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Abstract

We consider a model in which a security issuer can manipulate information observed by a

credit rating agency (CRA). We show that stricter screening by the CRA can sometimes lead to

increased manipulation by the issuer. Accounting for the issuer’s behavior pulls optimal CRA

screening towards the extremes of laxness or stringency. Surprisingly, an improvement in prior

asset quality can result in more rating errors. In a two-period version of the model, stricter

screening can result in more short-run rating errors. Our results suggest complex interplay

between issuer and CRA behavior, complicating the evaluation of CRA policy effectiveness.
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1 Introduction

Investors depend on credit ratings to evaluate trillions of dollars of financial instruments, includ-

ing corporate and government bonds, mortgage-backed securities (MBS), and other asset-backed

securities. However, credit rating agencies (CRAs) may lack incentives to screen diligently since

issuers pay for ratings – a concern that many commentators have blamed for the failure of MBS

ratings precipitating the 2008 financial crisis. Less appreciated is the fact that an issuer produces

much of the information that a CRA uses to determine a rating, and the issuer has incentives to

manipulate this information in an effort to obtain a more favorable rating. Complicating matters is

the possibility that CRA policies and issuer incentives interact: The level of scrutiny applied by a

CRA may affect the issuer’s gains from manipulating the information on which the CRA relies, and

expectations about its effect on issuer behavior may in turn feed back into optimal CRA policy.

Thus, a comprehensive evaluation of the effectiveness of CRA diligence and the development of

effective vetting policies requires understanding the interaction between the behavior of a CRA

and an issuer.

In this paper, we construct a theoretical model to investigate the implications of an issuer’s

ability to manipulate information used to rate securities. An issuer is looking to sell a claim against

an asset that may be of high or low quality. An issuer with a low-quality asset can manipulate

the information observed by the CRA, increasing the likelihood of obtaining a high rating. The

CRA invests in screening technology that provides a noisy report about the issuer’s type. We show

that an increase in CRA screening can sometimes strengthen the issuer’s incentives to manipulate.

More generally, accounting for the issuer’s anticipated response causes the CRA to shade screening

towards extremes, further weakening optimal screening when it is lax and strengthening it when it

is strict. We also show that an improvement in the prior distribution of asset quality strengthens

incentives to manipulate to the extent that it can actually increase the incidence of inflated ratings.

Finally, we show in a two-period version of the model that more thorough screening can increase

rating errors in the short run even as it reduces errors in the long run, implying that patience is

required to assess the effectiveness of efforts to improve ratings accuracy.

The asset in our model takes the form of a project for which the issuer requires funding, and
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the claim issued takes the form of a security that the issuer sells to investors. The issuer privately

observes project quality, creating a role for a third-party certifier, the CRA. The CRA observes a

signal of project quality and relays that signal to investors through a rating. The accuracy of the

CRA’s rating depends on actions taken by both the issuer and the CRA. The CRA first chooses a

publicly-observable screening intensity at a private cost. If project quality is low, the issuer then

chooses an unobserved and costly manipulation intensity. The CRA subsequently observes either a

high or low signal of project quality and issues a rating, also high or low, consistent with its signal.1

If project quality is high, the CRA always observes a high signal. If it is low, the CRA may observe

either a high or low signal. A higher issuer manipulation intensity increases the probability that

the CRA is successfully fooled and incorrectly observes a high signal. Higher screening intensity

attenuates this effect, diminishing the effectiveness of manipulation.

The issuer’s expected payoff consists of the expected proceeds from selling a security (net of

a commission it pays the CRA) minus any manipulation cost. Given our assumptions about the

CRA’s signal, a low rating reveals that the project has low quality. A low-quality project has weakly

negative NPV, so investors only buy a security if it receives a high rating. Expected proceeds from

issuance then equal the product of the probability of receiving a high rating and the price of the

security conditional on a high rating. The CRA’s payoff is the commission it receives minus the

sum of its screening cost and a penalty if its rating turns out to be incorrect.

