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Abstract

This paper assesses different econometric approaches to working with count-based
outcome variables and other outcomes with similar distributions, which are increas-
ingly common in corporate finance applications. We demonstrate that the common
practice of estimating linear regressions of the log of 1 plus the outcome produces es-
timates with no natural interpretation that can have the wrong sign in expectation.
In contrast, a simple fixed-effects Poisson model produces consistent and reasonably
efficient estimates under more general conditions than commonly assumed. We also
show through replication of existing papers that economic conclusions can be highly
sensitive to the regression model employed.
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Researchers in finance routinely use regression analysis to model count-based outcomes

such and other count-like outcomes that are inherently limited to non-negative values. Ex-

amples include number of corporate patents granted, tons of toxic emissions, number of

workplace injuries, and miles between cities in which two businesses are located. Outcomes

of this type often have highly right-skewed distributions with masses of values at zero – dis-

tributional features that present special challenges for regression analysis because they make

simple linear regression inefficient. Aware of these challenges, researchers employ a variety

of approaches to address them. However, some commonly used approaches lack econometric

foundations and produce estimates with unclear interpretations.

In this paper, we use econometric analysis and simulations to assess commonly-used

regression models of count and count-like outcomes. We also replicate data sets analyzed in

six top-finance journal publications featuring two such outcomes and compare estimates from

different regression models. Our main takeaway is that Poisson regression delivers estimates

with natural interpretations, requires no special assumptions for valid estimation, typically

fits outcomes of this type well, and, crucially for use in corporate finance applications,

admits separable group fixed effects. In contrast, the common practice of estimating linear

regressions of the log of one plus the outcome (“log1plus” regression) produces estimates that

lack meaningful interpretation and suffer from inherent biases that can cause them to have

the wrong sign in expectation. While the interpretation of log1plus regression estimates may

not be pivotal for understanding a particular paper’s conclusions, our replication analysis

suggests that the choice between Poisson and log1plus regression typically has a larger effect

on estimates than omitting the most important control variable in real-world applications.

A common approach when working with skewed outcomes in general is to log-transform

the outcome variable and then estimate a linear regression of the transformed variable.

This log-linear regression model corresponds naturally to an underlying constant-elasticity

model, with regression coefficients conveniently interpretable as semi-elasticity estimates.
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However, Santos Silva and Tenreyro (2006) show that consistent estimation of a log-linear

regression model requires that the errors in the corresponding constant-elasticity model be

homoskedastic, an assumption that may not hold in practice. We extend their analysis to

show that heteroskedasticity in these errors can cause even the sign of a log-linear regression

coefficient to be wrong and that controlling for fixed effects can worsen the bias. We also

provide novel guidance on the direction and magnitude of the bias.

Log-linear regression may be practically infeasible when the outcome has a mass at zero

since the log of zero is undefined. Researchers in finance and other fields often solve this

problem by estimating log1plus regressions, which allow for the retention of observations

with zero-valued outcomes. 69% of respondents to a recent EconTwitter poll reported that

they have either estimated log1plus regressions or used a similar approach involving an in-

verse hyperbolic sine (IHS) transformation of the outcome.1 While these approaches allow

for retention of observations with zero-valued outcomes, they do not map into natural eco-

nomic models, and the economic interpretation and econometric properties of the resulting

estimators are not well-understood.

We first show that no economically-meaningful quantities can be recovered from log1plus

regression coefficients. We then identify two sources of bias likely to be endemic in log1plus

regression. First, the homoskedastic constant-elasticity error requirement for consistent es-

timation of a log-linear regression gives way to a requirement that model errors exhibit a

particular and implausible form of heteroskedasticity. Second, the combination of nonlinear-

ities in the relationship between the outcome and covariates and any nonlinear relationships

among covariates can bias estimates of average effects. While this second problem is not

specific to log1plus regression, any reasonable economic model of the outcome will produce

a nonlinear relationship between the log of one plus the outcome and covariates, making

the problem endemic in log1plus regression. Simulations show that log1plus regression co-
1https://twitter.com/prof_cookson/status/1462892660545372163
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efficients can easily have the wrong sign in expectation, making it difficult to infer even the

direction of a relationship reliably from these coefficients. The same problems arise with the

IHS transformation.

An alternative to estimating a linear regression of a transformed outcome is to estimate

a generalized linear model (GLM) such as the Poisson model. Like log-linear regression, a

Poisson regression corresponds to an underlying constant-elasticity model. However, a Pois-

son regression can accommodate outcomes with a value of zero and requires no assumptions

about higher order model error moments for consistent estimation. While deviation from the

well-known conditional mean-variance equality restriction reduces the efficiency of Poisson

estimates, it does not induce any bias. Of practical importance, Poisson regression admits

separable group fixed effects. While other candidate regression models such as the negative

binomial model, zero-inflated models, or the Type I Tobit model may produce more efficient

estimates than a Poisson model in certain circumstances, they do not admit separable fixed

effects, which is a major limitation in corporate finance applications.2 While Poisson regres-

sion explicitly models count data, it produces valid semi-elasticity estimates and standard

errors even when the outcome variable is continuous (Santos Silva and Tenreyro, 2011).3

It is worth noting that the fixed effects in a Poisson regression are multiplicative rather

than additive. An additive fixed effect affects only the mean of the outcome, but a multi-

plicative fixed effect scales both the mean and standard deviation of the outcome. While

multiplicative fixed effects may seem nonstandard, log-linearized regression also implicitly

assumes a multiplicative fixed effects structure. Furthermore, multiplicative fixed effects are

more natural when working with the types of outcomes that are the focus of this paper. For
2Researchers sometimes include group dummy variables as covariates when estimating one of these models.

However, doing so gives rise to an incidental parameters problem that results in biased coefficient estimates
(Lancaster, 2000). The STATA xtnbreg module allows for group-level variation in the conditional variance
of the outcome but not in the conditional mean, which is generally the object of concern.

3Advances in graph theory and computational matrix algebra have produced fast, efficient algorithms
for implementing Poisson regression models with multiple fixed effects, including the ppmlhdfe package for
Stata (Correia et al., 2020) and feglm package for R.
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example, the year-to-year standard deviation in number of patents granted is likely to be

approximately 10 times as large for a firm that averages 10 patents per year as it is for a

firm that averages 1 patent per year.

To assess the practical relevance of our analysis, we replicate data sets from six papers

published in top finance journals that together study two count or count-like outcomes -

firm-year corporate patents granted and facility-year toxic release volumes.4 We choose one

regression specification in the main table of each paper, estimate log1plus and Poisson regres-

sions based on that specification, and compare the coefficients of interest. These coefficients

differ markedly in all six cases and have different signs in three of the six, suggesting that

inference about even the direction of a relationship is sensitive to regression model choice

in real-world applications. For context, in all five cases involving regressions with control

variables, switching from a log1plus to Poisson regression results in a larger change in the

coefficient of interest than omitting the most important control variable, generally by a wide

margin.

A handful of existing papers in different fields have analyzed the properties of estimators

that are commonly-used when working with outcome variables limited to non-negative val-

ues. In early work, Cameron and Trivedi (1986) and Cameron and Trivedi (1996) explore

the properties of different Poisson and negative binomial estimators [see also Cameron and

Trivedi (2013) for a general discussion]. Santos Silva and Tenreyro (2006) show that log-

linear regression produces biased estimates in the context of gravity models of trade if errors

in the underlying constant elasticity model are heteroskedastic and that Poisson regression

avoids this problem. Santos Silva and Tenreyro (2011) show that Poisson models work well

even when the outcome variable is continuous or exhibits many zero values. King (1988) and

O’Hara and Kotze (2010) show that log1plus regression produces biased estimates, though
444 papers modeling firm-year corporate patent counts appeared in the Journal of Finance, Journal of

Financial Economics, or Review of Financial Studies between 2011 and 2020. Of these 44, 25 estimate
log1plus regressions, and 23 of those 25 use this approach exclusively.
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neither fully explores the underlying econometric causes or implications.

Our primary contribution to this literature is to identify specific sources of biases likely

endemic to log1plus regression and demonstrate that log1plus regression estimates typically

differ from Poisson regression estimates by more than the effect of omitting the most im-

portant control variable in real-world applications and often have the opposite sign. Thus,

the inherent deficiencies in log1plus regression are of practical importance to empirical re-

searchers. We also build on the analysis of Santos Silva and Tenreyro (2006) and others

by showing heteroskedasticity in model errors can cause traditional log-linear regression to

produce estimates with the wrong sign in expectation. While theory provides a strong prior

on the sign of coefficients in gravity models of trade, this is rarely the case in finance, mak-

ing concerns about correctly signing regression coefficients an important consideration in

finance. In addition, we provide guidance on the direction and magnitude of the bias in a

log-linearized model coefficient due to heteroskedasticity.

1 Econometrics

Financial economists typically conduct regression analysis to estimate the effect of a set

of covariates on an economically meaningful outcome variable. The validity and reliability

of the resulting estimates depend on the properties of the underlying regression model. This

section examines the properties of estimates from different regression models commonly used

when working with count and count-like outcomes. We present a series of takeaways based

on our analysis and that of existing work.
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1.1 Linear regression

One option when working with these outcomes is to simply estimate a classic linear

regression of the form

y = xβ + ε, (1)

where β is a vector of coefficients and ε is a mean-zero error. However, if y has a skewed

distribution, then ε is likely to have a skewed distribution as well, which reduces efficiency

and makes appropriate confidence intervals difficult to determine. We show in Section 2 that

the efficiency loss can be large.

1.2 Log-linear regression

One solution to this problem is to estimate a log-linear regression - that is, a linear

regression where log(y) is the dependent variable. The concavity of the log function reduces

skewness and hence can improve efficiency. Formally, log-linear regression takes the form

log(y) = xβ + ε. (2)

A log-linear regression relates y exponentially to a linear combination of covariates and

therefore implies an underlying constant-elasticity model, with coefficients interpreted as

semi-elasticity estimates. However, Santos Silva and Tenreyro (2006) show that the con-

sistency of log-linear regression estimates depends on the relationship between higher order

moments of the errors in the implied model and covariates.

Takeaway 1. Heteroskedasticity in the implied constant elasticity model can cause log-linear

regression estimates to be biased and inconsistent (Santos Silva and Tenreyro, 2006).

To see why this is the case, observe that E[y|x] = exβ in a constant elasticity model.
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Adding an error term yields the regression equation

y = exβ + ε′. (3)

Since log(y) = log(exβ + ε′) 6= xβ + log(ε′), (3) cannot readily be transformed into (2). A

more natural and useful formulation of the underlying model (Weber and Hawkins, 1971) is

y = exβη, (4)

where η is a multiplicative error. Observe that (3) and (4) are related by η = 1 + ε′

exβ .

Log-transforming (4) yields

log(y) = xβ + log(η). (5)

Consistent estimation of β requires that E[ε|x] = E[log(η)|x] = E[log(1 + ε′

exβ )|x] be

orthogonal to x. However, it is impossible to factor ε′ out of this expression even if ε′ is

independent of x because of the nonlinearity of the log function. Thus, orthogonality of an

additive error in the implied economic model to x is insufficient to ensure consistency.

Suppose instead that ε′ can be represented as ε′ = exβν, with ν independent of x. This

assumption implies that η = 1+ν. It follows that E[log(η)|x] = E[log(1+ν)|x] = E[log(1+

ν)] and thus that E[log(η)|x] is uncorrelated with x. Recall that exβ is the conditional mean

of y. So, consistent estimation of β in (5) requires that the standard deviation of ε′ scale

with the conditional mean of y. This condition is equivalent to assuming that η in (4) is

homoskedastic. It follows that heteroskedasticity in η - a plausible scenario in reality - can

cause the estimates from log-linear regression to be biased and inconsistent.

