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A key challenge in decision making under uncertainty is seeking robust solutions against high-dimensional

data uncertainty. The joint distribution of the stochastic data can hardly ever be obtained exactly, even

when estimation on their one-dimensional marginals is rather accurate. To tackle this issue, existing studies

hedge a family of distributions with known marginals, but either allow arbitrary dependence structure of

these distributions, which tends to be over-conservative, or impose constraints on the deviation — measured

by Kullback-Leibler divergence — of the dependence structure from some nominal model, which may lead to

pathological worst-case distributions. We propose a distributionally robust approach, which hedges against a

family of joint distributions with known marginals and a dependence structure similar to — with similarity

measured by Wasserstein distance — that of a nominal joint distribution (e.g., the empirical distribution or

the independent product distribution). Tractability of our new formulation is obtained by a novel constructive

proof of strong duality, combining ideas from the theory of multi-marginal optimal transport and a new

variational argument. Numerical experiments in portfolio selection and nonparametric density estimation

demonstrate how the proposed approach outperforms other benchmark approaches.

Key words : distributionally robust optimization; Wasserstein distance; portfolio optimization; copula;

density estimation

1. Introduction

Many decision-making problems involves multi-dimensional, dependent random variables. For

example, in financial portfolio selection, the total return and the risk of a portfolio depend not only

on the return of each individual financial asset, but also on correlations among different risky finan-

cial assets. As another example, in large-scale distributed inventory systems design, the designer

needs to understand how the dependence of random demands among subsystems affects the overall

system performance. Although the joint distributions of such random variables are important, they

can hardly ever be obtained accurately in practice.

In contrast, the one-dimensional marginal distribution of each single random variable is often

much easier to obtain or estimate, as illustrated by the following three data availability regimes.

(I) Only joint data are available. Using a relatively small amount of data, the one-dimensional

marginal distribution of each random variable can often be estimated accurately. Moreover,
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tools for statistical inference regarding one-dimensional distributions are in general more com-

prehensive than that regarding high-dimensional distributions.

(II) Only marginal data are available. This occurs often in a large complex distributed system, in

which data sharing among components is limited due to high communication cost or system

configuration. For this reason, the joint distribution is often assumed to be an independent

product distribution. For example, in many facility location problems, demands at different

locations are assumed to be independent.

(III) Besides joint data, extra marginal data are available for one or more random variables. When

the data streams of different random variables are collected with different frequencies, the

decision maker may have more data on the marginal distributions than on the joint distribu-

tion. Consider the example in Hall and Neumeyer (2006), in which the decision maker wants to

measure the dependence between the lengths of delay of two nonstop flights A and B from Los

Angeles to Sydney. One flight operates daily, while the other operates on Mondays, Wednes-

days, and Saturdays. Thus, we have joint data on the lengths of delay of the two flights on

the days of week when they both operate, and on the remaining days we have additional data

on the length of delay of the flight that operates daily.

Based on the discussion above, the central question we want to answer in this paper is:

How to find robust solutions when the joint distribution of random variables are not known

exactly but estimates of marginal distributions are relatively accurate?

We next describe two existing approaches to tackle this question and point out their potential

issues. In Section 1.1, we present the classical approach using Copula theory and distributions

with given marginals, and in Section 1.2, we present a KL-divergence-based distributionally robust

approach.

1.1. Copula Theory and Distributions with Known Marginals

Copula theory (Nelsen 2013, Joe 2014) provides a unified way to model the multivariate dependence

that is applicable to all the three data availability regimes above. It plays an increasingly important

role in many areas, including finance, high-dimensional statistics, and machine learning. A copula

is a multivariate distribution with all univariate marginals being uniformly distributed on [0,1]K .

The seminal Sklar’s theorem (Sklar 1959) states that, for every multivariate joint distribution

function Fµ with marginal distributions {Fk}Kk=1, there exists a probability distribution function

Cµ on [0,1]K , such that

Fµ(ξ1, . . . , ξk) = Cµ(F1(ξ1), . . . ,Fk(ξk)), ∀ ξ ∈Ξ. (1)
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Such Cµ is unique if the marginals are continuous. Conversely, any copula Cµ and marginal dis-

tributions {Fk}k together define a K-dimensional joint distribution through (1). This result is

phenomenal since it suggests that the analysis of the dependence structure of a multivariate joint

distribution can be separated from knowledge of the marginal distributions. For a detailed illus-

tration on constructing copula, we refer to Section 2.1.

Using copula theory, the uncertainty of the joint distribution all boils down to uncertainty of

the copula, provided that the marginal distributions are known. A classical approach to address

the central question under data availability regime (II) is formulating a minimax problem which

hedges against all probability distributions P(Ξ) on Ξ with the given marginals:

min
x∈X

sup
C∈C

{
Eµ[Ψ(x,ξ)] : µ has marginals {Fk}Kk=1 and copula C

}
, (2)

where x is the decision variable in a feasible set X, and Ψ :X ×Ξ→ R is the cost function that

depends on both the decision x and the random variable ξ; ξ has distribution µ on Ξ⊂RK , whose

value is not known before the decision is made, but its marginal distribution functions F1, . . . ,Fk

are given; and C is the set of all copulas on [0,1]K . Such an approach can be traced back at least to

Hoeffding (Hoeffding 1940) and Fréchet (Fréchet 1960), who considered the extremes and bounds

of (2). Since then, this approach has been extensively studied and applied to many operations

management problems (Natarajan et al. 2009, Agrawal et al. 2012, Doan and Natarajan 2012). We

refer to Joe (1997) and Benes and Stepán (2012) for a thorough study on this topic.

However, the above worst-case approach (2) does not consider any information at all regarding

the joint distribution (such as the joint data in regime (I) and (III)), and thus conceivably, its

worst-case distribution often involves fully correlated (i.e., comonotonic or counter-monotonic)

components, which may be too extreme for many practical applications. Consider the following

example.

Example 1 (Over-conservative worst-case copula). Consider the life insurance model

described in Dhaene and Goovaerts (1997), Müller (1997). Each individual risk ξk has a two point

distribution with P(ξk = 0) = pk and P(ξk = αk) = 1− pk, where αk represents the value of the

k-th claim, pk denotes the survival probability of the k-th individual, and p1 ≤ · · · ≤ pK . Suppose

the function Ψx(·) := Ψ(x, ·) is supermodular1, for example, the stop-loss max{0,
∑K

k=1 ξk − t} of

aggregate risks
∑K

k=1 ξk for some t > 0. The worst-case copula of (2) is comonotonic2, and implies

that for the corresponding worst-case distribution µ∗, it holds that

Pµ∗ [ξk+1 = 0|ξk = 0] = 1, k= 1, . . . ,K − 1,

which means that the death of an individual implies the deaths of all individuals with smaller

survival probabilities. In particular, when p1 = · · ·= pK , µ∗ has only two possible scenarios: either
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all individuals are alive or they all die. Unless the insurance is for some catastrophe, this worst-case

distribution seems to be unrealistic, since the dependence of mortality rates among individuals

cannot be so strong.