We begin by fixing the CRA’s screening intensity and investigating the issuer’s choice of ma-

nipulation intensity. Higher screening intensity reduces the probability that a low-quality project

obtains a high rating, which weakens incentives to manipulate. However, it also increases the

average quality, and hence the price, of a high-rated security, which strengthens incentives to ma-

nipulate. The probability that manipulation succeeds and the price of a high-rated security are

complements from the issuer’s standpoint. Therefore, the former effect dominates when the price

of a high-rated security is high, while the latter effect dominates when the probability that manip-

ulation succeeds is high. All else equal, manipulation intensity increases (decreases) with screening

intensity when the probability of a high-quality project, manipulation cost, and screening intensity

1We abstract away from intentional inflation of ratings by the CRA, in order to focus on the issuer’s strategic
behavior.
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are low (high), as these factors cause a relatively high (low) probability that manipulation suc-

ceeds and/or a relatively low (high) price for a high-rated security. The relationship with screening

intensity implies that manipulation intensity is an inverted U-shaped function of screening intensity.

Even though manipulation intensity can increase with better screening, the equilibrium inci-

dence of rating errors unambiguously decreases with screening intensity. On the other hand, rating

errors can increase with the ex ante probability that project quality is high. The direct effect of

an increase in this probability is to reduce rating errors, since high-quality projects are always

rated correctly. However, better ex ante project quality also increases the price of a high-rated

security, which strengthens incentives to manipulate. Indeed, it can do so to the point where the

incidence of erroneously-rated low-quality projects can actually increase. Intuitively, because the

pool of high-rated securities includes more high-quality projects, the pool can also absorb more

incorrectly-rated low-quality projects without a large drop in price, which would otherwise restrain

incentives to manipulate.

Next, we consider the CRA’s optimal screening intensity, which takes into account the effect

of screening on issuer behavior. When manipulation increases with screening intensity, the CRA

optimally reduces screening relative to the case where manipulation is held fixed to avoid exacer-

bating the issuer’s incentives to manipulate. Similarly, when manipulation intensity decreases with

screening intensity, the CRA optimally intensifies screening to further deter manipulation. Recall

that manipulation is generally an inverted U-shaped function of screening. Putting these facts

together, accounting for the effect of screening on issuer behavior tends to pull optimal screening

intensity towards the extremes, relaxing screening further when it would already optimally be lax

and further strengthening it when it would already be strict. To demonstrate these tendencies, we

consider an alternative version of the model where screening is unobserved and hence cannot affect

the issuer’s choice of manipulation intensity. An implication of our results is that lax screening does

not necessarily imply deference to sellers, nor does aggressive screening necessarily imply excessive

diligence.

Surprisingly, we find that optimal screening can increase with the prior probability that the

issuer’s project is high quality. This result obtains despite the fact that a lower probability of a
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low-quality project reduces the risk of a rating error. It follows directly from the fact that issuer

manipulation intensity can increase with the prior probability of a high quality project to the point

that the risk of a rating error actually increases. While the CRA increases screening intensity

in response to a higher prior probability of a high quality project in this case, it does not do so

sufficiently to result in a net decrease in the probability of a rating error because of an increasing

marginal cost of screening. Thus, rating errors can increase with the prior probability of a high

quality project, even accounting for the CRA’s optimal response.2

In addition, we show that optimal screening intensity increases with the CRA’s commission

rate. The probability that the issuer can sell a security backed by a low-quality project decreases

with screening intensity. Since the CRA only receives a commission when the issuer sells a security,

this reduced probability would appear on the surface to decrease the CRA’s payoff. However,

a lower probability of successful manipulation also increases the price of a high-rated security,

which increases the CRA’s commission if a security is issued. The CRA’s expected commission

is ultimately a fixed fraction of the value created by investment in equilibrium. When the low-

quality project is strictly negative NPV, this value, and hence the CRA’s commission, strictly

decreases with the probability that a low-quality project is funded. Thus, an increase in the CRA’s

commission rate strengthens incentives to screen.

Finally, we add a second period of issuance to the model in order to evaluate the dynamics of

manipulation and screening behavior. The issuer can either be an opportunistic or truthful type,

where only the former can manipulate, which creates issuer reputational concerns. The issuer’s type

is fixed across periods, but project quality is not. We assume that the CRA faces a convex cost

of adjusting screening intensity in the second period, capturing the idea that such a change may

require redesigning the underlying credit rating model. While rating errors always decrease with

screening intensity in the one-period model, we show that first-period rating errors can increase

with a higher first-period screening intensity in the two-period model. Intuitively, higher anticipated

future screening because of adjustment costs reduces the reputational benefit of not being revealed

2Note that the expected quality of a project receiving a high rating and hence being funded still improves in this
case. The improvement in the prior probability that the project is high quality more than overcomes the greater
incidence of low-quality projects receiving a high rating.
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as opportunistic, strengthening incentives to manipulate. This conclusion suggests that efforts to

reduce rating errors through more intense screening may produce disappointing results in the short

run, even if they are effective at reducing errors in the long run.

