

Note that the coefficient of the term( f ′(v))2/ f ′′(v) is negative ifK > 1 by the Cauchy-Schwarz in-

equality, and equal to zero forK = 1; the coefficient of the termv2 f ′′(v) is equal toΣᵀΣ− (IKΣ)ᵀIKΣ+

(MK(IKσIᵀK)
−1IKλ∗+ IKσΣ)ᵀ(MK(IKσIᵀK)

−1IKλ∗+ IKσΣ), which is positive.

Deterministic Income and General Preferences.

The Hamilton-Jacobi-Bellman equation for the primal valuefunctionF is

θF = max
z

W∈Q
ũ(F1)+ (rW +Y)F1+mYF2+zᵀ(µ− r1)F1+

1
2zᵀσσᵀzW2F11,

whereũ is the convex conjugate ofu. This maximization problem is the same as the one solved for the

CRRA preferences case so all the results found in the CRRA preference case apply. Furthermore, note

that theN conditions that determine the “relevant” vectorλ∗, decouple sinceΣ = 0 and the coefficients

λi must have the same sign aseᵀi (σσᵀ)−1(µ− r1).
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D. Dual Approach: Fictitious Financial Market

Let a∗ andb∗ be, respectively, an 1× 1 and anN× 1 adapted stochastic process to filtrationF and

consider the following fictitious financial market that consists of:

- a riskless bond̂B with dynamics given by

dB̂t = (r +a∗)B̂tdt,

- N risky, non-dividend paying securities whose prices evolveaccording to:

dŜt = IŜt
(µ+b∗)dt+ IŜt

σdwt .

Dual Formulation

A state price densityπa,b is an adapted stochastic process to filtrationF defined byπa,b
0 = 1 and

dπa,b
t = πa,b

t

(
−(r +at)dt−

(
σ−1(bt −at1+µ− r1

))ᵀ
dwt

)
,

wherea andb are, respectively, an 1×1 and anN×1 adapted stochastic process to filtrationF.

Effective Domain

For (a,b) ∈R×R
N, let

e(a,b) = sup
z

z+x∈Q
−ax−bᵀz.

The effective domainN is defined by

N =
{
(a,b) ∈R×R

N,e(a,b) < ∞
}
.

Proposition D.1. Under the margin constraint, Equation (3) in the paper, the effective domain is given

by

N = {(a,b) ∈R+×R
N
+,κ

+a≤ bi ≤ κ−a, i = 1,2, ...,N},

and e(a,b) ≡ 0, for all (a,b) ∈ N .
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Proof. The relationshipe(a,b) ≡ 0 comes from the fact thatQ is a cone. Then, it is easy to see that we

must havea≥ 0, bi ≥ 0, i = 1,2, ...,N. If zi ≥ 0, i = 1,2, ...,N we have

−ax−bᵀz=−a

(
x+(1−λ+)

N

∑
i=1

zi

)
−

N

∑
i=1

(bi − (1−λ+)a)zi .

Sincezi ≥ 0, i = 1,2, ...,N we must havebi − (1−λ+)a≥ 0, i = 1,2, ...,N. Similarly, whenzi ≤ 0, i =

1,2, ...,N, we have

−ax−bᵀz=−a

(
x+(1+λ−)

N

∑
i=1

zi

)
−

N

∑
i=1

(bi − (1+λ−)a)zi .

Sincezi ≤ 0, i = 1,2, ...,N, we must havebi − (1+ λ−)a ≤ 0, i = 1,2, ...,N. Sinceλ+ = κ++ 1 and

λ− = κ−−1, the desired result follows.

Following the derivation in Cuoco (1997), forsomesuitable price densityπ∗ = πa∗,b∗ , the optimiza-

tion problem, given in Equation (5) in the paper, is equivalent to

F(W0,Y0) = max
c

E0

[∫ ∞

0
u(cs)e

−θsds

]
(11)

such thatE0

[∫ ∞

0
π∗

scsds

]
= W0+E0

[∫ ∞

0
π∗

sYsds

]
, (12)

with W0 > 0 andY0 > 0 given.

E. Dual Approach

To ensure that the optimization problem, given by Equation (5) in the paper, and (11) are equivalent, it

is enough to determine the saddle point(c∗,φ∗,(a∗,b∗)) of the functional

L(c,ψ,(a,b)) = E0

[∫ ∞

0
u(cs)e

−θsds

]
−φ
(

E0

[∫ ∞

0
πa,b

s (cs−Ys)ds

]
−W0

)
.
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The maximization overc yieldsu′(c∗s)e
−θs= φπa,b

s and the Lagrange multiplierφ∗ is determined by the

budget constraint

E0

[∫ ∞

0
πa,b

s (I(φ∗πa,b
s eθs)−Ys)ds

]
=W0,

whereI is the inverse of the marginal utility function. We define theprocessXa,b:

Xa,b
t = φ∗πa,b

t eθt .