1.2. KL-Divergence-Based DRO with Known Marginals

To overcome the over-conservativeness of (2) and make a better use of joint data, it is natural to

restrict C to a smaller set. Indeed, using the idea from distributionally robust optimization (DRO),

recent research considers balls of copulas that are close to some nominal copula C0 in the sense of

Kullback-Leibler (KL) divergence3 (Dey et al. 2015, Glasserman and Yang 2016, Lam 2017, Dhara

et al. 2017):

min
x∈X

sup
C∈C

{
Eµ[Ψ(x,ξ)] : µ has marginals {Fk}Kk=1 and copula C, KL(C,C0)≤ ρ

}
, (3)

possibly with some additional constraints. However, in a data-driven setting, this approach has

limitations as shown by the following example.

Example 2 (KL divergence ball is not suitable for data-driven problem). Consider

the nominal distribution is given by N = 30 i.i.d. observations from a Gaussian distribution.

Suppose that we use this empirical distribution as the nominal distribution, then the KL

divergence ball {µ : KL(Cµ,C0) ≤ ρ} only contains distributions whose support is a subset of

the nominal distribution, as indicated by the left image in Fig. 1. However, observe that with

probability one, any two data points do not have identical coordinates in either dimension. Hence,

if we also consider constraints on the marginals (3), then with probability one, the KL ball is a

singleton containing only the empirical distribution itself. To avoid this pathological behavior,

one possible remedy is to partition the space into a finite number of bins, such that each bin

consists of sufficiently many empirical points. Nevertheless, there is no general guidance on how

to make the partition, and it is problematic for high dimensional problems, when the number of

data points is less than the dimension of the random variables.

Example 2 demonstrates that formulation (3) is not suitable for high-dimensional data-driven

problems. In the next subsection, we propose to use Wasserstein distance instead of KL divergence.

1.3. Our Approach: Wasserstein-Distance-Based DRO with Known Marginals

Motivated by recent progress in distributionally robust stochastic optimization with Wasserstein

distance (Esfahani and Kuhn 2015, Gao and Kleywegt 2016, Blanchet and Murthy 2016), we con-

sider all distributions whose associated copula is close to some nominal copula C0 in Wasserstein

distance. More specifically, when the joint data is available (corresponding to data-availability
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Figure 1 Supports of distributions within a KL divergence ball (3) and a Wasserstein ball (4)

regimes (I) and (III)), we set C0 to be the empirical copula, and when there is not joint data (corre-

sponding to data-availability regimes (II)), we set C0 to be the independent copula. Let Wp(Cµ,C0)

denote the p-Wasserstein distance (p ≥ 1) between Cµ and C0. (A more detailed explanation on

Wasserstein distance is provided in Section 2.2). Consider the following problem

min
x∈X

sup
C∈C

{
Eµ[Ψ(x,ξ)] : µ has marginals {Fk}Kk=1 and copula C, Wp(C,C0)≤ ρ

}
, (4)

where ρ > 0. From the modeling point of view, the advantages of using Wasserstein distance are

two-fold.

(i) For copulas of distributions with highly correlated components, Wasserstein distance yields

a more intuitive quantitative relationship (Gao and Kleywegt 2017), as illustrated by the

following example.

Example 3. Table 1 shows various distances between copulas of Gaussian distributions µ1 =

N (0, [1,0.5; 0.5,1]), µ2 =N (0, [1,0.99; 0.99,1]), and µ3 =N (0, [1,0.9999; 0.9999,1]).

Table 1 Distances between copulas of Gaussian distributions

Distances Fisher-Rao KL Burg entropy Hellinger Bhattacharya TV 2-Wasserstein

Cµ1 , Cµ2 2.77 22.56 1.48 0.69 0.65 2.45 0.15
Cµ2 , Cµ3 3.26 47.20 1.81 0.75 0.81 4.42 0.03

Intuitively, distance between µ2 and µ3 should be smaller since both µ2 and µ3 are close to

a comonotonic distribution. Among the distances above, only Wasserstein metric is consistent

with our intuition.

(ii) When the nominal copula is an independent copula (data-availability regime (II)), Wasserstein

distance defines a new measure of dependence, and is closely related to Spearman’s ranking

correlation coefficient. This is established in Section 2.2.
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1.4. Our contributions

1. We introduce a Wasserstein-distance-based DRO formulation (4) for decision making under

certainty with known marginals, and derive a tractable dual reformulation (Theorem 1). This

generalizes the duality results in Kellerer (1984) and Rachev (1985), in which only the marginal

constraints are considered, and also generalizes the results in Esfahani and Kuhn (2015) and

Gao and Kleywegt (2016), in which only the Wasserstein constraint is considered. Our proof

technique combines ideas from a refined constructive approach developed in Gao and Kleywegt

(2016), a new variational argument, and the theory of multi-dimensional Monge-Kantorovich

optimal transport problem (Rachev and Rüschendorf 1998, Gangbo and Swiech 1998).

2. For a data-driven problem in which the nominal model is the empirical copula, we show that

when the objective function Ψ is a piecewise-linear convex function of the random variables,

with properly chosen Wasserstein distance, the size of the convex program reformulation of

the inner maximization of (4) only linearly depends on the dimension of the random variable,

even though the support of the worst-case distribution can contain exponentially many points

(Corollary 1). This greatly improves the scalability of our approach.

3. We test the performance of our formulation on two problems. The first is a mean-CVaR port-

folio selection problem (Section 4.1), whose parameters are calibrated using real data. The

numerical results show superior performance of our approach in high dimension, as opposed

to sample average approximation and distributionally robust formulation with only Wasser-

stein constraints. The second is nonparametric copula density estimation (Section 4.2). Our

formulation suggests a novel estimation method. Numerical result on a real dataset illustrates

promising results of our approach when the sample size is much less the dimension of the

parameters.

2. Copulas and Wasserstein Distance between Copulas

In this section, we describe how to use Wasserstein distance to describe the similarity between

dependence structures of distributions. In Section 2.1, we review some results on copula theory,

and describe how to construct copula in data-driven problems. In Section 2.2, we introduce the

Wasserstein distance between copulas, and investigate its properties.

2.1. Copula and Subcopula in Data-Driven Problems

In the introduction, we have mentioned that the copula is unique for a multivariate continuous

distribution. However, in many data-driven problems, the nominal distribution is often finite-

supported, which raises the question on the non-uniqueness of copula. To resolve this issue, we

consider a slightly general notion called subcopula. For ease of exposition, we do not distinguish a
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probability distribution and its cumulative distribution function as its meaning should be clear from

the context. For example, for a distribution C on [0,1]K , C(u) is equivalent to C([0, u1]×· · ·× [0, uK ]).

Recall that the support of a distribution µ is the complement of the largest open set which has

µ-measure zero.

Definition 1 (Subcopula and Copula). A K-dimensional subcopula C is a joint distribution

with the following properties:

(i) For all 1≤ k≤K, the k-th marginal distribution of C, denoted by Ck, has support supp Ck ⊂

[0,1].

(ii) Ck(u) = u for all u∈ supp Ck.

A K-dimensional subcopula C is called a K-dimensional copula if supp Ck = [0,1] for all 1≤ k≤K.