Santos Silva and Tenreyro (2006) show that heteroskedastic model errors can bias log-

linear regression estimates. However, they do not examine whether the bias can cause regres-

sion estimates to have the wrong sign rather than just the wrong magnitude. Santos Silva
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and Tenreyro (2006) consider log-linear regressions in the context of a gravity model of trade,

where negative semi-elasticities would be nonsensical and only the magnitude of the semi-

elasticities is in question. In corporate finance, we typically lack strong priors about the sign

of a relationship. In addition, Santos Silva and Tenreyro (2006) do not analyze the direction

of the bias in log-linear regressions due to heteroskedastic model error. Knowing the direc-

tion of the bias may be useful since this information allows estimates to be interpreted as

bounds. We extend the analysis of Santos Silva and Tenreyro (2006) by demonstrating that

this bias can cause log-linear regression estimates to have the wrong sign and by linking the

direction of the bias to the sign of the relationship between the variance of the model error

and a covariate.

Takeaway 2. Bias due to heteroskedastic model error can cause log-linear regression coeffi-

cients to have the wrong sign.

We illustrate this possibility with a bivariate example, which we also use in simulations

in Section 2. Suppose that y = exp(βx)η, where x normally distributed with mean 0 and

standard deviation σx and η is log-normally distributed with mean 1 and standard deviation

ση(x) = exp(δx) for constant δ. The parameter δ determines the degree of heteroskedasticity

in η and can be positive (errors “fanning out” with x) or negative (errors “funnelling in”

with x). We show in A that the bias in a log-linear regression coefficient on x in this case is

−δ/2. The bias as a proportion of the true coefficient β then is −δ/2β. If δ/β > 2, then the

bias is sufficient to cause the log-linear regression coefficient to have the wrong sign. This

analysis also sheds light on the direction of the bias.

Takeaway 3. All else equal, a positive (negative) relationship between the variance of the

error in the implied constant elasticity model and a covariate generally biases the log-linear

regression coefficient on that covariate downward (upward).

We derive this relationship more generally by borrowing the concept of second-order
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stochastic dominance from decision theory. From (5), the partial derivative of the conditional

expectation of log(y) with respect to covariate xj is

∂E[log(y)|x]
∂xj

= βj + ∂

∂xj
E[log(η)|x]. (6)

Let Fxj(η) denote the cumulative distribution of η for a given value of xj. Suppose, for any

pair xj1 and xj2 of values of xj satisfying xj2 > xj1, that E[η|xj1] = E[η|xj2] but that the

variance of η is smaller when xj = xj2 than when xj = xj1 in the sense of second-order

stochastic dominance – that is,
∫ z

0 [Fxj1(η) − Fxj2(η)]dη > 0 for all z, with strict inequality

for some z. Since log(η) is increasing and concave, ∂E[log(η)|x]
∂xj

> 0 by the definition of

second-order stochastic dominance. Thus, the second term on the right-hand side of (6) is

positive. As a result, log-linear regression will produce an upward-biased estimate of the

true βj. By the same argument, if the variance of η increases with xj in the sense of second-

order stochastic dominance, then ∂E[log(η)|x]
xj

< 0, and log-linear regression will produce a

downward-biased estimate of βj.

1.3 Log1plus regression

Count and count-like outcome variables often have a mass of values at zero. For example,

approximately 69% of Compustat firms are granted zero patents in a given year. Because

the logarithm of zero is undefined, estimating a traditional log-linear regression requires

excluding observations with zero-valued outcomes. The exclusion of these observations raises

concerns about efficiency and allows for estimation of only the intensive margin. Researchers

in finance frequently circumvent this problem by adding 1 (or some other positive constant)

to y before log-transforming. Doing so ensures that the transformed dependent variable is

defined for all possible values of y, including 0. The resulting “log1plus” regression equation
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is

log(1 + y) = xλ + φ. (7)

Coefficient λj on covariate xj estimates the semi-elasticity of 1 + y with respect to xj. It

might be tempting to conjecture that this semi-elasticity is the same as the semi-elasticity of

y with respect to xj (up to an added constant) since the constant added to y is invariant to x.

However, this conjecture ignores a Jensen’s inequality problem. In fact, log1plus regression

coefficients have no economically meaningful interpretation.

Takeaway 4. Log1plus regression coefficients are not interpretable as semi-elasticities of

the outcome variable, nor can any economically meaningful relationship between the outcome

variable and a covariate be recovered from a log1plus regression coefficient.

The coefficient λj on covariate xj in regression equation (7) has the following interpreta-

tion:

λj = 1
E[1 + y|x]

∂E[1 + y|x]
∂xj

= 1
1 + E[y|x]

∂E[y|x]
∂xj

6= 1
E[y|x]

∂E[y|x]
∂xj

= βj, (8)

where βj is the coefficient on covariate xj in the log-linear regression equation (5). The

relationship between the semi-elasticities of 1 + y and y is

λj = E[y|x]
1 + E[y|x]βj. (9)

Since E[y|x] is not observable and, indeed, the objective of regression analysis is typically

to characterize E[y|x], the semi-elasticity of y cannot be recovered from λj, nor apparently

can any other quantity of economic interest. When E[y|x] is large, λj ≈ βj, and log1plus

regression coefficient λj can be interpreted as an approximation of the semi-elasticity of y

with respect to xj. However, when E[y|x] is large, y is likely to be zero for few observations,

and thus the addition of the constant is unlikely necessary to begin with. In contrast, when
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E[y|x] is small, the difference between between λj and βj is large, and log1plus regression

coefficients provide poor approximations of meaningful semi-elasticities.

This deficiency of the log1plus regression approach makes it difficult to determine the

economic importance of a relationship. However, it is possible that a researcher is concerned

only about establishing the sign of a relationship and not about its economic magnitude.

We show next that log1plus regression is likely to be subject to two specific sources of bias

that can make inferring even the direction of a relationship difficult.

Takeaway 5. Log1plus regression is almost certain to suffer from two forms of bias that

make even the sign of a relationship difficult to infer from log1plus regression coefficients.

The first source of bias is almost certain to arise if there are any nonlinear relationships

among covariates. In general, the combination of nonlinear relationships among covariates

and between the dependent variable and covariates can cause bias, with mis-specification

of the relationship between the dependent variable and one covariate contaminating the

coefficients on other covariates. This problem is endemic in log1plus regression because any

plausible economic model of y would produce a nonlinear relationship between log(1 + y)

and covariates. For example, a constant elasticity model, which specifies a linear relationship

between log(y) and xj, produces a nonlinear relationship between log(1 + y) and xj.5 We

illustrate the intuition with a simple example.

Suppose that log(y) = β1x1+β2x2, with β1 = 1, β2 = 0, and x1 uniformly distributed over

[−4, 4].6 Let εx1 denote the error from a linear regression of log(1 + y) on x1, and consider

a linear regression of εx1 on x2. Note that the coefficient on x2 in the second regression is,

by construction, equivalent to the coefficient on x2 from a regression of log(1 + y) on x2,

controlling for x1.
5Even if the relationship between log(1 + y) and a covariate is nonlinear, a univariate log1plus regression

coefficient still represents a valid estimate of the average effect of the covariate on log(1 + y), though it is
unclear why this object would ever be of interest.

6We do not include an error term in y to make this illustration as simple as possible.
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Figure 1 illustrates several relationships from this exercise. Figure 1(a) plots log(1 + y)

against x1 along with a regression line. While a regression of log(y) on x1 has no error

by construction, a regression of log(1 + y) on x1 does, since log(1 + y) has a nonlinear

relationship with log(y). Figure 1(b) plots εx1 against x1 along with a regression line. The

slope of this line is zero because corr(εx1, x1) = 0 by assumption. However, even though

they are uncorrelated, εx1 and x1 are not independent – εx1 has a u-shaped relationship with

x1.

[Insert Figure 1]

Consider now three cases for the realizations of x2: (i) x2 independent of x1 and drawn

from a uniform distribution on [0, 1], (ii) x2 = x1, and (iii) x2 = x2
1. Figures 1(d), 1(e), and

1(f) plot εx1 against x2 along with regression lines for cases (i), (ii), and (iii), respectively.

The slope of the regression line is, correctly, zero in Figures 1(c) and 1(d). The former is

true because x2 is unrelated to both x1 and y by assumption. The latter is true because

corr(εx1, x2) = corr(εx1, x1) = 0, which would hold for any linear relationship between x2

and x1.

Figure 1(e) shows that εx1 is positively correlated with x2 when x2 = x2
1. Observe that

x2 is large when x1 is high or low and small when x1 is in an intermediate range of values.

Because εx1 is also large for high and low values of x1 and small for intermediate values of

x1, εx1 and x2 are indirectly positively correlated. So, the coefficient on x2 in a regression

of log(1 + y) on x1 and x2 will be positive, even though log(1 + y) is independent of x2

by assumption. Note that the coefficient on x1 may also be biased. More generally, any

nonlinear relationship between two covariates is almost certain to bias the coefficients in a

linear regression of log(1 + y) on these covariates.

The second reason that log1plus regression is almost certain to produce biased estimates is

that unbiased estimation requires an implausible assumption about the relationship between
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higher order model error moments and covariates. The closest reasonable economic model

to a log1plus regression is a constant elasticity model. Suppose then that (3) is the true

model – that is, y = exβ + ε′. Adding 1 to both sides yields 1 + y = exβ + ε1+, where

ε1+ = ε′ + 1. Writing the relationship in multiplicative form, we have 1 + y = exβη1+,

where η1+ = 1 + ε1+

exβ = 1 + ε′

exβ + 1
exβ . It is immediate that, unlike in the case of log-linear

regression, assuming that ε′ can be written as ε′ = exβν with ν independent of x does not

make E[log(η1+)|x] independent of x unless β = 0 for all non-constant coefficients. That

is, homoskedasticity in the multiplicative error in a conventional constant-elasticity model

is insufficient for consistent estimation of the log1plus model. Instead, what is required

for consistent estimation is that ε′ = exβν − 1, a form or heteroskedasticity unlikely to be

satisfied by any reasonable economic model.

As a final point, there is nothing special about the choice to add 1 before log-transforming.

Coefficients from the resulting regression are no more interpretable than coefficients from a

regression where a different positive constant is added to the outcome variable before log-

transforming. Consider the more general logcplus regression equation for constant c > 0

log(c+ y) = xλc + φc.

The jth coefficient in this regression estimates the semi-elasticity

λcj = 1
c+ E[y|x]

∂E[y|x]
∂xj

.

Observe that ∂λcj
∂c

= − 1
(c+E[y|x])2

∂E[y|x]
∂xj

. Thus, the coefficient on covariate j mechanically and

arbitrarily shrinks in magnitude as c increases.
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1.4 IHS regression

Researchers occasionally use a non-logarithmic concave transformation of a count or

count-like outcome variable to address concerns about skewness. The most commonly-used

of these is the inverse hyperbolic (IHS) transformation, sinh−1(y). It can easily be shown

that linear regression of an IHS-transformed outcome suffers from the same problems that

log1plus regressions do.

Takeaway 6. Takeaways 4 and 5 hold for linear regression of an IHS-transformed outcome

variable.

1.5 Poisson regression

We next consider Poisson regression as an alternative when working with a count or

count-like outcome variable. Poisson regression assumes that the dependent variable has a

Poisson distribution that depends on covariates, with density f(y|x) = exp(−µ(x))µ(x)y/y!,

where µ(x) = E[y|x] = exβ. Conditional expectation in the Poisson model takes the form

E[y|x] = exβ or, equivalently,

log(E[y|x]) = xβ. (10)

Poisson regression estimates have a number of desirable features.

Takeaway 7. Poisson regression produces estimates with valid semi-elasticity interpretations

and requires no assumptions about the relationship between higher-order model error moments

and covariates for consistent estimation.