The dual value functionJ is given by

J(X0,Y0) = min
(a,b)∈N

E0

[∫ ∞

0

(
ũ(Xa,b

s )+Xa,b
s Ys

)
e−θsds

]
, (13)

whereũ(X) = max
c≥0

u(c)−Xc is the convex conjugate ofu. The solution of this minimization problem

(a∗,b∗) allows us to recover the state price densityπ∗ = πa∗,b∗ . For CRRA preferences, the convex

conjugate is given by

ũ(X) =





γX
γ−1

γ

1−γ , γ 6= 1,

− lnX−1 , γ = 1.

Properties of the Dual Value Function

Primal variables(F,W) and dual variables(J,X) are linked by the following Legendre transforma-

tion

W =−J1(X,Y) andX = F1(W,Y).

As explained in He and Pagès (1993),J is non-increasing and strictly convex inX. It is also easy

to check thatJ is non-decreasing and concave inY. For the case of a CRRA investor, the dual value

functionJ can be writtenJ(X,Y) = X
γ−1

γ h(X
1
γ Y), for some smooth functionh. Furthermore,J satisfies

the following Hamilton-Jacobi-Bellman equation

θJ =
γX

γ−1
γ

1− γ
+XY+(θ− r)XJ1+mYJ2+

ΣᵀΣ
2

Y2
(

J22+
J2

12

J11

)

+ min
(a,b)∈N

{
−aXJ1+

X2

2

(
b+µ− (r +a)1−

σΣYJ12

XJ11

)
ᵀ

(σσᵀ)−1
(

b+µ− (r +a)1−
σΣYJ12

XJ11

)
J11

}
.

12



Using the fact thatγXJ11 = −J1+YJ12 and−XJ11/J1 = 1/y, the minimization problem is equivalent

to

min
(a,b)∈N

a+
1
2y

(
η+yσΣ+b−a1

)ᵀ
(σσᵀ)−1(η+yσΣ+b−a1

)
. (14)

The minimization problem (14) and the maximization problem, given by Equation (7) in the paper, are

dual programs of one another: the solutiona∗ of the dual problem is equal to the Lagrange multiplier

ψ of the primal problem. Within the non-binding region, we findthatb∗i = a∗ = 0. WhenK assets are

optimally held, i.e.,yK,K < y< yK+1,K+1, the solution of program (14) is

a∗ = ψK =
(IKλ∗)ᵀ(IKσσᵀIᵀK)

−1IKη− (1− (IKλ∗)ᵀ(IKσσᵀIᵀK)
−1IKσΣ)y

(IKλ∗)ᵀ(IKσσIᵀK)
−1IKλ∗

b∗k = (1−λ∗
k)a

∗, k= 1,2, ...,K,

and the fraction of wealth invested in risky assetsz∗/W is given by

IK
z∗

W
=

(IKσσᵀIᵀK)
−1

y
IK(η− γσΣ+b∗−a∗1).

The lastN−K constraints of setN are non binding and the lastN−K components of vectorb∗

are such thatz∗k = 0, for k= K+1,K+2, ...,N.

Remark. If for all K = 1, ...,N, 1−λᵀIᵀK(IKσσᵀIᵀK)
−1IKσΣ > 0, which is the case for a low volatility

labor income process, it is easy to verify thata∗ is a decreasing function ofy. This implies that, as the

constraint becomes more binding (lower wealth to income ratio), the adjusted risk free rater +a∗ rises,

making the bond more attractive to the investor.

Remark. Observe that the right hand side of relationship (11) represents the lifetime resources of the

investor. Even though an individual is not allowed to pledgehis future labor income in any invest-

ment strategy and can only use his financial wealthW0, his lifetime resources may by far exceedW0.

The margin requirement imposes a limit on the ivnestor’s maximum exposure to risky assets. When

the margin requirement binds, the investor becomes fairly risk tolerant, which leads him to sacrifice

diversification and load up his portfolio with assets that deliver a high expected return.
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Remard. For the particular case of deterministic income and independent returns, the investor’s choice

can be thought of in terms of an adjusted Sharpe ratio for asset k, ŜP,k, defined by

ŜP,k =
µk+b∗k − (r +a∗)

σk
.