Our paper contributes most directly to the literature on the accuracy and usefulness of credit

ratings. Research following failures of credit ratings to predict defaults during the financial crisis

of 2008 focuses on CRA incentives to inflate ratings, either explicitly or by weakening screening,

in order to maximize fee income (Mathis et al., 2009; Bolton et al., 2012; Fulghieri et al., 2014;

Frenkel, 2015; Bouvard and Levy, 2018). While these concerns are certainly valid, our paper shifts

the focus to issuers’ incentives to distort the information on which CRAs base their ratings.3 We

show that CRA screening can either mitigate or exacerbate these incentives. In the latter case,

a CRA may optimally limit the stringency of screening, even if the CRA’s incentives are well-

aligned with those of investors and it could intensify screening at little cost. Endogenous issuer

behavior also potentially blunts the effectiveness of regulatory efforts to improve ratings quality by

encouraging more thorough screening, and it complicates efforts to learn about the effectiveness of

more thorough screening from changes in ratings accuracy, especially in the short run.4

To our knowledge, our paper is the first to demonstrate the theoretical ambiguity in the pre-

dicted effect of enhanced screening on a certification seeker’s incentives to behave deceptively in the

context of credit ratings. Others have highlighted similar effects in different settings. For example,

research in the accounting literature shows that stricter auditing, perhaps due to greater auditor

liability, can increase a firm’s incentives to inflate reported performance when raising capital (Hil-

legeist, 1999; Strobl, 2013). Our paper builds on the general insight in several ways. First, we

consider its implications for optimal certifier screening policy and show that accounting for the

certification seekers’ manipulative incentives tends to make screening that otherwise optimally be

lax (strict) even laxer (stricter). Second, we show in the two-period version of our model that in-

creased screening can actually degrade the informativeness of certification in the short run. Third,

3Another strand of the literature focuses on inaccuracies due to “ratings shopping,” where an issuer can sample
multiple CRAs and report only the most favorable ratings (Skreta and Veldkamp, 2009; Sangiorgi and Spatt, 2017).

4In a different context, Berk and van Binsbergen (2022) find that tighter regulation to filter out charlatans in the
provision of a service can reduce consumer surplus by weakening competition. In our model, total surplus can decline
with more screening. Daley et al. (2020) study signaling through retention in a setting with ratings.
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we demonstrate that endogenous certification-seeker behavior can cause the frequency of certifica-

tion errors to increase in response to an improvement in the prior distribution of certification-seeker

quality.

In the context of CEO compensation, Goldman and Slezak (2006) show that the possibility of

manipulation by the agent diminishes the performance sensitivity of optimal contract. In a similar

vein, Frankel and Kartik (2022) find that a decision-maker using possibly manipulated data may

optimally commit to under-utilizing the data. However, there is no screening in these models and

thus no scope for exploring the interaction of manipulation and screening. The analog in our model

would be investors committing to relying less on the credit rating when pricing a security, which

would unsurprisingly reduce incentives to manipulate. Similarly, Perez-Richet and Skreta (2022)

show that an optimal test may reward the agent in some states where the agent supplies negative

information in order to diminish incentives to manipulate the information provided. They also show

that a falsification-detection technology that devalues more-manipulated signals reduces incentives

to manipulate. This technology has a similar effect to the screening technology in our model. The

important difference in our model is the connection between issuer payoffs and beliefs about issuer

quality conditional on a given rating through a market price, which can cause manipulation to

increase with screening.5

2 Single-Period Model

We first consider a single-period model, which is our main subject of analysis and produces most

of our results. We then extend the model to two periods in the next section to derive additional

insights. The model features an issuer who seeks financing for a project of privately-known quality,

a CRA who observes a signal of the quality of the issuer’s project and rates the security, and

investors who can buy a financial claim backed by the project. The model can also be interpreted

more generally as a model of third-party certification, with the issuer representing a seller, investors

representing a buyer, and the CRA representing a certification agent. We consider other specific

5Our paper is also tangentially related to the economics of crime literature, which considers how enforcement
responds to incentives (e.g., Tsebelis, 1990).
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applications in Section 4.