A key difference between the Poisson and log-linear regression models is that Poisson re-

gression estimates (10), while log-linear regression estimates E[log(y)|x] = xβ. By Jensen’s

inequality, log(E[y|x]) 6= E[log(y)|x]. Heteroskedasticity does not bias estimates of (10)

because the conditional expectation is inside rather than outside the log function. Con-
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ceptually, the chief advantage of Poisson regression relative to log-linear regression is that it

applies an exponential model to relationships that are likely to be approximately exponential

rather than transforming the outcome to make the data fit a linear model.

Takeaway 8. Poisson regression imposes the restriction that the conditional mean and vari-

ance of the outcome are equal. Violation of this restriction reduces efficiency but does not

cause any bias.

Poisson regression does impose the restriction that E[y|x] = var(y|x). A common critique

of Poisson regression is that the conditional mean-variance equality assumption is often

violated in practice. In particular, the conditional variance is often larger than than the

conditional mean, a situation known as “overdispersion” (the less common converse is known

as “underdispersion”). Violations of this restriction reduce efficiency and make it important

to report robust standard errors. However, crucially, they do not bias point estimates, so

regression coefficients remain valid.7

Takeaway 9. Poisson regression admits separable group fixed effects, and even Poisson

models with high-dimensional fixed effects can now be estimated quickly and easily.

One feature of Poisson regression that is crucial for use in corporate finance applications

is that it admits separable group fixed effects. While computational limitations may have

limited the usefulness of fixed-effects Poisson regressions in the past, the combination of

improvements in computing power and innovations in sparse matrix reduction methods have

made even high-dimensional fixed effects Poisson models fast and easy to estimate. Two

packages for estimating high-dimensional fixed effects Poisson regressions are ppmlhdfe for

Stata (Correia et al., 2020) and glmdhfe for R (Hinz et al., 2019).
7Overdispersion occurs when the conditional variance of y exceeds its conditional mean. In many cases

where the unconditional mean of y exceeds its unconditional variance, conditioning on observables and,
especially, group fixed effects reduces the variance of y relative to the mean.
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Letting αi be the fixed effect for group i, the fixed-effects Poisson model conditional

expectation is:

E[y|x] = exp(αi + xβ) = exp(αi)exβ. (11)

Observe that, while the fixed effects in a linear model are additive, they are multiplicative

in a Poisson regression, as they are implicitly in a log-linear regression. This feature of a

Poisson model is generally desirable. Multiplicative fixed effects are likely to more accurately

capture the effect of any fixed group-level factors on a count or count-like outcome than an

additive fixed effect would. An additive fixed effect scales the mean of the outcome but not

its dispersion. However, the standard deviation of a count or count-like variable is likely to

scale with its mean. Thus, multiplicative fixed effects generally allow for better fit of the

data, increasing power.

Takeaway 10. Fixed-effects Poisson regression requires excluding any group for which the

outcome variable is zero for all observations. However, this exclusion is not a shortcoming of

Poisson regression, as these observations contain no information about regression coefficients

in a regression model where the fixed effects are multiplicative.

Fixed-effects Poisson regression does restrict the usable sample to groups for which the

outcome variable is non-zero for at least one observation, which can meaningfully shrink the

usable sample. For example, 219 of the 703 firms in the S&P 500 between 1990 and 2010

never patented during this period (Bellstam et al., 2021) and would thus be excluded in

a Poisson regression where the dependent variable is patent count. The omission of these

observations should not be thought of as a shortcoming in a fixed-effects Poisson model, and

their omission does not bias Poisson regression estimates. Rather, these observations simply

contain no information about regression coefficients in a model in which the fixed effects

are multiplicative. To see why, observe that one possible explanation for why y = 0 for all

observations in group i is that exp(αi) = 0. However, if exp(αi) = 0, then E[y|x] = 0 ∗ exβ,
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and the β coefficients are unidentified. Observe that the same is true in any multiplicative

model. The lack of information in observations for groups where y = 0 for all observations

is an example of a more general phenomenon that Correia et al. (2021) term “statistical

separation.”8

Takeaway 11. Poisson regression produces valid estimates even when the outcome variable

is continuous, admits an exposure variable that acts as a scaling variable for the outcome,

and can be used in IV regression.

This takeaway highlights three other useful features of Poisson regression. The stan-

dard approach to estimating a Poisson regression is to compute the Poisson Pseudo Maxi-

mum Likelihood (PPML) estimator by numerically solving the series of first-order conditions

(Gourieroux et al., 1984):
n∑
i=1

[yi − exp(xiβ)]xi = 0. (12)

Examination of (12) shows that Poisson regression estimation imposes no restriction on the

domain of y other than requiring y ≥ 0 (Santos Silva and Tenreyro, 2011). Thus, Poisson

regression can be estimated even if the distribution of y is continuous. Poisson regression

allows for the specification of an “exposure” variable that captures the baseline exposure to

the Poisson arrival process underpinning the Poisson model and serves as a scaling variable.

When an exposure variable is specified, Poisson regression coefficients represent estimates of

the semi-elasticities of the rate of outcome per unit of exposure (e.g., workplace injuries per

employee). Finally, Poisson models can be used in instrumental variables (IV) regression

(Mullahy, 1997; Windmeijer and Santos Silva, 1997).9

8To validate the lack of bias due to the exclusion of these observations, we conduct a series of tests
using the replicated data sets that we describe in Section 3. Specifically, we add 0.01 to the outcome for one
randomly-chosen observation for any group (firm or establishment) for which the outcome variable is zero for
all observations. Doing so allows us to retain all observations for the group. In untabulated results, we find
that all coefficients from Poisson regressions estimated on this altered data set differ from those estimated
using the original data set by less than 0.5% in all cases, despite the substantial increase in reported sample
size.

9See Karolyi and Taboada (2015) for a finance application.
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1.6 Other count-based regression models

Other regression models that may be appropriate when working with count or count-like

outcome variables include the negative binomial model and zero-inflated Poisson and negative

binomial models. The negative binomial model has the same conditional expectation as the

Poisson model but relaxes the conditional mean-variance equality restriction by explicitly

modeling the variance as a separate gamma process that allows for overdispersion (but

not underdispersion). Because it relaxes the mean-variance equality restriction, negative

binomial regression may be more efficient than Poisson regression in some cases, especially

if the true variance is approximately gamma distributed. Zero-inflated models account for

the possibility that some observations are not exposed to the underlying process that drives

y by explicitly modeling the relationship between exposure and observables. These models

may be suitable when working with count data that has an excessive number of zero values,

though factors affecting exposure but not the outcome conditional on exposure are generally

difficult to identify. These alternative models have useful features. However, they all have

one critical limitation – they do not admit separable group fixed effects.

Takeaway 12. Negative binomial or zero-inflated Poisson/negative binomial regression may

be more efficient than Poisson regression but do not admit separable group fixed effects. They

are subject to an incidental parameters problem if group dummies are included as covariates,

potentially biasing all of the estimates.

In principle, one could include group dummy variables as additional covariates to ap-

proximate fixed effects, and researchers often do so when estimating these models. However,

the inclusion of such dummies gives rise to an incidental parameters problem that causes

the estimated coefficients on all variables to be biased and inconsistent (Lancaster, 2000).

Asymptotically, estimates converge to the true coefficient values as the number of obser-

vations per group becomes large but not as the number of groups becomes large. Since
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controlling for group fixed effects is often considered essential for identification in corporate

finance applications, the inability of these alternative models to readily accommodate fixed

effects limits their usefulness in the field.10

1.7 Rate regressions

Log-linear, log1plus, and inverse hyperbolic sine regression all decrease skewness in an

outcome variable by applying a concave transformation to it. Poisson and negative binomial

regressions both fit models that assume skewed outcomes. A third possibility is to scale the

outcome variable, since skewness in an outcome is often partly attributable to skewness in

scale. Let s denote a suitable scaling variable, and note that s is equivalent to an exposure

variable in the context of a Poisson regression. Then, the following linear regression estimates

the effect of a one-unit change in each covariate on the rate y/s:

y/s = xβ + ε (13)

As an example, Cohn and Wardlaw (2016) and Cohn et al. (2020) estimate linear regres-

sions of the number of workplace injuries at an establishment in a given year scaled by the

average number of employees working at the establishment in the year. In Section 2.3, we

compare the efficiency of Poisson regression with an exposure variable and OLS rate regres-

sion. Unfortunately, in most finance applications, a scaling variable that faithfully captures

exposure does not exist. In principle, a noisy measure of exposure (for example, total assets

as a measure of exposure for corporate patenting) can be used as a scaling variable. However,

any correlation between the noise in the scaling variable and the outcome would contaminate

estimation. It is also worth noting that one could, in principle, estimate a Poisson regression

of the rate y/s, though we have not seen this approach used previously. We show in the next
10The same issue applies to the Type I Tobit model.
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section that a Poisson regression of a rate dependent variable may produce marginally more

efficient estimates than a comparable linear regression of the rate.

2 Simulations

This section presents three simulation exercises that further illustrate the econometric

properties of different estimators when working with a skewed outcome limited to non-

negative values. The first simulation examines the degree of bias that heteroskedasticity

introduces into log-linear regression estimates and whether this bias can cause estimates to

have the wrong sign in expectation. The second simulation examines how the addition of

the constant in log1plus regression distorts estimates. The third simulation examines the

statistical power of estimates from different regression models under various conditions.

2.1 Log-linear Regressions and Heteroskedasticity

In the first set of simulations, we illustrate the effect of heteroskedasticity on log-linear

regression coefficients. While prior papers have demonstrated that heteroskedasticity can

create estimation bias in regressions with logged dependent variables (Manning and Mullahy,

2001; Santos Silva and Tenreyro, 2006), they have typically focused on inaccuracies in the

predicted value of y or in the quantitative relationships implied by regression coefficients.

However, researchers in finance may be more interested in determining the direction of a

relationship than in predicting outcomes or establishing quantitative relationships. In this

set of simulations, we demonstrate that the bias can cause estimates to have the wrong sign

in expectation, making them unreliable at estimating even the direction of a relationship.

We simulate data sets of observations (x, y), with y = exp(βx)η, where η is a mean-1

multiplicative error.11 We set β = 0.2 and evaluate the effects of heteroskedasticity in two
11We write y as a function of a multiplicative error for convenience, though, as we describe in Section 1.2,
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different scenarios - one where x is an i.i.d. random variable drawn from a standard normal

distribution truncated at the 1st and 99th percentiles, and one where x is an i.i.d. binary

random variable equal to 0 or 1 with equal probability. In both scenarios, we draw η from a

lognormal distribution with a mean of 1 and standard deviation of ση(x).12 For the scenario

where x is binary, we define σ0 = ση(0) and σ1 = ση(1). The error in this scenario is

homoskedastic only if σ1 = σ0.

Within each scenario, we evaluate three specific cases - one where the variance of the

error is positively related to x (fanning out), one where it is unrelated to x, and one where

it is negatively related to x (funnelling in). Thus, we evaluate six specific cases altogether.

For the continuous x scenario, we evaluate the following cases: (i) ση(x) = exp(x), (ii)

ση(x) = exp(1/2), and (iii) ση(x) = exp(−x). Note that we choose ση(x) = exp(1/2) for case

(ii) because E[ση(x)] = exp(1/2) in cases (i) and (iii), so doing so keeps the unconditional

variance the same across all three cases. For the binary x scenario, we evaluate the following

cases: (i) σ1 = 2 and σ0 = 1, (ii) σ1 = σ0 = 1.5, and (iii) σ1 = 1 and σ0 = 2.

For each of the six cases, we generate 10,000 simulated data sets of 5,000 observations.