We next restate Sklar’s theorem in terms of subcopula.

Sklar’s Theorem. Let µ be a K-dimensional distribution on Ξ with marginal distribution func-

tions F1, . . . ,FK. Then there exists a unique K-subcopula Cµ such that for all ξ ∈Ξ,

µ(ξ1, . . . , ξK) = Cµ
(
F1(ξ1), · · · ,FK(ξK)

)
,

and Cµ is a copula if the Fk’s are all continuous. Conversely, for any subcopula Cµ and marginal

distribution functions F1, . . . ,FK, the equation above defines a K-dimensional distribution µ with

marginal distributions F1, . . . ,FK.

Sklar’s theorem indicates that the dependence structure of a multivariate distribution is fully

characterized by a unique subcopula, which becomes a copula if the marginal distributions are

continuous. If we denote the inverse cumulative distribution function of each marginals by F−1
k ,

then C can be computed through the formula

C(u1, . . . , uK) =H
(
F−1

1 (u1), . . . ,F−1
K (uk)

)
.

We here list some commonly used subcopulas and copulas.

Example 4 (Empirical copula). Let 1
N

∑N

i=1 δξ̂i be an empirical distribution, and F̂−1
k be the

inverse cumulative empirical distribution of the k-th marginal. The empirical copula (Deheuvels

1979, Tsukahara 2005) is defined by

Ĉ(u) :=
1

N

N∑
i=1

K∏
k=1

1
{
ξ̂ki ≤ F̂−1

k (uk)
}
.

Thus, empirical copula can be viewed as the empirical distribution of the rank transformed data.

Note that empirical copula is a subcopula but not a copula, since supp Ck ⊂ { iN : 1≤ i≤N}.
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Example 5 (Independent, comonotonic, and counter-monotonic copulas).

– If ξ has mutually independent components, then it has copula C(u) =
∏K

k=1 uk.

– If ξ has comonotonic components, i.e., ξ = (F−1
1 (U), . . . ,F−1

K (U)) for some distribution

functions {Fk}Kk=1 and a uniformly distributed random variable U on [0,1], then C(u) =

min1≤k≤K uk.

– If K = 2 and (ξ1,ξ2) are counter-monotonic, i.e., (ξ1,ξ2) = (F−1
1 (U),F−1

2 (1− U)) for some

distribution functions F1,F2 and a uniformly distributed random variable U on [0,1], then

C(u1, u2) = max(u1 +u2− 1,0).

We next illustrate on how to construct a subcopula using the dataset described in data-

availability regime (III) in the introduction.

Example 6 (Construction of an Empirical Copula). The joint data of number of minutes

delay for two flights on the days of week that they both operate are:

(30,4), (−1,0), (−5,7), (12,13), (10,0), (−5,20), (0,15), (32,58), (15,85), (30,45),

(26,30), (6,23), (40,55), (3,40), (0,−8), (11,12), (7,13), (−5,9), (−11,6), (−10,−20).

The additional marginal data of number of minutes delay for the more frequent flight are:

20,4,5,48,−30,−10,−22,−3,80,−23,0,26,10,90,90,24,30,45,17,35,−10,−1,30,5,18,0,40,16,6.

We denote the joint data by {(ξ̂i1, ξ̂i2)}Ni=1, and the extra marginal data by {ξ̂N+j
1 }Mj=1. The empirical

copula is constructed in two steps. In the first step, we use all the marginal data information, i.e.,

{ξ̂i1}N+M
i=1 and {ξ̂i2}Ni=1 to estimate the marginal distributions F1(ξ1) and F2(ξ2). For example, we

can simply use empirical cumulative distribution function, or a linear interpolation of the empirical

cumulative distribution function. Using the estimated marginal distribution functions, the original

joint data set is converted to (ûi1, û
i
2) = (F1(ξ̂i1),F2(ξ̂i2)), i= 1, . . . ,N . Then in the second setup, we

estimate the copula density function c(u1, u2) using the converted joint dataset {(ûi1, ûi2)}Ni=1. The

scatter plots of the empirical distribution and empirical copula are shown in Figure 2.

2.2. Wasserstein Distance between (Sub)Copulas

Let d be a metric on [0,1]K . In the case of empirical copula, d can be viewed as the distance

between two relative rankings. The Wasserstein distance between two subcopulas C, C0 is defined

as follows.

Definition 2 (Wasserstein distance). Let p ∈ [1,∞). The p-Wasserstein distance Wp(C,C0)

between C,C0 ∈P([0,1]K) (under metric d) is defined by

W p
p (C,C0) := min

γ∈P([0,1]2K)

{∫
[0,1]2K

dp(u, v)γ(du,dv) : γ has marginals C,C0

}
. (5)
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Figure 2 Scatter plots of empirical joint and marginal distributions and empirical copula

Thus, Wasserstein distance between C,C0 is the minimum cost (in terms of dp) of redistributing

mass from C to C0. Wasserstein distance is a natural way of comparing two distributions when one

is obtained from the other by perturbations.

The expression (5) is written in terms of the integration on [0,1]K . With changing of variables, it

can be equivalently represented using integration on the data space Ξ. Let µ,ν be two distributions

with the same marginals {Fk}k, and denote their copulas by Cµ and Cν . We define

dF (ξ, ζ) := lim inf
d(ξm,ξ),d(ζm,ζ)

m→∞−→ 0

d
(
(F1(ξm1 ), . . . ,FK(ξmK )), (F1(ζm1 ), . . . ,FK(ζmK ))

)
.

It follows that dF is lower semi-continuous, and dF is a premetric (Aldrovandi and Pereira 1995),

i.e., dF ≥ 0 and dF (ξ, ξ) = 0. With these definitions, Wp(Cµ,Cν) can be equivalently represented as

W p
p (Cµ,Cν) = min

γ∈P(Ξ×Ξ)

{∫
Ξ2

dpF (ξ, ζ)γ(dξ, dζ) : γ has marginals µ,ν

}
.

Now let us consider the case when the nominal copula C0 is the independent subcopula Π, which

corresponds to the data-availability regime (II) described in the introduction. In this case, the

Wasserstein distance Wp(Cµ,Π) measures the deviation of Cµ away from an independent distribu-

tion, and thus can be viewed as a measure of dependence of random variables with joint distribution

µ. In particular, when K = 2 and Π(u) = u1u2, with a special choice of d, W1(Cµ,Π) reduces

to Schweizer and Wolffs L1-based measure of dependence (Schweizer and Wolff 1981), defined as∫ 1

0

∫ 1

0
|Cµ(u1, u2)−u1u2|du1du2.

Proposition 1. Suppose

d
(
(u1, u2), (v1, v2)

)
=

{
|u1− v1|, if u2 = v2,

+∞, o.w.
, or

{
|u2− v2|, if u1 = v1,

+∞, o.w.

Let K = 2. Then for any distribution µ with copula Cµ, it holds that

W1(Cµ,Π) =

∫ 1

0

∫ 1

0

|Cµ(u1, u2)−u1u2|du1du2.
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We remark that Schweizer and Wolffs’ measure of dependence is closely related to Spearman’s rank

correlation coefficient, which can be written as
∫ 1

0

∫ 1

0

(
C(u1, u2)−u1u2

)
du1du2.