Inside the non-binding region, for every assetk, the adjusted Sharpe ratiôSP,k and the true Sharpe ratio

SP,k = (µk − r)/σk coincide since, when the constraint is not binding,b∗k = a∗ = 0. Inside the binding

region withN assets, we haveb∗k = (1−λk)a∗, for k= 1,2, ...,N so indeed

∣∣∣ŜP,k

∣∣∣< |SP,k| ,

sinceµk− r andλk have the same sign. Assetk is dropped out of the portfolio as soon as its adjusted

Sharpe ratiôSP,k becomes zero. Inside the binding region with onlyK assets, as the margin constraint

becomes more binding, the adjusted Sharpe ratio of the remaining K risky assets shrinks, sincea∗ rises

wheny decreases. This result is in line with empirical findings by Ivković, Sialm, and Weisbenner

(2008) who report that concentrated portfolios have lower Sharpe ratios.

F. Proof of Proposition I.4

Investment Inside the Non-Binding Region.

We start with some properties of the optimal allocations inside the non-binding region. Consump-

tion, wealth and income are linked by the following relationshipW+BY = Ac+Kc1−βYβ or, equiva-

lently, using reduced variables

v+B= A f ′(v)−
1
γ +K f ′(v)

β−1
γ . (15)

Applying Itô’s lemma and identifying the coefficients withthe wealth dynamics, the optimal port-

folio allocations are given by

z∗ = zf −βK
(σσᵀ)−1η

γ
f ′(v)

β−1
γ Y,

wherezf is the unconstrained optimal allocation. Wheneᵀi (σσ>)−1η > 0(< 0), the constrained asset

allocationz∗i is lower (higher) than its unconstrained counterpartzf
i . Next, we show that, inside the
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non-binding region, income has the same effect on the constrained risky allocations as it has on the

unconstrained ones. Differentiating relationship (15) yields

f ′(v)
f ′′(v)

=−
A
γ

f ′(v)−
1
γ +

β−1
γ

K f ′(v)
β−1

γ < 0. (16)

From relationships (16) and (15) it is easy to check that the margin requirement is not binding for

f ′(v)
1
γ ≤ Z∗, for some 0< Z∗ < Ẑ whereẐ = βA/((β−1)B). Then, we have

∂z∗

∂Y
= (σσᵀ)−1η

(
B−βK f ′(v)

β−1
γ (1−

β−1
γ

v f ′′(v)
f ′(v)

)

)

=
(σσᵀ)−1η

A− (β−1)K f ′(v)
β
γ

(
AB+(β−1)2BK f ′(v)

β
γ −β2AK f ′(v)

β−1
γ
)
.

SetZ = f ′(v)
1
γ and forZ in [0,Z∗], define the auxiliary functionh with

h(Z) = AB+(β−1)2BKZβ−β2AKZβ−1.

h is a smooth function with

h′(Z) = β(β−1)2KBZβ−2(Z− Ẑ)< 0,

so it is decreasing on[0,Z∗], sinceZ∗ < Ẑ. We want to show thath is positive on[0,Z∗]. First, note that

h(0) =AB> 0. Then, forZ= Z∗, the margin constraint is binding and forZ≤ Z∗ we have(λ∗)>z∗ ≤W

or, equivalently, using the expression ofz∗

v(1−
(λ∗)ᵀ(σσᵀ)−1(µ− r1)

γ
)≥

(λ∗)ᵀ(σσᵀ)−1η
γ

(B−βK f ′(v)
β−1

γ ).

Using relationship (15) we obtain that for allZ in [0,Z∗]

KZβ ≥ ϖ(Z−Z) (17)

K(Z∗)β = ϖ(Z∗−Z), (18)
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where

Z =
1− (λ∗)ᵀ(σσᵀ)−1(µ−r1)

γ

1− (λ∗)ᵀ(σσᵀ)−1σΣ
A
B
> 0

ϖ =
B
(
1− (λ∗)ᵀ(σσᵀ)−1σΣ

)

1− (λ∗)ᵀ(σσᵀ)−1σΣ+(β−1) (λ
∗)ᵀ(σσᵀ)−1η

γ

> 0.

Finally, we have

h(Z∗) =
B
Z∗

(βZ− (β−1)Z∗).

It remains to show thatZ∗ ≤ βZ/(β−1). Setx= Z/Z∗ andx∗ = Z/Z∗ < 1, so that for all 0≤ x≤ 1,

we havexβ ≥ (x−x∗)/(1−x∗). We want to show that this is the case if and only ifx∗ ≥ (β−1)/β, or,

equivalently,β ≤ 1/(1−x∗). For x∈ [0,1], define the auxiliary functionf with

f (x) = xβ −
x−x∗

1−x∗
.