We then estimate and compare Poisson and log-linear regressions using each data set. For

completeness, we also estimate log1plus, log0.1plus, log10plus, and IHS regressions, though,

as Section 1 makes clear, there is no reason to expect these regressions to recover the

true coefficient. We estimate all linear regressions throughout the paper, including those

with transformed outcome variables, using OLS. For each regression coefficient, we compute

White-corrected robust standard errors. Finally, we compute the mean coefficient and stan-

dard error over the 10,000 simulations for each regression model in each of the six cases.

Table 1, Panel A reports these means.

[Insert Table 1]

we can recast the error as an additive mean-0 error term.
12In untabulated results, we generally find that the bias caused by heteroskedasticity is larger for errors

drawn from other distributions.
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The mean coefficient from Poisson regression is approximately 0.2 in all six cases. That

is, Poisson regression recovers the true model coefficients, on average, despite the presence of

heteroskedasticity. As expected, log-linear regressions also recover the true model coefficients

when the multiplicative error is homoskedastic (where ση = exp(1/2) in the continuous x

scenario and σ1 = σ0 = 1.5 in the binary x scenario). When ση = exp(x) (ση = exp(−x))

in the continuous x scenario or σ1 > σ0 (σ1 < σ0) in the binary x scenario, the log-linear

regression coefficient is less (greater) than the true parameter. The directions of the biases are

consistent with our conclusion in Section 1 that a positive (negative) relationship between

the variance of the error and a covariate generally downward (upward) biases log-linear

regression estimates.

In case (i) in both scenarios, where the variance of the error increases with x in the

simulations, the mean log-linear regression coefficient is negative, even though the true coef-

ficient is positive. That is, heteroskedasticity in the implied economic model error can cause

estimates to have the wrong sign in expectation. Similarly, if we assumed β = −0.2, then

log-linear regression coefficients can incorrectly have a positive sign in expectation in case

(iii), where the variance of the error decreases with x. Note that the bias in the continuous

x scenarios is exactly the magnitude predicted by the formula we provide in Section 1.2.

To understand the practical implications of these conclusions, we compare the simulated

data set from case (iii) of the continuous x scenario to a replicated corporate patent data

set based on Fang et al. (2014), which we describe and further analyze in Section 3. Figure

2(a) presents a scatterplot of log(y) against x based on simulated data from the continuous

outcome scenario where ση = exp(−x), with a sequence of bars depicting the range from

from -3 to +3 standard deviations of log(y) for different bins of x. Figure 2(b) presents a

scatterplot of residuals from a linear regression of the log of the outcome (patents granted)

on controls against the covariate of interest. This figure shows that the degree of funneling

in observed in the replicated data set is comparable to that from the simulated data.
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[Insert Figure 2]

Most regressions in corporate finance include group-level fixed effects such as firm fixed

effects. We show next that the inclusion of fixed effects in a log-linear regression can either

mitigate or exacerbate bias due to heteroskedasticity, depending on how much of the variation

in the outcome is at the group level. To do so, we extend the heteroskedastic error framework

above by specifying two components to the variance of the error term – one that is fixed at

the group level and one that varies within group.

Let i index group and it denote observation t within group i. We assume that xit = 0.5µi+

0.5νit, where µi and νit are i.i.d. random variables each drawn from a normal distribution

truncated at the 1st and 99th percentiles. We then assume that ση = exp(γµi + (1− γ)νit).

We examine five cases, each corresponding to a different value of γ ∈ [0, 1]. For each case,

we generate 10,000 data sets of 5,000 observations apiece, with 500 independent groups and

10 observations per group in each data set. For each simulation, we estimate Poisson and

log-linear regression models, each with and without group fixed effects. Panel B of Table 1

reports the mean coefficient and standard error across simulated data sets for each regression,

where we cluster standard errors at the group level.

As expected, Poisson regression without group fixed effects consistently estimates a mean

coefficient of approximately 0.2 – the true value – in all cases. Also as expected, log-linear

regression without group fixed effects generally results in a negatively biased coefficient in all

cases since the variance of η increases with x by construction. However, when heteroskedas-

ticity is driven entirely by variation at the group level (γ = 1), the fixed-effects log-linear

regression recovers the true parameter value of 0.2, despite the heteroskedasticity in η. In

contrast, when most of the relationship between the variance of η and x reflects a relation-

ship with the within-group variation in x (γ < 1/2), then including group fixed effects in the

log-linear regression magnifies the bias.

To see why this is the case, observe that, in a constant-elasticity setup, a group fixed
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effect impacts both the level of the outcome and the variance of the error in the outcome

since the fixed effect and error are both multiplicative. Controlling for fixed effects reduces

(increases) bias due to heteroskedasticity if it removes proportionately more (less) of the

variation driving the relationship between the variance of the error in y and x than it does

the variation driving the relationship between the level of y and x. Controlling for fixed

effects removes exactly half of the variation driving the relationship between the level of y

and x by construction. If γ > 1/2, then controlling for fixed effects removes more than half

of the variation driving the relationship between the variance of the error in y and x and

therefore decreases bias due to heteroskedasticity. If γ < 1/2, then controlling for fixed effects

removes less than half of this variation and therefore increases bias due to heteroskedasticity.

2.2 The effect of adding the constant in log1plus regression

As we demonstrate in Section 1, the addition of the constant in a log1plus regression

causes two problems. First, estimates of the semi-elasticity of 1+y lack meaningful interpre-

tation. Second, nonlinearities introduced into the relationship between the logged dependent

variable and covariates by the addition of the constant may result in biased estimates of this

semi-elasticity if covariates are nonlinearly related to each other. Our second set of simula-

tions examines the extent to which these problems make it difficult to learn about the true

relationship between the outcome variable and covariates using log1plus regression.

We simulate data sets of observations (x1, x2, y), with y = kexp(β1x1 + β2x2), where k

is a positive constant, β1 = 1, and β2 = −0.1. We do not include an error term in order to

isolate the effect of adding a constant to log1plus regression coefficients from the effect of the

relationships between the variance of the error and covariates that arises in any reasonable

underlying model. The k parameter scales the conditional mean, which may be important for

the quality of estimates produced by log1plus regression since the relationship between log(y)

and log(1 + y) becomes approximately linear at higher values of y. For each observation,
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we draw the value of x1 from a standard normal distribution. We analyze three different

specifications for x2: (i) x2 drawn from an independent standard normal distribution, (ii)

x2 = .5x1 + .5z, where z is drawn from an independent standard normal distribution, and

(iii) x2 = max{x1, 0}. The second specification makes x2 a linear function of x1, while the

third makes x2 a nonlinear function of x1.

We simulate six data sets of 5,000 observations each – one for each combination of k =

1, 10 and specification for x2. Because there is no sampling error in our simulated data,

we only need one data set for each combination. For each of the six simulated data sets,

we estimate Poisson, log-linear, log1plus, log0.1plus, log10plus, and inverse hyperbolic sine

(IHS) regressions of y on x1 and x2 plus a constant. Table 2 presents the regression results.

[Insert Table 2]

Panels A, B, and C report results for cases (i), (ii), and (iii), respectively. Each panel

shows results for the cases where k = 1 on the left and k = 10 on the right. Poisson and

log-linear regression both recover the true values of β1 and β2 in all three cases. Panels A

and B show that log1plus regression produces coefficients with the correct sign but incorrect

magnitudes when x2 is independent of x1 or linear in x1. However, in Panel C, where x2

is a nonlinear function of x1, the estimated coefficient β2 is positive while the true value is

negative. Thus, it appears that the bias in log1plus regression due to nonlinearities among

covariates that we describe in Section 1 can cause coefficients to have the incorrect sign,

even absent sampling error. As a result, a researcher estimating a log1plus regression using

this simulated data would conclude that x2 has a positive effect on y, while the true effect

is negative.

Log1plus, log0.1plus, and log10plus regressions all yield sharply different coefficients on

both x1 and x2. While expected and purely mechanical, the sensitivity of the coefficients to

a purely arbitrary choice of constant highlights the lack of meaning in logcplus regressions in
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general.13 The coefficient on x2 in the IHS regression also has the wrong sign when x1 and

x2 are nonlinearly related. Finally, it is worth noting that the logcplus and IHS regression

coefficients are all closer to the true values when k is larger.

2.3 Efficiency of three unbiased estimators

In our final set of simulations, we explore the efficiency of different regression models

when confronted with count or count-like outcome variables. We evaluate three regression

models – linear, Poisson, and linear rate. These three models admit fixed effects and do not

require assumptions about higher order moments of model error for consistent estimation.

We conduct analysis for both count and continuous outcomes.

We simulate panels of observations (x1, x2, y). For each observation it, where i denotes a

group and t an observation within the group, we draw two random variables, µi and νit, each

from an independent standard normal distribution truncated at the 1st and 99th percentiles.

We then set x1,it = 0.5µi + 0.5νit. This structure produces a group fixed effect in xit. We

assume a panel structure so that we can evaluate the efficiency of different estimators in a

setting that approximates real-world applications in finance. We independently draw x2,it

from a normal distribution with a mean of 0 and a standard deviation of 2.

To produce count outcomes, we draw yit from a negative binomial distribution with condi-

tional mean E[yit|x] = exp(β1x1,it+x2,it) and overdispersion parameter αNB, which captures

deviations from the conditional mean-variance equality restriction imposed by Poisson re-

gression. Since it has a coefficient of 1, x2,it plays the role of an exposure variable, which is

suitable for scaling the outcome. To produce continuous outcomes that are skewed, limited

to non-negative values, and potentially have a mass at zero, we model yit as a continu-

ous variable using the mixture model approach of Santos Silva and Tenreyro (2011). In
13One potential approach to addressing the distortions caused by the added constant is to estimate the

value of the constant necessary to recover the correct relationship between the outcome and covariates. See
Bellego et al. (2021) for a clever implementation of this approach.
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this formulation, yit is the sum of mi random variables zit, where mi is a negative binomial-

distributed random variable with mean exp(β1x1,it+x2,it), and zit is a χ2
(1)-distributed random

variable. Again, x2,it plays the role of an exposure variable. We set the variance of mi to

E[mi|x] + bE[mi|x]2, which implies that V ar(yit|xit) = 3 ∗E[yit|xit] + b ∗E[yit|xit]2, where b

is a parameter that determines the conditional variance and hence degree of overdispersion

in the data.

For both the count and continuous outcomes, we evaluate 12 different cases, each a

different combination of β1 parameter and degree of overdispersion as captured by αNB or

b. We consider four values of β1: -2, -0.2, 0.2, and 2. For count (continuous) outcomes,

we consider three values of αNB (b): 0.001, 0.5, and 2. An αNB or b of 0.001 approximates

the case where there is no overdispersion. An αNB or b of 0.5 approximates the degree of

overdispersion in common skewed data sets such as firm-year corporate patents. An αNB or

b of 2 represents extreme overdispersion.

For each of the two outcome types (count and continuous) and each of the 12 cases we

evaluate, we generate 10,000 simulated panels of 5,000 observations. Each panel consists

of 500 groups, each with its own value of µi, with 10 observations per group. We then

estimate four regressions, each with group fixed effects, using each simulated panel. These

are linear and Poisson regression where the dependent variable is yit and linear and Poisson

regression where the dependent variable is yit/x2,it. We set x2,it as the exposure variable in

the Poisson regression where yit is the dependent variable. For each combination of outcome

type, overdispersion level, coefficient β1, and regression model, we compute two quantities.

The first is the percentage of the 10,000 simulated panels in which the regression coefficient

on x1 has the same sign as the true value of β1 and is statistically different from 0 at the 5%

level. The second is the root mean squared error (RMSE). Table 3 reports these quantities.

[Insert Table 3]
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Panel A reports results for count outcomes, while Panel B reports results for continuous

outcomes. Not surprisingly, linear regression where the dependent variable is yit exhibits the

least power in all scenarios. Poisson regression where yit is the dependent variable exhibits

more power than linear regression where yit/x2,it is the dependent variable when the degree

of overdispersion is moderate but not when the degree is large. In fact, linear rate regression

exhibits more power when overdispersion is large in the count outcome case (Panel A).