If we set d to be the `1-norm, then W1(Cµ,C0) defines a new measure of dependence which

satisfies Rényi’s axioms on measure of dependence (Rényi 1959, Schweizer and Wolff 1981).

Proposition 2. Suppose

d(u, v) = ||u− v||1, u, v ∈ [0,1]2.

Let (ξ,ζ) be two random variables with continuous distribution µ∈P([0,1]K), define

ω(ξ,ζ) := 12 ·W1(µ,Π).

Then ω(ξ,ζ) defines a measure of dependence that satisfies Rényi’s axioms:

(i) ω(ξ,ζ) = ω(ζ,ξ).

(ii) 0≤ ω(ξ,ζ)≤ 1.

(iii) ω(ξ,ζ) = 0 if and only if ξ and ζ are independent.

(iv) ω(ξ,ζ) = 1 if and only if each of ξ is a.s. a strictly monotone function of the other.

(v) If f and g are strictly monotone a.s. on Ran ξ and Ran ζ respectively, then ω(f(ξ), g(ζ)) =

ω(ξ,ζ).

(vi) If the joint distribution of ξ and ζ is bivariate normal with correlation coefficient ρ, then

ω(ξ,ζ) is a strictly increasing function of |ρ|.

(vii) If (ξ,ζ) and (ξm,ζm), m= 1,2, · · · , are pairs of random variables with joint distribution µ and

µm respectively, and if the sequence µm converges weakly to µ, then limm→∞ω(ξ,µ) = ω(ξ,µ).

3. Dual reformulation

In this section, we derive a dual reformulation for the inner maximization of problem (4). For ease

of notation, we suppress variable x of Ψ. Set

vP := sup
C∈C

{
Eµ[Ψ(x,ξ)] : µ has marginals {Fk}Kk=1 and copula C, Wp(C,C0)≤ ρ

}
. (6)

We assume Ψ is upper semicontinuous on Ξ, and satisfies the growth condition supξ∈Ξ
Ψ(ξ)

d
p
F

(ξ,ζ0)
<∞

for some ζ0 ∈Ξ. Our main result is the following strong duality theorem.

Theorem 1 (Strong duality). Let ν be a distribution with marginals {Fk}Kk=1 and copula C0.

Let Ξk be the projection of Ξ onto the k-th marginal component. Then problem (6) has a strong

dual problem

vD := inf
λ≥0

fk∈B(Ξk)

{
λρp +

K∑
k=1

∫
Ξk

fk(t)Fk(dt) +

∫
Ξ

sup
ξ∈Ξ

[
Ψ(ξ)−

K∑
k=1

fk(ξk)−λdpF (ξ, ζ)
]
ν(dζ)

}
.
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Before diving into the proof, we outline the proof idea as follows. To start with, it is straight-

forward to establish the weak duality using Lagrangian and properties of marginal distribution

(Lemma 1). However, the difficulties in proving strong duality lie in the non-compactness of the

data space Ξ, and the semi-infinite marginal and Wasserstein constraints. To obtain the strong

duality, we first assume certain compactness and continuity assumptions. Under such assumptions,

we show the existence of a dual minimizer using convexification trick (see, e.g., Rachev (1985),

Gangbo and Swiech (1998)) in the theory of multi-marginal optimal transport (Lemma 2). Next,

we derive the first-order optimality condition at the dual minimizer, which helps to construct a

primal optimal solution (Lemma 3). Finally using some limiting argument, we relax the continuity

and the compactness assumption and thus complete the proof of Theorem 1. We only provide the

proof of Lemma 3 here, and proofs of other lemmas and measurability of the integrand involved in

the dual program are presented in the Technical Appendix.

Lemma 1 (Weak duality). vP ≤ vD.

Lemma 2 (Existence of dual minimizer). Assume that Ξ is compact and Ψ and dF are Lips-

chitz continuous on Ξ. Then there exists a dual minimizer.

Lemma 3 (Strong duality under compactness and continuity assumption). Assume that

Ξ is compact and Ψ and dF are Lipschitz continuous on Ξ. Then vP = vD.

Proof of Lemma 3. We start with establishing the first-order optimality condition of the dual

problem. We perform a variational analysis on the dual objective function at (λ∗,{f∗k}k). For each

1≤ k≤K, let {gkm}∞m=1 be a Schauder basis of B(Ξk). For any n∈Z+, we define a function

Φn(λ, ε, ζ) := sup
ξ∈Ξ

{
Ψ(ξ)−

∑
k

f∗k (ξk)−
∑
k

n∑
m=1

εkmgkm(ξk)−λdpF (ξ, ζ)
}
. (7)

By Lemma 4 in Appendix, Φ is random lower semi-continuous. Moreover, for all ζ ∈ Ξ, Φ(·, ·, ·, ζ)

is a convex function on R+×R+×RnK . We further define

hn(λ, ε) = λρp +
K∑
k=1

∫
Ξk

fk(t)Fk(dt) +
K∑
k=1

n∑
m=1

∫
Ξk

εkmgkm(t)Fk(dt)

+

∫
Ξ

sup
ξ∈Ξ

[
Ψ(ξ)−

K∑
k=1

f∗k (ξk)−
K∑
k=1

n∑
m=1

εkmgkm(ξk)−λdpF (ξ, ζ)
]
ν(dζ).

Then by generalized Moreau-Rockafellar theorem (see, e.g., Theorem 7.47 in Shapiro et al. (2009)),

for any (λ, ε)∈ dom hn it holds that

∂hn(λ, ε) =

(
ρ,
[∫

Ξk

gkm(t)Fk(dt)
]

1≤k≤K
1≤m≤n

)>
−
∫

Ξ

∂λ,εΦn(λ, ε, ζ)ν(dζ) +N (λ, ε),
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where N (λ, ε) stands for the normal cone at (λ, ε) to the feasible region R+×R+×RnK . Further-

more, it follows from Theorem 2.4.18 in Zalinescu (2002) that

∂λ,εΦ(λ, ε, ζ) = conv

{(
dpF (F (ξ(ζ)),F (ζ)), [gkm(ξk(ζ))]1≤k≤K

1≤m≤n

)>
:

ξ(ζ)∈ arg max
ξ∈Ξ

[
Ψ(ξ)−

K∑
k=1

f∗k (ξk)−λdpF (ξ, ζ)
]}
.

Set

T (ζ) := arg max
ξ∈Ξ

[
Ψ(ξ)−

K∑
k=1

f∗k (ξk)−λ∗dpF (ξ, ζ)
]
.

The first-order optimality condition 0∈ ∂hn(λ∗,0) implies that there exists 0≤ r∗ ≤ ρ with λ∗(ρ−

r∗) = 0, such that(
r∗,
[∫

Ξk

gkm(t)Fk(dt)
]

1≤k≤K
1≤m≤n

)
∈
∫

Ξ

conv
{(

dp(ξ(ζ), ζ), [gkm(ξk(ζ))]1≤k≤K
1≤m≤n

)
: ξ(ζ)∈ T (ζ)

}
ν(dζ).