The issuer’s project is high quality (h) with probability η and low quality (ℓ) with probability

1− η. A high-quality project has an NPV vh > 0, whereas a low-quality good has an NPV vℓ ≤ 0.

The issuer has no financial resources. To undertake the project, it must issue a security backed by

the project. If the issuer fails to sell a security to investors, the project becomes worthless.

The issuer privately observes the quality of its project. By providing a credit rating based

on its signal, the CRA can reduce the information asymmetry between the issuer and investors.

Formally, the game begins with the CRA choosing an observable screening intensity α ∈ [0, 1] at

a private cost c(α). The assumption that the CRA’s screening intensity is observable is central

to our analysis, as it allows us to investigate the effects of screening intensity on issuer behavior.

This assumption seems realistic, since CRAs tend to rely on standardized models to produce credit

ratings, and, even though these models are proprietary, market participants are likely to be able to

infer aspects of a model from observing the history of CRA interactions with issuers and the ratings

that they produce.6 A higher α represents more effort put into vetting information and increases

the accuracy of ratings in a way that we make clear shortly. We assume that c(0) = c′(0) = 0 and

that c′(α) > 0 and c′′(α) > 0 for all feasible α > 0. In addition, we assume that there is a screening

level αmax arbitrarily close to, but strictly less than, one such that limα→αmax c
′(α) = ∞.7

The issuer can be one of two types, opportunistic (type O) or truthful (type T ). The issuer

is truthful with probability µ ∈ [0, 1) and opportunistic with probability 1 − µ. After observing

project quality and the CRA’s screening intensity α, an opportunistic issuer chooses an unobserved

manipulation intensity m ∈ [0, 1] at a private cost qk(m), where q ≥ 0, k(0) = k′(0) = 0, and, for

all m ∈ (0, 1], k′(m) > 0 and k′′(m) ≥ 0.8 We also assume that k′(m), k′′(m), and k′′′(m) are finite

for all feasible m.9 A truthful issuer cannot manipulate. The presence of the truthful issuer plays

6For example, Begley (2016) finds that corporate bond ratings depend heavily on the debt-to-EBITDA ratio of
an issuer.

7This is a technical assumption used in Lemma 3 below to ensure that the optimal screening intensity remains
bounded away from one.

8Note that manipulation intensity m being bounded above by 1 has a natural interpretation: Once the issuer’s
manipulation intensity reaches a certain threshold, the CRA effectively ignores any information provided by the issuer
that the CRA cannot independently verify. Beyond this point, further efforts to manipulate have no effect on the
outcome of screening.

9Assuming that k′(1) < ∞ ensures that qk′(1) is well-defined for q = 0, allowing us to analyze this case more
straightforwardly.
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little role in the one-period model but becomes relevant in the two-period model, where reputation

affects period-2 outcomes.

The CRA observes a signal g ∈ {gh, gℓ}. If the project is high quality, the CRA always observes

the signal gh. If the project is low quality and the issuer is the truthful type, the CRA observes

the signal gℓ. However, if the project is low quality and the issuer is the opportunistic type, the

CRA observes gh with probability m(1−α) and gℓ with probability 1−m(1−α). The logic behind

the multiplicative functional form of these probabilities is that manipulation is less effective when

the CRA screens more intensely, and screening is more useful when the issuer manipulates more.

Since α,m ∈ [0, 1], the probabilities of observing gh and gℓ lie between 0 and 1. Regardless of

the manipulation intensity m, the CRA observes gh with probability one when the project quality

is high. Thus, the opportunistic issuer only manipulates (i.e., potentially chooses m > 0) when

project quality is low. That is, only an opportunistic issuer with a low-quality project has a strategic

choice to make. With a slight abuse of terminology, and for the sake of brevity, we refer to such an

issuer as a “low-quality” issuer and use m specifically to refer to a low-quality issuer’s manipulation

intensity.