When yit is the dependent variable, Poisson regression fits the data substantially better

than linear regression, as indicated by the considerably smaller RMSEs. It is interesting to

note that, while Poisson and linear regression of the rate yit/x2,it have similar rejection rates,

Poisson regression again generally fits the data better than OLS regression. The superior

fit reflects the fact that, even after scaling by x2,it to compute a rate outcome, the outcome

remains significantly skewed.

3 Analysis of Six Real-World Finance Data Sets

In this section, we analyze six data sets with two different count or count-like outcome

variables, both of which exhibit masses at zero, that we replicate based on existing papers

in top finance journals. One of the outcome variables is a count variable, while the other is

continuous. We first illustrate the distributional properties of the outcome variables in these

data sets. We then compare estimates from log1plus and Poisson regressions using each data

set. To provide context for the magnitudes of the differences, we compare these differences to

the effect of excluding control variables from the regressions. Finally, we explore the causes

of differences between log1plus and Poisson regression estimates.
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3.1 Replicated Data Sets

We replicate data sets from four papers in the large innovation literature analyzing factors

driving the number of corporate patents granted to firms - those by Hirshleifer, Low, and

Teoh (2012), He and Tian (2013), Fang, Tian, and Tice (2014), and Amore, Schneider,

and Žaldokas (2013). These four papers collectively have 4,081 Google Scholar citations and

1,634 Web of Science citations as of the time of this writing. We also replicate data sets from

two papers in the newer literature analyzing factors driving firms’ volume of toxic releases

- those by Akey and Appel (2021) and Xu and Kim (2022). We choose these six papers

because they are influential and easy to replicate with publicly-available data sets.

The main patent data sets that finance researchers use are the NBER patent database,

the HBS patent database, and the KPSS patent database. We use these sources to replicate

the main data set in each of the four patent papers, following the data preparation outlined in

each paper as best we can, including any adjustments for patent truncation (Dass, Nanda,

and Xiao, 2017).14 We use data from the EPA’s Toxic Release Inventory (TRI) program

to replicate the main data set in each of the two toxic release papers, following the data

preparation outlined in the paper and the published replication packages. We begin by

analyzing the distributions of the two outcome variables - number of patents granted and tons

of toxic ground releases. Figure 3 presents histograms of firm-year observations of number

of patents granted and establishment-year observations of tons of toxic ground releases. We

top-code the data in both subfigures at 100 to make them easier to display. The figure shows

that patent counts and toxic releases are both highly skewed and are 0 for 69% and 87.6%

of observations, respectively.

[Insert Figure 3]
14See Lerner and Seru (2021) for an analysis of potential bias due to truncation methods when working

with patent data.
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3.2 Comparisons of Regressions Using Replicated Data Sets

For each of the six replicated data sets, we estimate one regression specification from

the paper using the data set.15 We choose the specification based on the ease of collecting

all of the necessary control variables. We then estimate log-linear, log1plus, and Poisson

regressions based on the chosen specification. In addition, we estimate a log1plus regression

using a subsample where we exclude observations belonging to firms/establishments for which

the outcome is zero in all years – the usable sample in Poisson regression.

Appendix Tables B1 through B6 present estimates from these regressions, with one table

for each replicated data set. Each table reproduces the actual estimates from the paper

as well as the estimates from the four regressions we estimate using the replicated data.

The first explanatory variable listed in each data set is the explanatory variable of interest.

Comparison of the estimates from each paper to our estimation of the same regression model

shows that we are able to approximately replicate the results in all six papers.16 For the sake

of brevity, we summarize the main findings in Table 4. That table reports, for each paper,

where the specification that we replicate is located in the paper, the outcome variable, the

explanatory variable of interest, the type of regression model that the paper uses to estimate

that specification, coefficients and standard errors for the explanatory variable of interest

from Poisson and log1plus regressions using the replicated data, and the ratio of the Poisson

and log1plus coefficients (if positive).

[Insert Table 4]

The log1plus and Poisson regression estimates for each replication exercise show sub-

stantial differences, suggesting that regression model choice has a first-order impact on the
15Of the six papers, four estimate log1plus regressions, one estimates a log-linear regression, and one

estimates a Poisson regression for the specification we choose.
16The replication is exact for the paper by Akey and Appel (2021) (Table B5) since we use the data set

from their replication package.
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conclusions one would reach from the regression analysis. The log1plus and Poisson re-

gression coefficients on the main variable of interest have opposite signs in three of the six

replication exercises. In two of these three, the opposing coefficients on the log1plus and

Poisson regression coefficients are of approximately the same magnitude. Of the three where

the signs agree, the Poisson regression estimate is 239%, 309%, and 233% larger than the

log1plus regression estimate.

3.3 Importance of regression model choice

To provide further insight into the importance of model choice when working with a count

or count-like outcome variable, we compare the impact of model choice on the coefficient of

interest to the impact of the choice of control variables to include in the regression using the

specification analysis approach of Simonsohn et al. (2020).17 Specifically, for each of the five

replicated data sets that include control variables, we estimate a series of log1plus regressions

covering every possible combination of control variables used in the replication specification,

where each regression represents a different combination of controls. We repeat this exercise

estimating Poisson regressions. So, if a data set contains n control variables, we generate a

series of 2n log1plus coefficients and a series of 2n corresponding Poisson coefficients.

Each panel in Figure 4 plots the series of log1plus and the series of Poisson coefficient

estimates in order from lowest to highest within each series for one replicated data set. Each

point represents a single estimate of the coefficient of interest. The log1plus coefficients are

depicted as blue diamonds, and the Poisson coefficients are depicted as grey diamonds. The

red diamond in each series represents the coefficient from the regression including all of the

control variables in the replicated specifications - i.e., the coefficients reported in the second

or fourth column of Tables B1 through B6.

[Insert Figure 4]
17We thank Tony Cookson for suggesting this analysis.
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Jumps within a series (log1plus or Poisson) tend to be small, suggesting that including

or excluding any individual control variable has little effect on the coefficient of interest.

However, there is virtually no overlap between the log1plus and Poisson coefficient series in

any of the panels. Thus, it appears that model choice generally has a much larger impact on

the coefficient of interest than even the most important control variable. We demonstrate

this more formally by comparing the absolute average difference between the coefficients of

interest from log1plus and Poisson regressions for all 2n specifications to the absolute average

difference between the coefficients of interest excluding each control variable one at a time.

Table 5 presents the results.

[Insert Table 5]

Panel A shows the absolute average difference in the coefficient of interest between the

log1plus and Poisson regressions for each replicated specification. Panels B and C show

the absolute average effect of omitting each control variable on the log1plus and Poisson

regression coefficient of interest, respectively. The table shows that changing from a log1plus

to Poisson regression model changes indeed changes the coefficient of interest by a greater

magnitude than excluding even the most important control variable in all five of the repli-

cation exercises that include control variables. In two cases, the former effect is an order of

magnitude greater than the latter.

3.4 Explaining differences in log1plus and Poisson coefficients

The results summarized in Table 4 suggest that log1plus and Poisson regression estimates

based on the same data set can differ substantially in both magnitude and sign. These

estimates could differ for three reasons. The first is the addition of the constant in the

log1plus regression. The second is the possibility that relationships between higher order

model moments and covariates could bias the log1plus regression coefficients. The third is the
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difference in the usable samples because of the necessary exclusion of firms/establishments

where the outcome is zero in every period in Poisson regression. To shed light on the

importance of each of these three possibilities, we estimate two auxiliary regressions using

each of the six replicated data sets that allow us to disaggregate the differences into three

parts.

To assess the effect of the addition of the constant in log1plus regression, we estimate

a log1plus regression where the dependent variable is the fitted values of y from a Poisson

regression, which we label ŷ, and where we restrict the sample to observations included in

the Poisson regression. The difference between these estimates and the Poisson regression

estimates captures the effect of changing the regression model, holding fixed the sample

and filtering out potential bias in log1plus regression due to relationships between higher

order error moments and covariates (by removing the noise completely).18 To assess the

effects of the Poisson sample restriction, we again substitute ŷ for y and estimate a log1plus

regression, this time without imposing the Poisson sample restriction. The difference between

the estimates with and without the sample restriction captures the effect of the sample

differences. Finally, the difference between log1plus estimates using the full sample where y

is the dependent variable and where ŷ is the dependent variable captures the effect of any

relationships between higher order model error moments and covariates.

Table 6 reports the coefficient of interest from the Poisson and log1plus regressions from

Table 4 in the first and fourth columns and as well as the two auxiliary regressions in the

second and third columns, with each panel representing a different replicated data set. Com-

paring the first and second columns, the effect of adding the constant in log1plus regression

appears to be large in four of the six replications (Panels A, B, C, and D), reversing the sign of

the coefficient of interest in two (Panels B and C). Comparing the second and third columns,
18Note that log-linear regression (no constant added) using ŷ as the dependent variable would produce

coefficients identical to those from Poisson regression if there were no 0-valued observations.
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the effect of sample differences due to the exclusion of observations for firms/establishments

for which the outcome variable is zero in every year appears generally to be small. Compar-

ing the third and fourth columns, the correlation behind higher order error moments and

covariates appears to account for substantial differences in four of the six replications (Pan-

els C, D, E, and F). Overall, then, both the addition of the constant in log1plus regression

and the effects of correlations between higher order error moments and covariates appear

to account for substantial differences between log1plus and Poisson regression estimates in

these six real-world applications.

[Insert Table 6]

4 Conclusion

This paper highlights issues surrounding model choice when analyzing count-variable

outcomes and other outcome variables inherently limited to non-negative values with skewed

distributions, an increasingly common scenario in corporate finance. Our analysis suggests

that researchers should rely primarily on Poisson regression. Poisson regression produces

unbiased and consistent estimates under standard exogeneity conditions, admits separable

fixed effects, and can now be estimated quickly, even with high-dimensional fixed effects. In

contrast, commonly-used linear regressions where the dependent variable is the log of 1 plus

the outcome produce estimates that have no economic meaning and can have the opposite

sign of the true relationship being estimated, even absent sampling error. Our replications of

data sets in six published papers modeling corporate patent counts and toxic release volumes

suggest that regression model choice is a first-order decision when working with outcomes

limited to non-negative values.
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Figure 1: Bias due to nonlinear covariate relationships in log1plus regression

This figure presents an example in which y = exp(β1x1 + β2x2), with β1 = 1, β2 = 0, and
x1 uniformly distributed on [−4, 4]. Each subfigure plots one variable against another and
the associated regression line. Subfigure (a) plots log(1 + y) against x1. The signed distance
between the true relationship curve in blue and the regression line in red represents the error
from a linear regression of log(1 + y) on x1. We denote this error εx1. Subfigure (b) plots
εx1 against x1. Subfigure (c) plots εx1 against x2, where x2 is uniformly distributed on [0, 1]
and independent of x1. Subfigure (d) plots εx1 against x2, where x2 is linearly related to x1
(x2 = x1). Subfigure (e) plots εx1 against x2, where x2 = x2

1.
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Figure 2: Dispersion and covariates: simulation vs real-world application

This figure presents scatter plots of simulated and real-world data. Subfigure (a) plots log(y)
against x for simulated data with 5,000 observations, where y = exβη, with x drawn from
a standard normal distribution truncated at the 1st and 99th percentiles and error η drawn
from a lognormal distribution with mean 1 and variance exp(−x). Subfigure (b) plots the
residuals from a linear regression of the log of patent count on control variables for the
specification in Table 2 column (1) of Fang et al. (2014) against ILLIQ, the covariate of
interest in that specification, using replicated data. We normalize ILLIQ by centering and
scaling by the sample standard deviation to make it directly comparable to the normally
distributed x variable in the simulated data depicted in Subfigure (a). Range plots are
overlaid for bins of width 0.2 showing a range of plus or minus 3 standard deviations around
the mean.
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σν = exp(−x)
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Figure 3: Histograms of common count datasets