Observe thatf (0) = x∗/(1−x∗)> 0, f (1) = 0 and f ′(x) = βxβ−1− (1−x∗)−1. If β > 1/(1−x∗), then

f ′(1)> 0 and sincef (1) = 0, it must be the case thatf (1− ε) < 0, for someε > 0 small enough. This

leads to a contradiction since by condition (17)f is non-negative on[0,1]. Thus, we must haveβ ≤

1/(1−x∗) or, equivalently,Z∗ ≤ βZ/(β−1). It follows thath(Z∗)≥ 0 and for allZ in [0,Z∗), h(Z)> 0.

We can conclude thatz∗i is increasing (decreasing) with income exactly whenγ−1e>i (σσ>)−1η > 0(<

0). Finally, since
z∗

W
= (σσᵀ)−1σΣ+

(σσᵀ)−1η
y

,

we deduce that
∂

∂Y

(
1
y

)
≥ 0,

which implies that
∂y
∂Y

≤ 0.

Furthermore, since
∂y
∂Y

=−v
∂y
∂v

,
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we find that
∂y
∂v

≥ 0.

At Y = 0; i.e., whenv is infinite,y= γ, so we deduce that for allv inside the non-binding region,y< γ.

Finally, note thatz∗/W rises asv andW decrease.

Global Properties of the Optimal Consumption c∗.

Recall thatc∗ =Y f′(v)−
1
γ , so

∂c∗

∂W
=−

f ′′(v) f ′(v)−
1
γ −1

γ
> 0.

Then
∂c∗

∂Y
=

f ′(v)−
1
γ

γ
(γ−y) ,

Inside the non-binding region, we have seen thaty < γ, and inside the binding region, we must have

y< yN+1,N+1 < γ. Hence, we always havey< γ and we conclude that∂c∗/∂Y > 0.

To prove that the optimal consumption choice for the constrained investor is always lower than the

optimal consumption choice for the unconstrained investor, define two new functions

A(v) =
( f ′(v))1−γ

((1− γ) f (v))−
1
γ

(19)

B(v) =
(1− γ) f (v)

f ′(v)
−v, (20)

so that

f (v) =
A(v)−γ

1− γ
(v+B(v))1−γ

f ′(v) = A(v)−γ(v+B(v))−γ,

(21)

andc∗ =YA(v)(v+B(v)). Differentiating both sides of relationship (21) leads to

f ′ (v)
f (v)

=−γ
A′(v)
A(v)

+ (1− γ)
1+B′(v)
v+B(v)

,
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and using relationship (20) yields

γ
A′(v)
A(v)

= (1− γ)
B′(v)

v+B(v)
.

Next, we show thatB is an increasing function ofv. Recall that

F11(W,Y) =Y−(1+γ) f ′′(v)

F12(W,Y) =−Y−(1+γ)(γ f ′(v)+v f ′′(v))

F22(W,Y) =Y−(1+γ)(−γ(1− γ) f (v)+2γv f ′(v)+v2 f ′′(v)).

On the one hand, by strict concavity of the functionF in (W,Y) we find that

F11(W,Y)F22(W,Y)−F2
12(W,Y) =−γY−2(1+γ)(γ( f ′(v))2+(1− γ) f (v) f ′′(v))≥ 0.

On the other hand, using Equation (20), we have

B′(v) =−
γ( f ′(v))2+(1− γ) f (v) f ′′(v)

( f ′(v))2 .

We conclude that for allv ≥ 0 B′(v) ≥ 0. Then, since for large values ofv the constrained and the

unconstrained problems converge, it follows that lim
v→∞

B(v) = B, and lim
v→∞

A(v) = A), so for allv≥ 0,

B(v)≤ B.

Finally, define the auxiliary functionΨ by

Ψ(v) = A(v)
v+B(v)

v+B
(22)

as the ratio of the optimal constrained consumption over thelifetime resources when there are no

financial constraints. It follows that

Ψ′(v)
Ψ(v)

=
A′(v)
A(v)

+
1+B′(v)
v+B(v)

−
1

v+B

=
1

v+B(v)
−

1
v+B

+
1
γ

B′(v)
v+B(v)

≥ 0

sinceB′(v)≥ 0, andB(v)≤ B.
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It follows that for allv≥ 0, Ψ is a non-decreasing function with lim
v→∞

Ψ(v) = A. Therefore, for all

v≥ 0, we find that

A(v)(v+B(v))≤ A(v+B),

i.e. c∗ ≤ cf .