(8)

We construct a primal optimal solution. (8) suggests that there is a measurable

selection z(ζ) of conv{(dp(ξ(ζ), ζ), [gkm(ξk(ζ))]k,m), ξ(ζ) ∈ T (ζ)}, such that
∫

Ξ
z(ζ)ν(dζ) =

(r∗, [
∫

Ξk
gkm(t)Fk(dt)]k,m). Each z(ζ) can be represented as

z(ζ) =Eγn
ζ

[(
dp(ξ(ζ), ζ), [gkm(ξk(ζ))]1≤k≤K,1≤m≤n

)]
,

for some finite probability distribution γnζ ∈ P(T (ζ)), and the measurability of z(ζ) implies the

measurability of γnζ (as a function of ζ). Thus, there exists a probability kernel {γnζ }ζ∈Ξ such that

each γnζ is a probability distribution on T (ζ) and satisfies

r∗ ≤ ρ,

λ∗(ρ− r∗) = 0,∫
Ξ2

gkm(ξk(ζ))γnζ (dξ)ν(dζ) =

∫
Ξk

gkm(t)Fk(dt), ∀1≤ k≤K,1≤m≤ n.
(9)

Now define a probability measure µn by

µn(A) :=

∫
Ξ

γnζ (A)ν(dζ), ∀A∈B(Ξ).

Then ∫
Ξ

gkm(ξk)µ
n(dξ) =

∫
Ξk

gkm(t)Fk(dt), ∀1≤ k≤K,1≤m≤ n,

due to (9). Since the collection of probability measures {µn}n is tight, by Prokhorov’s theorem,

there is a convergent subsequence, whose limit is denoted by µ∗. It follows that∫
Ξ

gkm(ξk)µ
∗(dξ) =

∫
Ξk

gkm(t)Fk(dt), ∀1≤ k≤K,m≥ 1,
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that is, µ∗ has marginals {Fk}k. Hence
∫

Ξ
fk(ξk)µ

∗(dξ) =
∫

Ξk
fk(t)Fk(dt) for all fk ∈ B(Ξk). In

addition, due to (9), we have that µ∗ is primal feasible, and∫
Ξ

Ψ(ξ)µ∗(dξ)

=

∫
Ξ

[
Ψ(ξ)−

K∑
k=1

f∗k (ξk)−λ∗dpF (ξ, ζ)
]
µ∗(dξ)

+

∫
Ξ

[ K∑
k=1

f∗k (ξk) +λ∗dpF (ξ, ζ)
]
µ∗(dξ)

=

∫
Ξ

sup
ξ∈Ξ

[
Ψ(ξ)−

K∑
k=1

f∗k (ξk)−λ∗dpF (ξ, ζ)
]
ν(dζ) +λ∗ρp +

K∑
k=1

∫
Ξk

f∗k (t)Fk(dt)

≥vD.

�

3.1. Data-driven Problem and Size Reduction

Corollary 1. Suppose Ψ(ξ) = max1≤m≤M am>ξ + bm for some am ∈ RK and bm ∈ R, and ν =

1
N

∑N

i=1 δξ̂i. Let Ξk := {ξ̂ik : i= 1, . . . ,N}. Then the dual problem of (6) is given by

inf
λ≥0,fik∈R
yi∈R

{
λρp +

1

N

K∑
k=1

N∑
i=1

f ik +
1

N

N∑
i=1

yi :

yi ≥ am>(ξ̂j11 , . . . , ξ̂
jK
K ) + bm−

K∑
k=1

f
jk
k −λd

p
F

(
(ξ̂j11 , . . . , ξ̂

jK
K ), ξ̂i),

∀1≤ i≤N, ∀1≤ jk ≤N, ∀1≤ k≤K
}
.

(10)

If, in addition, there exists {dF,k}k such that

dpF
(
(ξ̂j11 , . . . , ξ̂

jK
K ), ξ̂i) =

K∑
k=1

dF,k(ξ̂
jk
k , ξ̂

i
k), ∀i, jk, ∀k,

then the above program is equivalent to

inf
λ≥0,fik∈R
yi,zimk ∈R

{
λρp +

1

N

K∑
k=1

N∑
i=1

f ik +
1

N

N∑
i=1

yi : yi ≥ bm +
K∑
k=1

zimk , ∀i,m,

zimk ≥ amk
>ξjk− f

j
k −λdF,k(ξ

j
k, ξ̂

i
k), ∀i,m, j, k

}
.

(11)

Proof of Corollary 1. Formulation (10) follows directly from Theorem 1. Formulation (11) fol-

lows from the fact that for any additively separable function g(ξ̂j11 , . . . , ξ̂
jK
K ) =

∑K

k=1 gk(ξ̂
jk
k ),

max
j1,...,jK

g(ξ̂j11 , . . . , ξ̂
jK
K ) =

K∑
k=1

max
j
gk(ξ̂

j
k).

�
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We remark that (11) indicates that when the metric dpF is additively separable, by introducing

auxiliary variables zimk , the original problem admits a reformulation with MN(K+ 1) constraints,

linearly growing in dimension K.

4. Applications

In this section, we discuss two applications.

4.1. Mean-CVaR portfolio selection

We consider a distributionally robust portfolio optimization problem

min
x∈X

max
µ∈M

Eµ[−x>ξ] + c ·CVaRα
µ[−x>ξ], (12)

where c > 0, X :=
{
x ∈ RK+ :

∑K

k=1 xk = 1
}

encodes the vectors of weights of K assets without

short-selling, ξ= (ξ1, . . . ,ξK)> is the vector of excessive returns over the risk-free rate, and CVaR

is the conditional value-at-risk Rockafellar and Uryasev (2000) under distribution µ. We use the

Fama-French three-factor model Fama and French (1993) to model the asset return. The Fama-

French three-factor model assumes that the excess return of the k-th asset follows the following

three-factor model:

ξk = bk1f 1 + bk2f 2 + bk3f 3 + εk, k= 1, . . . ,K,

where, the factor f 1 are respectively the excess return of the proxy of the market portfolio, which

equals the value-weighted return on all NYSE, AMEX and NASDAQ stocks minus the one-month

Treasury bill rate; factors f 2,f 3 are related to the market capitalizations and and book-to market

ratios, more specifically, f 2 equals the average return on three small portfolios minus the average

return on three big portfolios, and f 3 equals the average return on two value portfolios minus the

average return on two growth portfolios; bk1, bk2, bk3 are the factor loadings of the k-th stock; and

εk is the idiosyncratic noise independent of the three factors, and independent across the stocks.

The parameters are estimated using the three-year daily data of 30 Industry Portfolios from

May 1, 2002 to Aug 29, 2005 (Frech 2017). We borrow the calibration results from Fan et al.

(2008) (see Table 2), where the factor loadings (bk1, bk2, bk3), k = 1, . . . ,K are i.i.d. drawn from

Normal(µb,Σb), and once generated, they are fixed as constants throughout simulations. The N -

period returns of the three factors (f 1,f 2,f 3) are generated from Normal(µf ,Σf ), and the noises

are generated from Gamma(3.3586,0.1876) conditioned on the noise level of at least 0.1950.