This figure presents histograms for (a) the number of patents granted in a firm-year and (b)
tons of pollutants in a facility-year, both for Compustat firms. Each bar in the histogram
has a width of 1. We top-code each variable at 100 to make the figure easier to read. Hence,
the left-most bar represents the percent of observations with 0 patents or tons of pollutants,
and the right-most bar represents the percent of observations with more than 99 patents or
tons of pollutants.
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Figure 4: Specification Curves

This figure implements the specification curve analysis of Simonsohn et al. (2020) to examine
the degree to which log1plus and Poisson regressions yield different coefficient estimates. For
each replicated data set, we estimate a set of log1plus regressions covering every possible
combination of control variables used in the replicated specification, where each regression
represents a different combination of controls. We repeat this exercise estimating Poisson
regressions. In each subfigure, log1plus estimates are plotted in blue, Poisson estimates are
plotted in grey, and estimates from the specifications where all controls are included are
plotted in red.
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Table 1: Heteroskedasticity simulation
This table presents results from regressions based on simulated data sets in which we introduce various forms of heteroskedas-
ticity. Each simulation involves 10,000 simulated data sets of 5,000 observations (x, y) each, with y = exp(βx)η, where η is a
lognormally distributed error with mean 1 and standard deviation ση(x) and β = 0.2. Panel A presents the mean coefficient
and standard error for Poisson, log-linear, log1plus, log0.1plus, log10plus and Inverse Hyperbolic Sine (IHS) regressions of y on
x plus a constant in two scenarios - one where x is continuous variable drawn from a standard normal distribution truncated at
the 1st and 99th percentiles and one where x is a binary variable drawn from a Bernoulli distribution with p = .5. The table
displays three cases for each of these two scenarios involving different values of ση(x). Panel B presents results using simulated
data sets where we introduce a panel structure. We simulate this data as a balanced panel of 500 individuals (i) and 10 time
units (t). The variable x1,it is composed of a fixed part µi and a time-varying part νit such that xit = 0.5µi + 0.5νit. The
standard deviation of the error is given by ση = exp (γµ1 + (1− γ)νit), where γ is a parameter reflecting the importance of the
fixed component in the dispersion of the error.

Panel A: Comparisons of different estimators with heteroskedastic model errors

Continuous x

ση = exp(x) exp(1/2) exp(−x)

Coef(x) Bias Coef(x) Bias Coef(x) Bias

Poisson 0.199 −0.5% 0.200 0.0% 0.201 0.5%
Log-linear −0.300 −250.0% 0.200 0.0% 0.700 250.0%
Log1plus −0.017 −108.5% 0.075 −62.5% 0.171 −14.5%
Log0.1plus −0.164 −182.0% 0.158 −21.0% 0.473 136.5%
Log10plus 0.008 −96.0% 0.016 −92.0% 0.023 −88.5%
IHS −0.020 −110.0% 0.098 −51.0% 0.229 14.5%

Binary x

ση = 1 if x = 0
2 if x = 1 1.5 2 if x = 0

1 if x = 1

Coef(x) Bias Coef(x) Bias Coef(x) Bias

Poisson 0.200 0.0% 0.200 0.0% 0.201 0.5%
Log-linear −0.258 −229.0% 0.200 0.0% 0.659 229.5%
Log1plus −0.015 −107.5% 0.078 −61.0% 0.178 −11.0%
Log0.1plus −0.153 −176.5% 0.161 −19.5% 0.481 140.5%
Log10plus 0.010 −95.0% 0.017 −91.5% 0.025 −87.5%
IHS −0.021 −110.5% 0.103 −48.5% 0.237 18.5%

Panel B: Heteroskedasticity in model errors and fixed effects

Estimator: Poisson Poisson FE Log-linear Log-linear FE

Coef(x) Bias Coef(x) Bias Coef(x) Bias Coef(x) Bias

γ = 100% 0.199 −0.5% 0.200 0.0% −0.299 −249.5% 0.200 0.0%
γ = 75% 0.199 −0.5% 0.199 −0.5% −0.300 −250.0% −0.050 −125.0%
γ = 50% 0.199 −0.5% 0.198 −1.0% −0.300 −250.0% −0.300 −250.0%
γ = 25% 0.199 −0.5% 0.199 −0.5% −0.300 −250.0% −0.550 −375.0%
γ = 0% 0.199 −0.5% 0.197 −1.5% −0.301 −250.5% −0.800 −500.0%
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Table 2: Constant added simulation
This table presents results from regressions estimated on a simulated data set of 5,000 observations, where each observation
takes the form (x1, x2, y), with y = kexp(β1x1 + β2x2). We set β1 = 2 and β2 = −0.2. For each observation, we draw the value
of x1 from a standard normal distribution. For the analysis reported in Panel A, we draw the value of x2 from an independent
standard normal distribution. For the analysis reported in Panel B, we set x2 = 0.5x1 + 0.5z, where z is drawn from an
independent standard normal distribution. For the analysis reported in Panel C, we set x2 = max{x1, 0}. In each panel, we
set k = 1 in the left columns and k = 10 in the right columns. In each case, we report coefficients and the percentage bias in
each coefficient from Poisson, log-linear, log1plus, log0.1plus, log10plus, and Inverse Hyperbolic Sine (IHS) regressions of y on
x1 and x2 plus a constant.

Panel A: x1 and x2 independent

k = 1 k = 10

Coef(x1) Bias(x1) Coef(x2) Bias(x2) Coef(x1) Bias(x1) Coef(x2) Bias(x2)

Poisson 2.000 0.0% -0.200 0.0% 2.000 0.0% -0.200 0.0%
Log-linear 2.000 0.0% -0.200 0.0% 2.000 0.0% -0.200 0.0%
Log1plus 1.003 -49.9% -0.117 -41.7% 1.614 -19.3% -0.169 -15.5%
Log0.1plus 1.614 -19.3% -0.169 -15.5% 1.912 -4.4% -0.192 -3.9%
Log10plus 0.388 -80.6% -0.051 -74.3% 1.003 -49.9% -0.117 -41.7%
IHS 1.222 -38.9% -0.139 -30.5% 1.798 -10.1% -0.183 -8.4%

Panel B: x2 = 0.5 ∗ x1 + 0.5 ∗ z

k = 1 k = 10

Coef(x1) Bias(x1) Coef(x2) Bias(x2) Coef(x1) Bias(x1) Coef(x2) Bias(x2)

Poisson 2.000 0.0% -0.200 0.0% 2.000 0.0% -0.200 0.0%
Log-linear 2.000 0.0% -0.200 0.0% 2.000 0.0% -0.200 0.0%
Log1plus 1.016 -49.2% -0.128 -35.8% 1.634 -18.3% -0.174 -12.8%
Log0.1plus 1.634 -18.3% -0.174 -12.8% 1.921 -4.0% -0.193 -3.3%
Log10plus 0.384 -80.8% -0.060 -70.2% 1.016 -49.2% -0.128 -35.8%
IHS 1.243 -37.9% -0.151 -24.3% 1.818 -9.1% -0.186 -7.0%

Panel C: z2 = max{x1, 0}

k = 1 k = 10

Coef(x1) Bias(x1) Coef(x2) Bias(x2) Coef(x1) Bias(x1) Coef(x2) Bias(x2)

Poisson 2.000 0.0% -0.200 -0.0% 2.000 0.0% -0.200 -0.0%
Log-linear 2.000 0.0% -0.200 0.0% 2.000 0.0% -0.200 0.0%
Log1plus 0.302 -84.9% 1.209 -704.5% 1.167 -41.7% 0.693 -446.4%
Log0.1plus 1.167 -41.7% 0.693 -446.4% 1.785 -10.8% 0.054 -127.0%
Log10plus -0.039 -102.0% 0.721 -460.7% 0.302 -84.9% 1.209 -704.5%
IHS 0.435 -78.2% 1.368 -783.8% 1.486 -25.7% 0.423 -311.3%
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Table 3: Regression rejection rates and root mean square errors
This table presents results from a series of simulations that compare the rejection rates and root means square errors of
linear and Poisson regressions. We simulate a set of observations (x1,it, x2,it, y), where E[y|x] = exp(β1x1 + x2). The
data is simulated as a balanced panel of 500 groups, i, and 10 time units, t. The variable x1,it is composed of a fixed
part µi and a time-varying part νit such that x1,it = 0.5µi + 0.5νit, where both µi and νit are drawn from a standard
normal distribution truncated at the 1st and 99th percentiles. The variable x2 is drawn from a normal distribution with a
mean of 0 and a standard deviation of 2 and is independent of x1. We vary β1 in each set of simulations to be -2, -0.2, 0.2, and 2.

Panel A simulates discrete outcomes by using a negative binomial data generating process, with the overdispersion parameter,
αNB , set to 0.001 (negligible overdispersion), 0.5 (medium overdispersion), and 2 (high overdispersion). Panel B simulates
continuous outcomes using the mixture model of Santos Silva and Tenreyro (2011). In this formulation, yit is the sum of mi
random variables zit, where mi is a negative binomial-distributed random variable with mean exp(β1x1,it + x2,it), and zit
is a χ2

(1)-distributed random variable. We set the variance of mi to E[mi|x] + bE[mi|x]2, which implies that V ar(yit|xit) =
3∗E[yit|xit]+b∗E[yit|xit]2, where b is a parameter that determines the conditional variance and hence degree of overdispersion
in the data.

Panel A: Discrete

Overdispersion Low Medium High

β -2 -0.2 0.2 2 -2 -0.2 0.2 2 -2 -0.2 0.2 2

Rejection Rate:
Linear (y) 0.981 0.279 0.274 0.984 0.992 0.208 0.212 0.992 0.992 0.140 0.137 0.993
Poisson (y) 1.000 1.000 1.000 1.000 1.000 0.878 0.876 1.000 1.000 0.436 0.429 1.000

Linear (rate) 1.000 0.999 0.999 1.000 1.000 0.748 0.750 1.000 1.000 0.649 0.644 1.000
Poisson (rate) 1.000 0.999 0.999 1.000 1.000 0.750 0.754 1.000 1.000 0.652 0.649 1.000

Average Root Mean Square Error:
Linear (y) 164.522 42.169 42.360 162.373 154.996 49.126 49.616 154.364 153.171 61.871 61.351 153.610
Poisson (y) 0.223 0.345 0.345 0.222 0.561 0.636 0.635 0.568 1.107 1.101 1.101 1.104

Linear (rate) 3.973 1.268 1.268 3.977 5.809 2.613 2.596 5.835 8.162 2.884 2.911 8.136
Poisson (rate) 0.868 1.281 1.281 0.868 1.248 1.620 1.619 1.248 1.602 1.892 1.893 1.602

Panel B: Continuous

Overdispersion Low Medium High

β -2 -0.2 0.2 2 -2 -0.2 0.2 2 -2 -0.2 0.2 2

Rejection Rate:
Linear (y) 0.982 0.281 0.269 0.982 0.973 0.210 0.207 0.977 0.959 0.150 0.150 0.955
Poisson (y) 1.000 1.000 1.000 1.000 1.000 0.851 0.847 1.000 1.000 0.470 0.466 1.000

Linear (rate) 1.000 0.523 0.518 1.000 1.000 0.506 0.502 1.000 1.000 0.453 0.452 1.000
Poisson (rate) 1.000 0.535 0.529 1.000 1.000 0.520 0.515 1.000 1.000 0.470 0.470 1.000

Average Root Mean Square Error:
Linear (y) 163.427 42.313 42.500 167.192 185.063 49.813 49.876 186.745 222.000 63.031 63.609 228.433
Poisson (y) 0.400 0.605 0.605 0.398 0.596 0.777 0.776 0.596 0.867 1.032 1.030 0.864

Linear (rate) 6.740 3.824 3.770 6.649 7.532 3.941 3.863 7.493 9.493 4.076 4.033 9.397
Poisson (rate) 1.334 1.781 1.780 1.332 1.448 1.856 1.854 1.448 1.652 1.994 1.993 1.649
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Table 4: Replicated regression specifications
This table details the regression specifications that we analyze using replicated data sets from six papers and the outcomes from
Poisson and log1plus regression models. The first column reports the paper. The second column indicates the specification that
we analyze from the paper. The third column indicates the outcome variable. The fourth column indicates the explanatory
variable of interest. The fifth column indicates the model that the paper estimates. The sixth and seventh columns report our
estimates of the coefficients and standard errors for the explanatory variable of interest from Poisson and log1plus regressions,
respectively. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively, based on a two-tailed
t-test. The eighth column reports the ratio of the coefficients from the Poisson and log1plus regressions. A value of “Neg”
indicates that the ratio is negative (i.e., the coefficients have opposite signs).