G. Proof of Proposition I.5

Fory< yN+1,N+1, the Hamilton-Jacobi-Bellman equation is such that the coefficient of the termv2 f ′′(v)

is positive and the coefficient of the term−( f ′(v))2/ f ′′(v) is non-negative. This is exactly the same

type of ODE studied by Duffie, Fleming, Soner and Zariphopoulou (1997) for the Merton Problem with

unspanned labor income. In Proposition 1 of their paper, these authors establish that lim
v↓0

f ′(v) exists,

is positive and finite. They also show that lim
v↓0

sup−v f ′′(v) = 0. Since 0< −v f ′′(v) ≤ sup
0<x≤v

−x f ′′(x),

it follows that lim
v↓0

− v f ′′(v) = 0. Hence, we have lim
v↓0

− v f ′′(v)
f ′(v) = 0. Around v = 0, we postulate the

following asymptotic expansion

f (v)∼
0

d0+v−d1v
3
2 +d2v2+o(v2),

for some constantsd0, d1 > 0 andd2 to be determined. Our choice forf ′(0) = 1 is justified because

if f ′(0) = 1, the quantity γ
1−γ ( f ′(v))

γ−1
γ + f ′(v) achieves its maximum value forv = 0. Using the

Hamilton-Jacobi-Bellman equation (10) forK = 1 and identifying coefficients, we obtain

f (0) = d0 =
1

(1− γ)
(

θ+(γ−1)(m− γΣ>Σ
2 )
) > 0,

and

θ+(γ−1)(m− γ
ΣᵀΣ
2

) =
9
8γ

d2
1 +(r −m+ γΣᵀΣ+

η1

λ∗
1
).

It follows that

d1 =
2
√

2γ(θ+ γ(m− (γ+1)ΣᵀΣ
2 ))− (r +η1/λ∗

1)

3
> 0.
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This implies that

c∗ ∼
0

Y.

Finally notice that

y=−
v f ′′(v)
f ′(v)

∼
0

3d1v
1
2

4
.

H. Proof of Proposition I.6

Notice thatu′(c∗t ) = Xa∗,b∗
t with

dXa∗,b∗
t = Xa∗,b∗

t (−(r +at)dt+(κa∗,b∗
t )ᵀdwt),

where

κa∗,b∗
t =−σ−1(b∗t −a∗t 1+µ− r1

)
.

Using Itô’s lemma, we find that the consumption growth rate is given by

dc∗t
c∗t

=

(
r +a∗−θ
RR(c∗t )

+
1
2

RP(c∗t )
(RR(c∗t ))2

∥∥∥κa∗,b∗
t

∥∥∥
2
)

dt+
(κa∗,b∗

t )ᵀ

RR(c∗t )
dwt ,

whereRR(c) =−cu′′(c)/u′(c) is the relative risk aversion ratio andRP(c) =−cu′′′(c)/u′′(c) is the rel-

ative risk prudence ratio. The instantaneous volatility ofconsumption is given by
∥∥∥κa∗,b∗

t

∥∥∥
2
/(RR(c∗t ))

2.

We now show that for allt ≥ 0,
∥∥∥κa∗,b∗

t

∥∥∥
2
≤
∥∥κ0,0

∥∥2
. Inside the non-binding region, we haveκa∗,b∗

t =

κ0,0. Inside the binding region whenK assets are held we have

b∗ = (1−λ∗)a∗

a∗ =
(IKλ∗)ᵀ(IKσσᵀIᵀK)

−1IK(µ− r1)−y
(IKλ∗)ᵀ(IKσσᵀIᵀK)

−1(IKλ∗)
> 0,

and ∥∥∥κa∗,b∗
∥∥∥

2
= (IK(µ− r1−λ∗a∗))ᵀ(IKσσᵀIᵀK)

−1IK(µ− r1−λ∗a∗).
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Hence

∂
∂y

∥∥∥κa∗,b∗
∥∥∥

2
=−2

∂a∗

∂y
(IKλ∗)ᵀ(IKσσᵀIᵀK)

−1IK(µ− r1−λ∗a∗) =
2

(IKλ∗)ᵀ(IKσσᵀIᵀK)
−1(IKλ∗)

> 0

As the margin constraint becomes more binding,y decreases, which reduces the consumption’s instan-

taneous volatility.

I. Numerical Algorithm

A. Model Setup

Market

The continuous-time dynamics of the asset values and incomechanges are given by Equations (1),

(2), and (4) in the paper. We approximate the continuous-time dynamics by a discrete-time Markov

chain using the discretization described in He (1990). In this discretization anN dimensional multi-

variate normal distribution is described byN+1 nodes. Discretizing returns in this fashion preserves

market completeness in discrete time.