Note that the objective function of (12) can be equivalently written as

min
x∈X,τ∈R

sup
µ∈M

{
Eµ

[
max

1≤m≤M
amx

>ξ+ bm

]}
,
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Table 2 Parameters in the three-factor model

µb Σb µf Σf

0.78282 0.029145 0.023873 0.010184 0.023558 1.2507 -0.034999 -0.20419
0.51803 0.0232873 0.053951 -0.006967 0.012989 -0.034999 0.31564 -0.0022526
0.41003 0.010184 -0.006967 0.086856 0.020714 -0.20419 -0.0022526 0.19303

where M = 2, a1 =−1, a2 =−1− c/α, b1 = c and b2 = c(1−1/α). We choose C0 to be the empirical

copula in defining M. In all numerical experiments, we set α= 0.2, c= 10, d(u, v) = ||u− v||1. We

fix N = 50, and vary K = 10,50,100, corresponding to three regimes N >K, N =K, and N <K.

We run the simulation with 200 repetitions. The Wasserstein radius ρ is chosen using hold-out

cross validation. More specifically, in each repetition, we generate N -period returns, and the N

samples are randomly partitioned into a training dataset with 70% data and a validation set with

30% data. We solve problem (12) using the training dataset for different choices of ρ, and choose

the one that has the best out-of-sample performance using validation dataset. Then we resolve

problem (12) using the all N samples, and the out-of-sample performance of the optimal solution

is evaluated using an independent testing dataset with 106 samples.

We compare our approach with two other approaches, sample average approximation (SAA)

method, and DRSO with W1-Wasserstein ball considered in Esfahani and Kuhn (2015), in which

there is no constraints on the marginal distributions and the ball is centered at the empirical

distribution instead of the copula. Note that our numerical setting is similar to the one in Esfahani

and Kuhn (2015), expect that we generate random asset returns based on the three-factor model

whose parameters are calibrated using real data. The box plot of the results is shown in Figure 3.

SAA Wasserstein Copula

9

10

11

12

13

SAA Wasserstein Copula

8

9

10

11

12

SAA Wasserstein Copula

8

9

10

11

12

Figure 3 Out-of-sample performances of three approaches

We observe that the DRSO with Wasserstein ball does not have a superior performance over

SAA method, and is actually even worse in relatively low dimensional setting when K ≤N . Pos-

sible explanation of this is that variations of the uncertain asset returns are not that big, so SAA

already has a relatively good performance especially in low-dimensional setting, whereas DRSO
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with Wasserstein ball only provide a conservative solution. Nevertheless, our proposed Copula

approach seems to perform better when the dimensional K becomes larger. Note that in our exper-

iments, samples of size N = 50 already provide a rather accurate estimate of the one-dimensional

marginal distribution. By constraining the marginal distributions and building a ball around the

empirical copula, our approach obtain a more robust (comparing to SAA) yet less conservative

solution (comparing to Wasserstein ball), and this effect becomes more apparent in high dimensions.

4.2. Nonparametric density estimation with extra marginal data

We focus on the copula density estimation in the second step above, and we are interested in

nonparametric estimation. The following setup is based on Qu and Yin (2012). The domain [0,1]2

is partitioned into M ×M rectangle cells with equal size. For each cell (uk11 , u
k2
2 ), k1, k2 = 1, . . . ,M ,

denote by C0
k1,k2

the empirical relative frequency of observations {(ûi1, ûi2)}Ni=1 falling in this cell,

and define xk1,k2 to be the probability mass of this cell that we are going to estimate. Then the

maximum likelihood estimation is given by

min
x∈X

EC0 [− log(x(u))], (13)

where

X :=

{
x∈RM×M+ :

∑
k1

xk1,k2 =
∑
k2

xk1,k2 =
1

M

}
.

In Qu and Yin (2012), it is proposed to consider a total variation penalized likelihood

min
x∈X

EC0 [− log(x(u))] +λ
M∑

k1,k2=1

√
(xk1+1,k2 −xk1,k2)2 + (xk1,k2+1−xk1,k2)2.

Here we propose another approach based on our distributionally robust framework. Consider

min
x∈X

max
C∈M

EC
[
− log(x(u))

]
, (14)

where M is a ball of subcopulas centered at C0. Using our duality result, the problem above can

be reformulated as a convex programming

min
x∈X,λ≥0

f
k1
1 ,f

k2
2 ,y

{
λρ+

1

M

M∑
k1=1

fk11 +
1

M

M∑
k2=1

fk22 +
1

N

N∑
i=1

yi +
M∑

k1,k2=1

x2
k1,k2

:

yi ≥− log(xk1,k2)− fk11 − f
k2
2 −λ · ||(u

k1
1 , u

k2
2 )− (ûi1, û

i
2)||1, ∀i, k1, k2

}
.

In our experiment, we use a dataset in Example 6. We compare our approach with total vari-

ation penalized likelihood estimation proposed in Qu and Yin (2012), which is, to the best of

our knowledge, the only method that fores the marginal constraints on the copula (Many other
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Figure 4 Copula density estimator using TV penalized maximum likelihood
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Figure 5 Copula density estimator using Wasserstein-based distributionally robust method

kernel/wavelets-based approach actually do not provide an estimator that satisfies the marginal

requirement for a copula). In our experiment, we set M = 32. Since the real dataset is very small,

we here only provide a qualitative comparison for the copula density estimators.

Figure 4 and 5 show the estimators yielding from the two approaches with different tuning

parameters. It is obvious that they differ a lot. In particular, the density estimator using total

variation penalized likelihood estimation proposed in Qu and Yin (2012) has disconnected support,

which seems unrealistic. In contrast, our density estimator is smoother and seems to be more

reasonable using only a small dataset.

5. Concluding remarks

In this paper, we proposed a distributionally robust framework for decision-making under uncer-

tainty when the marginal distributions are fixed. We chose Wasserstein distance to measure the

closeness between the considered dependence structure and some nominal model. We used several

illustrative examples to show its advantages over previous work on divergence-based approach.

Our computational examples on portfolio selection and density estimation show that, for high-

dimensional data-driven problems, namely, problems in which the sample size is much less than

the number of unknown parameters, our approach outperforms the conventional approaches.
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Appendix. Technical Proofs.

Proof of Proposition 1. Given a copula C, set Cu to be the marginal distribution of v given

u= u. Let U be the uniform distribution on [0,1]. Under the above condition on d, we have that

ω1,d(ξ1,ξ2) =

∫ 1

0

W1(Cu,U)du.

Then the result follows from the formula for one-dimensional Wasserstein distance Vallender (1974).

�

Proof of Proposition 2. Observe that when choosing `1-norm, the optimal transportation defin-

ing W1(CM ,Π) can be chosen such that each point is transported only vertically. Then the compu-

tational of Wasserstein distance is reduced to the case in Proposition 1, and thus the result follows.