Expl variable Model Our estimates
Paper Specification Outcome of interest in paper Poisson Log1plus Ratio

Hirshleifer et al. (2012) Table V col (3) Patents Overconfident log1plus 0.492*** 0.145** 3.39
CEO (options) (0.183) (0.065)

He and Tian (2013) Table 2 col (4) Patents lnCoverage Log1plus 0.026 -0.026*** Neg
(0.031) (0.010)

Fang et al. (2014) Table 2 col (1) Patents ILLIQ Log1plus -0.075 0.137*** Neg
(0.057) (0.020)

Amore et al. (2013) Table 3 col (4) Patents Interstate Poisson 0.1002** 0.0245 4.09
deregulation (0.0401) (0.0241)

Akey and Appel (2021) Table 3 col (1) Toxic releases Bestfoods Log1plus -0.050 0.047*** Neg
(0.138) (0.014)

Xu and Kim (2022) Table 2 col (4) Toxic releases HM Debt Log-linear 0.850** 0.255 3.33
(0.351) (0.175)
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Table 5: Importance of model choice vs control variables
This table compares differences in coefficients of interest between log1plus and Poisson regression estimates to changes in
coefficients of interest when different control variables are omitted. Specifically, for each of the five data sets that we replicate
that include control variables, we estimate a series of log1plus regressions covering every possible combination of control variables
used in the replication specification, where each regression represents a different combination of controls. We repeat this exercise
estimating Poisson regressions. Panel A reports the average absolute difference between the log1plus and Poisson regression
coefficients of interest across all regressions. Panel B reports the absolute average difference in log1plus regression coefficients of
interest for specifications that include and exclude the specified control variable. Panel C reports the absolute average difference
in Poisson regression coefficients of interest for specifications that include and exclude the specified control variable.

Panel A: Absolute average coefficient difference between log1plus and Poisson

Hirshleifer, Low, He and Tian (2013) Fang, Tian, Amore, Schneider, Xu and Kim (2021)
and Toeh (2012) and Tice (2014) and Žaldokas (2013)

0.310 0.049 0.179 0.062 0.726

Panel B: Absolute average log1plus coefficient difference including or excluding each control variable

Hirshleifer, Low, He and Tian (2013) Fang, Tian, Amore, Schneider, Xu and Kim (2021)
and Toeh (2012) and Tice (2014) and Žaldokas (2013)

Excluded |diff| Excluded |diff| Excluded |diff| Excluded |diff| Excluded |diff|

Log(1+delta) 0.125 lnAssets 0.018 LNMVt 0.126 Ln(R&D) 0.004 CAPEX/PPE 0.016
Log(sales) 0.078 lnAge 0.006 CAPTEXTAt 0.006 Ind. Trend 0.004 Tangible 0.014
Log(1+tenure) 0.034 Leverage 0.003 KZINDEXt 0.005 HIndex 0.002 Cash/Assets 0.007
Log(PPE/Emp) 0.031 ROA 0.002 LEVt 0.004 ROA 0.002 Log(assets) 0.006
Log(1+vega) 0.017 HIndex 0.002 PPETAt 0.004 Ln(K/L) 0.001 Tobin Q 0.000
Stock return 0.007 PPEAssets 0.001 Qt 0.003 Ln(sales) 0.001
Inst. holdings 0.005 HIndex2 0.001 ROAt 0.002 Cash 0.001

CapexAssets 0.001 RDTAt 0.002 Tangibility 0.000
Tobin Q 0.000 LNAGEt 0.001 Ln(age) 0.000
KZIndex 0.000 HINDEX2

t 0.000
RDAssets 0.000

Panel C: Absolute average Poisson coefficient difference including or excluding each control variable

Hirshleifer, Low, He and Tian (2013) Fang, Tian, Amore, Schneider, Xu and Kim (2021)
and Toeh (2012) and Tice (2014) and Žaldokas (2013)

Excluded |diff| Excluded |diff| Excluded |diff| Excluded |diff| Excluded |diff|

Log(1+delta) 0.249 lnAssets 0.016 LNMVt 0.115 Ln(K/L) 0.010 Log(assets) 0.261
Log(1+tenure) 0.097 lnAge 0.015 KZINDEXt 0.042 Ln(sales) 0.006 Tangible 0.109
Log(sales) 0.075 HIndex 0.004 LNAGEt 0.018 HIndex 0.004 CAPEX/PPE 0.037
Log(PPE/Emp) 0.066 PPEAssets 0.004 CAPTEXTAt 0.006 Ln(age) 0.003 Cash/Assets 0.028
Log(1+vega) 0.005 HIndex2 0.003 Qt 0.005 Ln(R&D) 0.002 Tobin Q 0.002
Stock return 0.004 Leverage 0.002 LEVt 0.003 ROA 0.002
Inst. holdings 0.020 ROA 0.002 PPETAt 0.002 Ind. Trend 0.001

Tobin Q 0.002 ROAt 0.002 Cash 0.001
KZIndex 0.001 HINDEX2

t 0.001 Tangibility 0.001
CapexAssets 0.001 RDTAt 0.000
RDAssets 0.000
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Table 6: Poisson and Log1plus Reconciliation
This table decomposes the differences in the Poisson and log1plus regression estimates reported in Tables B1 through B6. Each
of Panels A through D provides the decomposition for one paper. The first column reproduces the Poisson estimates from the
corresponding table. The second column presents estimates from log1plus regression, where we replace the dependent variable
y with the fitted value of y from the Poisson regression in the first column and limit the sample to the sample used for the
Poisson regression. The third column presents estimates from the same log1plus regression as the second column, but using the
full sample. The fourth column reproduces the log1plus regression (using the actual value of y) from the corresponding table.
***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively, based on a two-tailed t-test.

Panel A: Hirshleifer, Low, and Toeh (2012)

Model Poisson Log1plus (ŷ) Log1plus (ŷ) Log1plus
Sample Poisson Poisson Full Full

Overconfident CEO 0.492 0.263 0.261 0.145
Observations 6,326 6,326 6,482 6,482
Controls, FEs Yes Yes Yes Yes

Panel B: He and Tian (2013)

Model Poisson Log1plus (ŷ) Log1plus (ŷ) Log1plus
Sample Poisson Poisson Full Full

lnCoverage 0.026 -0.014 -0.025 -0.026
Observations 15,857 15,857 27,058 27,064
Controls, FEs Yes Yes Yes Yes

Panel C: Fang, Tian, and Tice (2014)

Model Poisson Log1plus (ŷ) Log1plus (ŷ) Log1plus
Sample Poisson Poisson Full Full

ILLIQt -0.075 0.028 0.024 0.137
Observations 15,970 15,970 39,000 39,000
Controls, FEs Yes Yes Yes Yes

Panel D: Amore, Schneider, and Žaldokas (2013)

Model Poisson Log1plus (ŷ) Log1plus (ŷ) Log1plus
Sample Poisson Poisson Full Full

Interstate dereg 0.100 0.050 0.047 0.025
Observations 14,920 14,920 18,424 18,424
Controls, FEs Yes Yes Yes Yes

Panel E: Akey and Appel (2021)

Model Poisson Log1plus (ŷ) Log1plus (ŷ) Log1plus
Sample Poisson Poisson Full Full

Bestfoods -0.050 -0.041 -0.047 0.047
Observations 182,454 182,454 501,259 501,259
Controls, FEs Yes Yes Yes Yes

Panel F: Xu and Kim (2021)

Model Poisson Log1plus (ŷ) Log1plus (ŷ) Log1plus
Sample Poisson Poisson Full Full

HM Debt 0.850 0.835 0.835 0.255
Observations 38,365 38,365 39,951 39,951
Controls, FEs Yes Yes Yes Yes
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Appendices

A Bias in log-linear regression due to heteroskedastic-

ity in example

Suppose that y = ηexp(βx), where x is normally distributed with mean 0 and variance σ2
x,

and η is log-normally distributed with mean 1 and standard deviation ση(x) = exp(δx) for

constant δ. Then, log(E[y|x]) = βx+log(E[η|x]) = βx+log(E[exp(ε)|x]), where ε is normally

distributed with mean µε(x) and standard deviation σε(x). In this case, log(E[y|x]) =

βx+ 1
2σ

2
ε (x). Assuming that η is log-normally distributed with mean 1 and standard deviation

ση(x) = exp(2δx) is equivalent to assuming µε(x) = log( 1√
1+exp(2δx)

) and σ2
ε (x) = log(1 +

exp(2δx)). Thus, we have:

log(E[y|x]) = βx+ 1
2 log(1 + exp(2δx)).

Taking the derivative with respect to x, we have:

dlog(E[y|x])
dx

= dE[y|x]
dx

1
E[y|x] = β + δexp(2δx)

1 + exp(2δx) ,

or, equivalently:

β = dE[y|x]
dx

1
E[y|x] −

δexp(2δx)
1 + exp(2δx) .
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Let f(x) denote the (normal) probability density function of x. Integrating over x and

denoting the expectation over x by Ex, we have

β = Ex

[
dE[y|x]
dx

1
E[y|x]

]
−
∫ ∞
−∞

δexp(2δx)
1 + exp(2δx)f(x)dx

= Ex

[
dE[y|x]
dx

1
E[y|x]

]
− δ

∫ ∞
−∞

[
g(x) + 1

2

]
f(x)dx

= Ex

[
dE[y|x]
dx

1
E[y|x]

]
− δ

∫ ∞
−∞

g(x)f(x)dx− 1
2δ
∫ ∞
−∞

f(x)dx

= Ex

[
dE[y|x]
dx

1
E[y|x]

]
− δ

∫ ∞
−∞

g(x)f(x)dx− 1
2δ, (14)

where g(x) = exp(2δx)
1+exp(2δx) −

1
2 . Observe that

g(−x) = exp(−2δx)
1 + exp(−2δx) −

1
2 = 1

1 + exp(2δx) −
1
2

=
(

1
1 + exp(2δx) − 1

)
+ 1

2 = − exp(2δx)
1 + exp(2δx) + 1

2 = −g(x),

so g(x) is odd. As a result, the second expression in (14) equals zero, and (14) simplifies to:

β = Ex

[
dE[y|x]
dx

1
E[y|x]

]
− 1

2δ. (15)

The log-linear regression model is log(y) = βx + log(η), which yields the relationship

E[log(y)|x] = βx. The objective in estimating a log-linear regression of y on x is to re-

cover an estimate of the semi-elasticity of y with respect to x, which is the first term on the

right-hand side of (15). Thus, the log-linear regression coefficient β is biased by −1
2δ due to

heteroskedasticity in η.
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B Full Replication Tables

Table B1: Replication: Hirshleifer, Low, and Teoh (2012)
This table presents a series of regressions based on the regression specification in Table V column (3) of Hirshleifer, Low, and
Teoh (2012). The unit of observation is a firm-year. The outcome variable is the number of patents a firm generates in a given
year. The first column reproduces the results from the original paper, which estimates a log1plus regression. The next three
columns present results from log1plus, log-linear, and Poisson regressions, based on our replication of the original data set. The
final column presents results from log1plus regression where the sample is restricted to the sample usable in Poisson regression.
Standard errors clustered at the firm level are presented below each coefficient. ***, **, and * indicate statistical significance
at the 1%, 5%, and 10% level, respectively, based on a two-tailed t-test.