Optimization Problem

We consider the optimization problem described in Equation(5) of Section I in a discrete-time

setting, where the investor starts working at time 0 and retires at timeT. From the discussion of

homogeneity in Section I we can reduce the number of state variables after scaling by incomeYt and

obtain the following Bellman equation att = 0, . . . ,T −1 :

ft (vt) = max
qt ,ωt

u(qt)+βEt

[
g1−γ

t ft+1 (vt+1)
]

s.t. vt+1 = g−1
t (vt +1−qt)

(
∑N

i=1ωi,tRe
i,t +Rf

)

λ+ ∑N
i=1 ω+

i,t +λ−∑N
i=1 ω−

i,t ≤ 1

fT = φτ
(vT+1)1−γ

1−γ

(23)
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wherevt = Wt/Yt is the wealth over income ratio;qt = ct/Yt is the consumption over income ratio;

ωt = zt/Wt is the portfolio weight;gt = Yt+1/Yt is the income growth rate over periodt; Re is the

expected one period excess asset return;Rf is the one period return of the money-market account;

ft (vt) = Y−(1−γ)
t Ft (Wt ,Yt) is the reduced value function; and the factorφτ captures the effect of the

investor’s remaining lifetime. If the investor’s remaining life is τ years, and the opportunity set remains

constant, then the factorφτ is given by

φτ =

[
1− (βα)1/γ

1− (βα)(τ+1)/γ

]−γ

,

α = E



(

N

∑
i=1

ω∗
i Re

i +Rf

)1−γ



whereω∗ are the optimal portfolio weights after retirement — see Ingersoll (1987).

B. Solution Methodology

To solve problem (23), we extend the method proposed by Brandt, Goyal, Santa-Clara, and Stroud

(2005) to incorporate endogenous state variables and constraints on portfolio weights. We also use

an iterative method to find the solution to the Karush-Kuhn-Tucker (KKT) conditions; i.e., the first

order conditions with constraints. The idea is to approximate the conditional expectations in the KKT

conditions locally within a region that contains the solution to the KKT conditions and iteratively

contract the size of the region.

As suggested by Carroll (2006), we separate consumption optimization from portfolio optimization

in (23) by defining a new variable, total investmentIt :

It = vt −qt +1 (24)

At the optimal value of consumption,q∗t , equation (24) defines an one-to-one correspondence between

wealthvt and total investmentIt . Therefore we can specify a particular grid,G, either through wealth,

vt (G), or, equivalently, through investment,It (G). SpecifyingIt (G) instead ofvt (G) allows splitting

problem (23) into two subproblems:
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[Portfolio Optimization]

f p
t (It) = max

ωt
βEt

[
g1−γ

t ft+1 (vt+1)
]
, t = 0, . . . ,T −1

s.t. vt+1 = g−1
t It

(
∑N

i=1 ωi,tRe
i,t +Rf

)

λ+∑N
i=1 ω+

i,t +λ−∑N
i=1ω−

i,t ≤ 1

(25)

[Consumption Optimization]

ft (vt) = max
qt

u(qt)+ f p
t (vt −qt +1) , t = 0, . . . ,T −1 (26)

where f p (·) is the value function of the portfolio optimization problem(25). Given the separation of

consumption and portfolio optimization, we use the following algorithm to solve problem (23):

Algorithm

Step 1: Set the terminal condition at timeT.

Step 2: Find the optimal portfolio and consumption backwards att = T −1,T −2, · · · ,0:

Step 2.1: Construct a grid for total investmentIt with ng grid points
{

I i
t

}ng

i=1.

Step 2.2: Find the optimal portfolio and consumption at eachgrid point I i
t , i = 1, · · · ,ng:

Step 2.2.1: [Portfolio optimization] givenI i
t , find ω∗

t

(
I i
t

)
by solving (25).

Step 2.2.2: [Consumption optimization] given
{

I i
t ,ω∗

t

(
I i
t

)}
, find q∗t

(
I i
t

)
by solving (26).

Step 2.2.3: Recover state variablevt at grid pointi by vi
t = I i

t +q∗t
(
I i
t

)
−1.