�

Proof of Lemma 1. Observe that for any random vector (ξ,ζ) with joint distribution γ ∈P(Ξ×

Ξ) and marginals µ,ν ∈P(Ξ), it holds that∫
Ξ

Ψ(ξ)µ(dξ) =

∫
Ξ×Ξ

Ψ(ξ)γ(dξ, dζ) =

∫
Ξ

∫
Ξ

Ψ(ξ)γζ(dξ)ν(dζ),

where γζ represents the conditional distribution of ξ given ζ = ζ. Also note that µ has marginal

Fk if and only if
∫

Ξ
fk(ξk)µ(dξ) =

∫
Ξk
fk(t)Fk(dt) for all fk ∈B(Ξk). With the observations above,

using Lagrangian weak duality, we have that

sup
µ∈M

{∫
Ξ

Ψ(ξ)µ(dξ)

}
= sup
{γζ}ζ⊂P(Ξ)

inf
λ≥0

fk∈B(Ξk)

{∫
Ξ2

Ψ(ξ)γζ(dξ)ν(dζ) +λρp−λ
∫

Ξ2

dpF (ξ, ζ)γζ(dξ)ν(dζ)

+
∑
k

∫
Ξk

fk(t)Fk(dt)−
∫

Ξ2

∑
k

fk(ξk)γζ(dξ)ν(dζ)

}
≤ inf

λ≥0
fk∈B(Ξk)

{
λρp +

∑
k

∫
Ξk

fk(t)Fk(dt)

+ sup
{γζ}ζ⊂P(Ξ)

∫
Ξ2

[
Ψ(ξ)−

∑
k

fk(ξk)−λdpF (ξ, ζ)]γζ(dξ)ν(dζ)

}
≤ inf

λ≥0
fk∈B(Ξk)

{
λρp +

∑
k

∫
Ξk

fk(t)Fk(dt)

+

∫
Ξ

sup
ξ∈Ξ

[
Ψ(ξ)−

∑
k

fk(ξk)−λdpF (ξ, ζ)
]
ν(dζ)

}
.

�
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Proof of Lemma 2. We claim that there exists M > 0 such that

vD = inf
0≤λ≤M
fk∈B(Ξk)

{
λρp +

K∑
k=1

∫
Ξk

fk(t)Fk(dt) +

∫
Ξ

sup
ξ∈Ξ

[
Ψ(ξ)−

K∑
k=1

fk(ξk)−λdpF (ξ, ζ)
]
ν(dζ)

}
. (15)

Indeed, according to the assumption on Ψ, there exists M > 0 such that Ψ(ξ)≤M for all ξ ∈Ξ and

thus by choosing α= λ= 0 and fk ≡ 0, we obtain that vD ≤M . On the other hand, fixing fk ≡ 0,

the dual objective tends to infinity as λ→∞. Hence the claim holds.

For any feasible solution (λ,{fk}k) of (15) such that the dual objective is finite, we are going to

define a modification (λ,{f̄k}k) which yields a dual objective value no worse than (λ,{fk}k), but

also has a nicer continuity property. The technique used here is the convexification trick. Setting

Φ(λ, ζ) := sup
ξ∈Ξ

{
Ψ(ξ)−

∑
k

fk(ξk)−λdpF (ξ, ζ)
}
,

we define

f̄1(ξ1) := sup
ζ∈Ξ

0≤uk≤K,k≥2

{
Ψ(ξ)−Φ(λ, ζ)−

∑
k≥2

fk(ξk)−λdpF (ξ, ζ)
}
,

and inductively define f̄k by

f̄k(ξk) := sup
ζ∈Ξ

0≤ξj≤K,j 6=k

{
Ψ(ξ)−Φ(λ, ζ)−

∑
j<k

f̄j(ξj)−
∑
j>k

fj(ξj)−λdpF (ξ, ζ)
}
, ∀2≤ k≤K.

The definition of Φ implies that

f1(ξ1)≥Ψ(ξ)−Φ(λ, ζ)−
∑
j≥2

fj(ξj)−λdpF (ξ, ζ), ∀ξ, ζ ∈Ξ,

hence f1 ≥ f̄1. Similarly, the definition of f̄k−1 implies that

fk(ξk)≥Ψ(ξ)−Φ(λ, ζ)−
∑
j<k

f̄j(ξj)−
∑
j>k

fj(ξj)−λdpF (ξ, ζ), ∀ξ, ζ ∈Ξ,

hence fk ≥ f̄k for k≥ 2. Hence, for all 1≤ k≤K it holds that

f̄k(ξk) = sup
ζ∈Ξ

0≤ξj≤K,j 6=k

{
Ψ(ξ)−Φ(λ, ζ)−

∑
j<k

f̄j(ξj)−
∑
j>k

fj(ξj)−λdpF (ξ, ζ)
}

≤ sup
ζ∈Ξ

0≤ξj≤K,j 6=k

{
Ψ(ξ)−Φ(λ, ζ)−

∑
j 6=k

f̄j(ξj)−λdpF (ξ, ζ)
}
.

But the definition of f̄K gives that

f̄k(ξk)≥ sup
ζ∈Ξ

0≤ξj≤K,j 6=k

{
Ψ(ξ)−Φ(λ, ζ)−

∑
j 6=k

f̄j(ξj)−λdpF (ξ, ζ)
}
, ∀k.
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Combining the previous two inequalities yields

f̄k(ξk) = sup
ζ∈Ξ

0≤ξj≤K,j 6=k

{
Ψ(ξ)−Φ(λ, ζ)−

∑
j 6=k

f̄j(ξj)−λdpF (ξ, ζ)
}
, ∀k,

which also implies that

sup
ξ∈Ξ

{
Ψ(ξ)−

K∑
k=1

f̄k(ξk)−λdpF (ξ, ζ)
}

= Φ(λ, ζ) = sup
ξ∈Ξ

{
Ψ(ξ)−

K∑
k=1

fk(ξk)−λdpF (ξ, ζ)
}
,

Together with f̄k ≤ fk, we conclude that (λ,{f̄k}k) yields a dual objective no greater than (λ,{fk}k).

Moreover, since the dual objective remains unchanged if {f̄k}k is modified into {f̄k +ak}k, where

ak ∈ R, so we may assume that minΞk f̄k = 0. It then follows that {fk}k are also upper bounded.

In addition, the Lipschitz continuity of Ψ− λdpF implies f̄k are also Lipschitz continuous and the

Lipschitz constant only depends on that of Ψ−λdpF .

Now let (λ(m),{f (m)
k }k)m be a minimizing sequence of (15). Using the convexification trick as

above, we obtain a sequence (λ(m),{f̄ (m)
k }k)m. Then the analysis above implies that (f̄

(m)
k )m are

uniformly bounded and equi-continuous. Hence by Bolzano-Weierstrass theorem and Arzela-Ascoli

theorem, there exists a convergent subsequence. Denote its limit by (λ∗,{f∗k}Kk=1). Then by dominate

convergence (λ∗,{f∗k}Kk=1) is a dual minimizer. �

Proof of Theorem 1. Let us first relax the continuity assumption made in Step 2. We will relax

the compactness assumption in the last step. Note that any upper semi-continuous function sat-

isfying the growth rate condition can be written as the infimum of a non-increasing sequence

of Lipschitz continuous functions, for example, by Moreau-Yosida approximation Ambrosio et al.