Original Replication Replication Replication Replication
Log1plus Log1plus Log-Linear Poisson Log1plus

Poisson Sample

Overconfident CEO 0.111** 0.145** 0.288*** 0.492*** 0.155**
(0.053) (0.065) (0.091) (0.183) (0.066)

Log(sales) 0.640*** 0.402*** 0.518*** 0.818*** 0.406***
(0.051) (0.038) (0.042) (0.072) (0.038)

Log(PPE/Emp) 0.218*** 0.211*** 0.321*** 0.688*** 0.218***
(0.051) (0.053) (0.083) (0.175) (0.054)

Stock return 0.052*** 0.085*** 0.060 0.175*** 0.086***
(0.012) (0.023) (0.037) (0.058) (0.023)

Institutional holdings -0.113*** -0.503*** -0.467** -0.855** -0.518***
(0.030) (0.177) (0.237) (0.362) (0.179)

Log(1+tenure) -0.051** -0.058* -0.135*** 0.044 -0.062*
(0.025) (0.035) (0.046) (0.080) (0.035)

Log(1+delta) 0.014 0.034 0.110** -0.075 0.034
(0.036) (0.031) (0.044) (0.092) (0.031)

Log(1+vega) 0.218*** 0.161*** 0.208*** 0.284*** 0.165***
(0.039) (0.034) (0.046) (0.092) (0.034)

Observations 8,939 6,482 3,121 6,326 6,326
Adjusted R2 0.507 0.483 0.516 0.479
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Table B2: Replication of He and Tian (2013)
This table presents a series of regressions based on the regression specification in Table 2 column (4) of He and Tian (2013).
The unit of observation is a firm-year. The outcome variable is the number of patents a firm generates in a given year. The first
column reproduces the results from the original paper, which estimates a log1plus regression. The next three columns present
results from log1plus, log-linear, and Poisson regressions, based on our replication of the original data set. The final column
presents results from log1plus regression where the sample is restricted to the sample usable in Poisson regression. T-statistics
based on standard errors clustered at the firm level are presented below each coefficient. ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% level, respectively, based on a two-tailed t-test.

Original Replication Replication Replication Replication
Log1plus Log1plus Log-Linear Poisson Log1plus

Poisson Sample

lnCoverage -0.053*** -0.026*** 0.036* 0.026 0.000
(0.016) (0.010) (0.020) (0.031) (0.013)

lnAssets 0.050** 0.079*** 0.107*** 0.093 0.086***
(0.020) (0.022) (0.039) (0.062) (0.026)

RDAssets 0.100** 0.405*** 0.305 0.246 0.217
(0.048) (0.128) (0.204) (0.462) (0.154)

lnAge 0.180** 0.352*** 0.057 -0.215* 0.090*
(0.072) (0.046) (0.070) (0.111) (0.050)

ROA 0.693*** 0.239*** 0.035 0.204 0.170**
(0.200) (0.059) (0.112) (0.276) (0.076)

PPEAssets 0.330*** 0.455*** 0.790*** 0.901** 0.437***
(0.105) (0.135) (0.244) (0.358) (0.159)

Leverage -0.324*** -0.346*** -0.294** -0.369** -0.329***
(0.067) (0.069) (0.119) (0.179) (0.082)

CapexAssets -0.051 0.063 -0.221 -0.115 -0.037
(0.113) (0.171) (0.325) (0.487) (0.224)

TobinQ 0.019*** 0.029*** 0.012 0.009 0.021***
(0.005) (0.005) (0.007) (0.010) (0.005)

KZIndex -0.001** -0.001 -0.001 -0.002 -0.000
(0.000) (0.001) (0.001) (0.002) (0.001)

HIndex 0.226 0.504 -0.241 -1.786** 0.451
(0.163) (0.318) (0.507) (0.768) (0.357)

HIndex2 -0.128 -0.132 0.423 1.659** -0.051
(0.139) (0.264) (0.448) (0.774) (0.307)

Observations 25,860 27,064 8,263 15,857 15,857
R2 0.833 0.730 0.869 0.790
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Table B3: Replication: Fang, Tian, and Tice (2014)
This table presents a series of regressions based on the regression specification in Table 2 column (1) of Fang, Tian, and Tice
(2014). The unit of observation is a firm-year. The outcome variable is the number of patents a firm generates in a given
year. The first column reproduces the results from the original paper, which estimates a log1plus regression. The next three
columns present results from log1plus, log-linear, and Poisson regressions, based on our replication of the original data set. The
final column presents results from log1plus regression where the sample is restricted to the sample usable in Poisson regression.
Standard errors clustered at the firm level are presented below each coefficient. ***, **, and * indicate statistical significance
at the 1%, 5%, and 10% level, respectively, based on a two-tailed t-test.

Original Replication Replication Replication Replication
Log1plus Log1plus Log-Linear Poisson Log1plus

Poisson Sample

ILLIQt 0.141*** 0.137*** 0.014 -0.075 0.220***
(0.020) (0.020) (0.071) (0.057) (0.045)

LNMVt 0.160*** 0.149*** 0.343*** 0.165*** 0.315***
(0.018) (0.017) (0.057) (0.054) (0.037)

RDTAt 0.283*** 0.316*** 0.560** 0.948*** 0.240
(0.089) (0.091) (0.236) (0.345) (0.151)

ROAt -0.032 0.033 -0.266* -0.563* -0.130
(0.068) (0.028) (0.158) (0.307) (0.093)

PPETAt 0.287*** 0.052* 0.130 -0.072 0.093
(0.094) (0.031) (0.195) (0.246) (0.117)

LEVt -0.256*** -0.226*** 0.064 0.399 -0.337**
(0.075) (0.065) (0.214) (0.281) (0.149)

CAPTEXTAt 0.175 0.235*** 0.600 0.396 0.584*
(0.119) (0.085) (0.520) (0.574) (0.316)

HINDEXt 0.106 0.098 0.082 -0.300 0.097
(0.086) (0.083) (0.281) (0.418) (0.184)

HINDEX2
t -0.112 -0.094 0.191 0.589 0.032

(0.150) (0.141) (0.477) (0.873) (0.313)
Qt -0.006 0.001 -0.027*** -0.013 -0.015**

(0.007) (0.003) (0.008) (0.009) (0.006)
KZINDEXt -0.000* 0.001* 0.000 0.004 0.002

(0.000) (0.000) (0.008) (0.011) (0.005)
LNAGEt 0.168*** 0.267*** 0.252* 0.438** 0.285***

(0.035) (0.050) (0.151) (0.209) (0.108)
Observations 39,469 39,000 8,205 15,970 15,970
Adjusted R2 0.839 0.809 0.817 0.783
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Table B4: Replication: Amore, Schneider, and Žaldokas (2013)
This table presents a series of regressions based on the regression specification in Table 3 column (4) of Amore, Schneider, and
Žaldokas (2013). The unit of observation is a firm-year. The outcome variable is the number of patents a firm generates in
a given year. The first column reproduces the results from the original paper, which estimates a log-linear regression. The
next three columns present results from log1plus, log-linear, and Poisson regressions, based on our attempt replication of the
original data set. The final column presents results from log1plus regression where the sample is restricted to the sample usable
in Poisson regression. Standard errors clustered at the firm level are presented below each coefficient. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10% level, respectively, based on a two-tailed t-test.

Original Replication Replication Replication Replication
Poisson Log1plus Log-Linear Poisson Log1plus

Poisson Sample

Interstate dereg 0.1188*** 0.0245 0.0749 0.1002** 0.0289
(0.0397) (0.0241) (0.0515) (0.0401) (0.0274)

Ln (sales) 0.5360*** 0.1615*** 0.3271*** 0.6741*** 0.1946***
(0.0901) (0.0234) (0.0558) (0.0845) (0.0283)

Ln (K/L) 0.1969** 0.0148 0.0403 0.2734*** 0.0089
(0.0789) (0.0211) (0.0369) (0.0900) (0.0301)

Ln (R&D stock) 0.3264*** 0.0918*** 0.1289*** 0.2124*** 0.1082***
(0.1196) (0.0164) (0.0326) (0.0584) (0.0211)

Industry trends Yes Yes Yes Yes Yes
Additional Controls Yes Yes Yes Yes Yes
Observations 18,066 18,424 9,040 14,920 14,920
R2 0.877 0.867 0.862
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Table B5: Replication: Akey and Appel (2021)
This table presents a series of regressions based on the regression specification in Table 3 column (1) of Akey and Appel (2021).
The unit of observation is a chemical-facility-firm-year. The outcome variable is the pounds of ground pollutants a facility
releases in a given year. We use their replication kit to generate the data. The first column reproduces the results from the
original paper, which estimates a log1plus regression. The next three columns present results from log1plus, log-linear, and
Poisson regressions, based on the data provided by the authors in a replication kit. The final column presents results from
log1plus regression where the sample is restricted to the sample usable in Poisson regression. Standard errors clustered at the
circuit level are presented below each coefficient. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level,
respectively, based on a two-tailed t-test.

Original Replication Replication Replication Replication
Log1plus Log1plus Log-Linear Poisson Log1plus

Poisson Sample

Bestfoods 0.047*** 0.047*** 0.119 -0.050 0.118**
(0.014) (0.014) (0.078) (0.138) (0.046)

Observations 501,259 501,259 61,510 182,454 182,454
Adjusted R2 0.541 0.541 0.570 0.448
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Table B6: Replication: Xu and Kim (2021)
This table presents a series of regressions based on the regression specification in Table 2 column (4) of Xu and Kim (2022).
The unit of observation is a facility-year. The outcome variable is the amount of pollution a facility generates in a given year in
tons. The first column reproduces the results from the original paper, which estimates a log-linear regression. The next three
columns present results from log1plus, log-linear, and Poisson regressions, based on our replication of the original data set. The
final column presents results from log1plus regression where the sample is restricted to the sample usable in Poisson regression.
Standard errors clustered at the firm level are presented below each coefficient. ***, **, and * indicate statistical significance
at the 1%, 5%, and 10% level, respectively, based on a two-tailed t-test.

Original Replication Replication Replication Replication
Log-Linear Log1plus Log-Linear Poisson Log1plus

Poisson Sample

HM Debt 0.654* 0.255 0.533 0.850** 0.267
(0.360) (0.175) (0.344) (0.351) (0.179)

Log(assets) 0.039 0.057* 0.028 -0.143* 0.058*
(0.039) (0.032) (0.061) (0.083) (0.032)

Cash/Assets 0.194 0.002 0.013 0.085 0.003
(0.296) (0.022) (0.031) (0.256) (0.022)

CAPEX/PPE 0.008 0.051 0.083 -0.550* 0.051
(0.130) (0.051) (0.082) (0.304) (0.052)

Tangible 0.012 -0.123 -0.186 0.492 -0.118
(0.369) (0.075) (0.122) (0.343) (0.077)

Tobin Q 0.082** 0.020 0.017 0.109 0.021
(0.032) (0.017) (0.029) (0.116) (0.018)

Observations 36,562 39,951 35,835 38,365 38,365
R2 0.860 0.883 0.864 0.879
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