After specifying the factorφτ, Step 1 is trivial. Step 2.1 requires constructing a grid in an one-

dimensional space. To account for the nonlinearity of the value function at lower wealth levels we place

more grid points toward the lower investment values in a double exponential manner as suggested by

Carroll (2006).
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C. Portfolio Optimization

Given a grid pointI i
t , i = 1, · · · ,ng, we want to optimize overωt by solving problem (25). To simplify

the problem, and slightly abusing notation, we considerω+
t ,ω−

t as choice variables, such thatω+
t ≥

0,ω−
t ≥ 0,ωt = ω+

t −ω−
t and solve the following problem:2

f p
t (It) = max

ω+
t ,ω−

t

βEt

[
g1−γ

t ft+1 (vt+1)
]

s.t. vt+1 = g−1
t It

[
∑N

i=1

(
ω+

i,t −ωi,t−

)
Re

i,t +Rf
]

λ+ ∑N
i=1 ω+

i,t +λ−∑N
i=1ω−

i,t ≤ 1

ω+
i,t ,ω

−
i,t ≥ 0, i = 1, · · · ,N

(27)

The Lagrangian and KKT conditions of problem (27) are given by:

Lagrangian

L p
(
ω+

t ,ω−
t , l

+
t , l−t , lm

t

)
= βEt

[
g1−γ

t ft+1(vt+1)
]
+∑N

i=1 l+i,t ω
+
i,t +∑N

i=1 l−i,tω
−
i,t

+lm
t

(
1−λ+∑N

i=1ω+
i,t −λ−∑N

i=1ω−
i,t

) (28)

KKT Conditions

0= βItEt

{
g−γ

t
∂ ft+1(vt+1)

∂vt+1
Re

i,t

}
+ l+i,t − lm

t λ+, i = 1, . . . ,N FOCs

0=−βItEt

{
g−γ

t
∂ ft+1(vt+1)

∂vt+1
Re

i,t

}
+ l−i,t − lm

t λ−, i = 1, . . . ,N FOCs

0= l+i,t ω
+
i,t , i = 1, · · · ,N Complementarity

0= l−i,t ω
−
i,t , i = 1, · · · ,N Complementarity

0= lm
t

(
1−λ+∑N

i=1 ω+
i,t −λ−∑N

i=1 ω−
i,t

)
Complementarity

1≥ λ+ ∑N
i=1ω+

i,t +λ−∑N
i=1 ω−

i,t Feasibility

0≤ ω+
i,t ,ω

−
i,t , l

+
i,t , l

−
i,t , l

m
t , i = 1, · · · ,N Feasibility

(29)

wherelm
t is the Lagrange multipliers of the margin constraint;l+t andl−t are the Lagrange multipliers of

the non-negativity constraints. While in general the KKT conditions are only necessary for optimality,

2Notice that to maintain equivalence between (25) and (27) wealso need the constraintsω+
i,tω

−
i,t = 0 for i = 1, · · · ,N,

in (27). However, one can show that dropping these constraints will expand the feasible region but will not introduce new
optimal solutions which are non-trivially different.
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for problem (27) the KKT conditions are both necessary and sufficient since the objective function is

concave in
(
ω+

t ,ω−
t

)
and all constraints are linear in

(
ω+

t ,ω−
t

)
.

Solving the KKT conditions requires enumeration of all the possibilities for the complementary

conditions. In general, the 2N+ 1 Lagrange multipliers (lm
t , l

+
i,t , l

−
i,t , i = 1, · · · ,N) give 22N+1 possible

specifications of the complementary conditions. However many of these specifications can be com-

bined or ignored: if the margin constraint is not binding (lm
t = 0) we only need to solve the FOCs

without splitting ωt as ω+
t −ω−

t ; if the margin constraint is binding (lm
t > 0) we can ignore all the

specifications withω+
i,t ω

−
t > 0, i = 1, · · · ,N, since these specifications are not optimal. Overall there

are 3N + 1 specifications that need to be checked. Once a solution to the KKT conditions under any

of these specifications is found we can stop since the sufficiency of the KKT conditions guarantees

optimality.

Approximation of Conditional Expectations

We use functional approximation to approximate conditional expectations in the KKT conditions

as a linear combination of basis functions:

Et

{
g−γ

t
∂ ft+1(vt+1)

∂vt+1
Re

i,t

∣∣∣∣ It ,ω
+
t ,ω

−
t

}
≈

nb

∑
j=1

αi j (It)b j (ωt) , i = 1, · · · ,N (30)

wherenb is the number of basis functions and
{

b j (·)
}nb

j=1 are the basis functions on portfolio weights

ωt = ω+
t −ω−

t . The coefficientsαi j (It) at each investment grid point
{

I i
t

}ng

i=1 are estimated through

cross-test-solution regression in the following way: we randomly generatens test solutions
{

ω(k)
t

}ns

k=1

within a set called the test region;3 for each test solutionω(k)
t we evaluate the basis functions at the test

solution
{

b j(ω
(k)
t )
}nb

j=1
; given the test solutionω(k)

t and the investment levelIt , we generate returns

for the risky assets following the discretization procedure described in He (1990) and compute the

expectation of the left-hand-side of equation (30); the weightsαi j (It) are estimated by OLS regression

across thens test solutions.4

3To guarantee that all the test solutions are feasible we assume that the test region is included in the set of all feasible
solutionsQ.