(2008). Thus we can approximate Ψ by a non-increasing sequence of Lipschitz continuous functions

Ψn and approximate dF by a non-decreasing sequence of Lipschitz continuous functions dn. Let us

define

vnP := sup
µ∈M

∫
Ξ

Ψndµ, v0
P := sup

µ∈M

∫
Ξ

Ψdµ,

vnD := inf
λ≥0

fk∈B(Ξk)

{
λρp +

K∑
k=1

∫
Ξk

fk(t)Fk(dt)

+

∫
Ξ

sup
ξ∈Ξ

[
Ψn(ξ)−

K∑
k=1

fk(ξk)−λdqn(ξ, ζ)
]
ν(dζ)

}
,

v0
D := inf

λ≥0
fk∈B(Ξk)

{
λρp +

K∑
k=1

∫
Ξk

fk(t)Fk(dt)

+

∫
Ξ

sup
ξ∈Ξ

[
Ψ(ξ)−

K∑
k=1

fk(ξk)−λdpF (ξ, ζ)
]
ν(dζ)

}
.
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Since Ψn ≥ Ψ and dn ≤ dF , we have v0
D ≤ vnD. From previous steps we know vnD = vnP . In view of

v0
D ≥ v0

P , it remains to show limn→∞ v
n
D ≤ v0

D. From Step 4, we know that there exists µ∗n such that∫
Ξ

Ψndµ
∗
n = vnD. Observe that M is tight, then by Prokhorov’s theorem, it is relatively compact

with respect to the weak topology, and thus {µn}n admits a convergent subsequence, whose limit

is denoted by µ∗0. Then
∫

Ξ
Ψndµ

∗
n ≤

∫
Ξ

Ψmdµ
∗
n for all n≥m implies that

lim
n→∞

∫
Ξ

Ψndµ
∗
n ≤ lim inf

n→∞

∫
Ξ

Ψmdµ
∗
n ≤

∫
Ξ

Ψmdµ
∗
0.

Let m→∞, by monotone convergence limn→∞
∫

Ξ
Ψndµ

∗
n ≤

∫
Ξ

Ψdµ∗0 ≤ v0
P , which concludes the

proof.

We next consider the setting where Ξ is not compact. For any ε > 0, let Ξε ⊂Ξ be a compact set

such that ν(Ξ \Ξε)≤ ε. Set

νε :=
1Ξεν

ν(Ξε)
,

and let F ε
k be the marginal distribution of νε, and Ξεk be its support. Then the previous steps imply

that

sup
µ∈P(Ξε)

{∫
Ξε

Ψdµ : Wp(µ,ν
ε)≤ ρ, πk#µ= νεk,∀k

}
= inf

λ≥0
fk∈B(Ξεk)

{
λρp +

∑
k

∫
Ξk

fkF
ε
k

+

∫
Ξ

sup
ξ∈Ξε

[
Ψ(ξ)−

∑
k

fk(ξk)−λdpF (ξ, ζ)
]
ν(dζ)

}
=:vε.

Observe that for any feasible solution (λ,{fk}k) of the dual problem above, the growth condition on

Ψ implies that there exists sufficiently large M such that (λ,{fk +M1Ξ\Ξε}k) is a feasible solution

to the original dual problem with the same objective value. Therefore, if we denote by vP and vD

the optimal value of the original primal and dual problem respectively, then vε ≥ vD ≥ vP . Let νε

be an optimal primal solution of the primal problem above. Define

µ̃ε := ν(Ξε)µε +1Ξ\Ξεν.

Then it holds that

πk#µ̃
ε = ν(Ξε)πk#µ

ε +1Ξ\Ξεπ
k
#ν = 1ΞεFk +1Ξ\ΞεFk = Fk.

Moreover, we have that

Wp(µ̃
ε,ν)≤Wp(ν(Ξε)µε,1Ξεν) = ν(Ξε)Wp(µ

ε,1Ξεν
ε)≤ ν(Ξε)x≤ x,
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Hence µ̃ε is feasible to the original primal problem. In addition,∫
Ξ

Ψdµ̃ε =ν(Ξε)

∫
Ξε

Ψdµε +

∫
Ξ\Ξε

Ψdν = ν(Ξε)vε +

∫
Ξ\Ξε

Ψdν.

Letting ε→ 0, we obtain that vP ≥ vD. Therefore, up to a subsequence, µ̃ε converges to µ̃, and the

analysis above shows that µ̃ is primal optimal and vP = vD. �

We finally prove the measurability of the integrand involved in the dual problem. Denote by

(Ξ,Bν(Ξ),ν) the completion of measure space (Ξ,B(Ξ),ν) (see, e.g., Lemma 1.25 in Kallenberg

(2006)). A function f : Rm × Ξ→ R̄ is called a normal integrand, if the associated epigraphical

multifunction ζ 7→ epi f(·, ζ) is closed valued and measurable.

Lemma 4. Let fk ∈B(Ξk). The function Φ :R×Ξ→R defined by

Φ(λ, ζ) := sup
ξ∈Ξ

[
Ψ(ξ)−

∑
k

fk(ξk)−λdpF (ξ, ζ)
]

is a normal integrand with respect to B(R)⊗Bν(Ξ).

Proof of Lemma 4. Define a function g : Ξ×R×R×Ξ→ R̄ by

g(ξ,λ, ζ) = Ψ(ξ)−
∑
k

fk(ξk)−λdpF (ξ, ζ).

Then for every ζ ∈ Ξ, −g(·, ·, ·, ζ) is lower semi-continuous, thus g is B(Ξ) ⊗ B(R) ⊗ Bν(Ξ)-

measurable. Hence by joint measurability criterion (see, e.g., Corollary 14.34 in Rockafellar and

Wets (2009)), g is a normal integrand, thereby the function Φ is also a normal integrand (Theorem

7.38 in Shapiro et al. (2009)). �

Endnotes

1. A function is supermodular, if

Ψx(ξ1, . . . , ξk, . . . , ξk′ , . . . , ξK) + Ψx(ξ1, . . . , ξk + ε, . . . , ξk′ + δ, . . . , ξK)

≥ Ψx(ξ1, . . . , ξk + ε, . . . , ξk′ , . . . , ξK) + Ψx(ξ1, . . . , ξk, . . . , ξk′ + δ, . . . , ξK)

for all ξ ∈Ξ, 1≤ k < k′ ≤K and ε, δ > 0

2. A distribution is comonotonic if its cumulative distribution function satisfies

Fµ∗(ξ1, . . . , ξK) = min
1≤k≤K

Fµ∗

k (ξk), ∀ ξ.

3. Some authors consider KL ball centered at some nominal distribution instead of nominal

copula. Nevertheless, it can be easily shown that the Kullback-Leibler divergence between two

distributions equals the Kullback-Leibler divergence between their associated copulas (cf. Sec 10.4

in Schmid et al. (2010).



23

References

Agrawal S, Ding Y, Saberi A, Ye Y (2012) Price of correlations in stochastic optimization. Operations

Research 60(1):150–162.

Aldrovandi R, Pereira JG (1995) An introduction to geometrical physics (World scientific).
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