4The basis functions we use are powers of the choice variablesup to third order. We use the multidimensional root-finding
solver of the GSL library to solve the KKT conditions. We use 300 grid points and 300 test solutions after checking that the
results do not change if 500 grid points and 500 test solutions are used.
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Test Region Iterative Contraction (TRIC)

TRIC is a method introduced in Yang (2009) to improve the accuracy of the functional approxima-

tion approach for solving the dynamic portfolio choice problem. When we approximate the conditional

expectation (30) through cross-test-solution regressions, the quality of the approximation is affected

by the number of basis functionsnb, the number of test solutionsns, and the size of the test region:

keepingnb andns constant, the smaller the test region, the more accurate theapproximation. This mo-

tivates the method of contracting the test region in an iterative manner: at each iterationi, we estimate

approximation (30) with test solutions generated withinQ(i); using this approximation we solve the

KKT conditions to findω(i); if ω(i) ∈ Q(i) we contract the test region of the next iteration toQ(i+1)

⊂ Q(i); if the new solution is outside the test region,ω(i) /∈ Q(i), we enlarge the test region of the next

iteration toQ(i) ⊂ Q(i+1) ⊂ Q(i−1);5 after each iteration, we check convergence by computing therela-

tive change in portfolio weights
∥∥ω(i)−ω(i−1)

∥∥/
∥∥ω(i−1)

∥∥, where‖x‖ is the the norm ofx, defined by

‖x‖2 = Trace(xᵀx), and comparing it with a thresholdε.

To start the procedure we need an initial test regionQ(0) that contains the optimal solution. If no

further information is available we can setQ(0) = Q, the feasible region of problem (27). However, it is

possible to obtain a smallerQ(0) if we know the solution for similar parameter values, calleda reference

solution. We have used our knowledge of the asymptotic behavior of the solutions to construct reference

solutions: for each time period we always solve from the gridpoint with the highest investment level

down to the grid point with the lowest investment level; the solution at the higher level grid point serves

as the reference solution for the adjacent lower level grid point; when we change between time periods

the reference solution at the highest level grid point is setby linearly interpolating the solutions at the

next period; at the last time period,t = T − 1, the reference solution at the highest level grid point,

where the margin constraint is not binding, is set to the analytical solution.

5In our numerical tests we contracted the test region by 50%. If the test region did not contain the solution, we expanded
the test region by 150%. In the results we report the algorithm converged within two to three iterations for most gridpoints.

26



D. Consumption Optimization and Value Function Sensitivity

After the optimal portfolio at an investment grid point has been found, we find the optimal level of

consumption at that grid point by solving the consumption optimization problem (26). The first order

condition leads to

q−γ
t =

∂ f p
t (It)
∂It

To evaluate the term∂ f p
t (It)/∂It , we apply the envelope theorem to the LagrangianL p in equation (28)

and obtain
∂ f p

t (It)
∂It

=
∂L p

∂It

∣∣∣∣
ω∗

t (It )
= βEt

[
g−γ

t
∂ ft+1(vt+1)

∂vt+1

(
n

∑
i=1

ω∗
t (It)Re

i,t +Rf

)]

where the conditional expectation is estimated using the discretization scheme for the returns of the

risky assets.

In both the portfolio optimization step and the consumptionoptimization step at timet, we need to

evaluate the value function sensitivity∂ ft+1 (vt+1)/∂vt+1. To evaluate this sensitivity without knowing

the functional form offt+1(vt+1), we apply the envelope theorem to the Lagrangian,L (qt+1,vt+1) =

u(qt+1)+ f p
t+1(vt+1−qt+1+1), and get

∂ ft+1 (vt+1)

∂vt+1
=

∂L (qt+1,vt+1)

∂vt+1

∣∣∣∣
q∗t+1(vt+1)

=
∂ f p

t+1 (It+1)

∂It+1

∣∣∣∣
q∗t+1(vt+1)

= q∗−γ
t+1 (vt+1)

Thus, due to the form of the Lagrangian, the value function sensitivity of problem (23) is completely

specified by the optimal consumption as

∂ ft+1(vt+1)
∂vt+1

=





q∗−γ
t+1 (vt+1) if t < T −1

φτ (vT +1)−γ if t = T −1
(31)

To evaluate the value function sensitivity at values ofv between grid points, we linearly interpolate the

optimal consumption results on grid points.
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