After observing its signal, the CRA publicly reports a rating r ∈ {rh, rℓ}.10 We assume that

the CRA reports its signal faithfully; that is, it reports r = rh if g = gh and r = rℓ if g = gℓ. We

do not consider intentional ratings inflation on the part of the CRA, though in equilibrium in our

model, the CRA’s rating may be inflated on average (relative to the true project quality). The

CRA’s error rate (i.e., the probability that the CRA’s rating disagrees with the true quality of the

issuer’s project) plays an important role in the analysis that follows. Given the signal structure,

the CRA never reports rℓ when v = vh. Thus, the error rate is the probability of a high rating

10For the sake of simplicity, we model the CRA as always rating the issuer’s security and do not allow the issuer
to opt out. We could equivalently allow the issuer to opt out but restrict attention to equilibria in which the issuer
always applies for a rating. Such equilibria are supported by investors’ belief that an issuer who does not apply for
a rating has a low-quality project. In such equilibria, an unrated security is not sold, and so an issuer who does
not apply for a rating and an issuer who obtains a low rating receive the same payoff of zero. An issuer with a
high-quality project has a stronger incentive to apply for a rating than one with a low-quality project. Thus, an
equilibrium supported by out-of-equilibrium beliefs that an issuer not obtaining a rating has a high-quality project
would not survive the D1 equilibrium refinement.
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when project quality is, in fact, low. The error rate is

γ(α,m) = (1− µ)(1− η)(1− α)m. (1)

After the CRA produces its rating, investors potentially buy a security from the issuer. Investors

form rational expectations and operate in a perfectly-competitive financial market. As a result,

the price of a security equals its expected value given their information. When pricing a security,

investors know the potential project payoffs vh and vℓ, the distribution of project quality η, and

the distribution of issuer types µ. They also observe the CRA’s screening intensity α as well as the

CRA’s rating r. They do not observe a low-quality issuer’s manipulation intensity m. We denote

by m̃ their belief about the value of m given their information. Since investors and the CRA share

the same information, we assume that they both form the same belief m̃. In equilibrium, of course,

this belief must match a low-quality issuer’s actual manipulation intensity.

By construction, a low rating reveals that the project has low quality. Since a low-quality

project is weakly negative NPV (recall that vℓ ≤ 0), a low-rated security is never sold.11 A high-

rated security is sold at a price p(α, m̃) > 0. Note that p is a function of m̃ (investors’ beliefs about

manipulation by the issuer) and not m (the actual manipulation intensity of a low-quality issuer),

since investors do not observe m. If the issuer sells a security, it pays a fraction ϕ ∈ [0, 1) of the

selling price to the CRA as a commission. The parameter ϕ represents the bargaining power of the

CRA relative to the issuer.

The game unfolds in the following stages:

1. The issuer draws and observes its truthfulness type (O or T ).

2. Project quality v ∈ {vh, vℓ} is realized and privately observed by the issuer.

3. The CRA chooses a screening intensity α.

4. If the issuer is opportunistic and has a low-quality project (i.e., is a low-quality issuer), it

chooses a manipulation intensity m.

11Technically, if the low-quality project is zero-NPV, investors would be willing to buy a low-rated security at a
price of zero. Since neither the seller nor investors benefit from a sale in this case, we ignore this possibility.
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5. The CRA observes its signal g and issues a rating r.

6. If the rating is high (r = rh), investors purchase the security at a price p at which they break

even given their posterior beliefs, and the issuer pays a commission ϕp to the CRA. If the

rating is low (r = rℓ), the issuer does not sell the security, and the game ends.

7. Project cash flow is revealed.

We refer to stages 4 through 7 as the issuer’s continuation game and the game unfolding across all

7 stages as the overall game.

2.1 Payoffs

Recall that the issuer only has a strategic decision to make if it is a low-quality issuer. The

expected payoff to the issuer in this case is a function of three components. The first is the price

it obtains if it sells a security, net of the commission it pays to the CRA. The second is the cost

of manipulation. The third is a continuation payoff, which depends on whether it succeeds in

obtaining a high rating or fails (i.e., it receives a low rating). We refer to these two “states” as s

and f . Let πs and πf denote the continuation payoffs in states s and f , respectively. For now, we

take πs and πf to be exogenous. These continuation payoffs play little role in the analysis in this

section. However, they do play an important role in the two-period model in Section 3, where we

endogenize them. We include them here as exogenous variables for the sake of continuity. Formally,

a low-quality issuer’s expected payoff is

Π(α,m) = (1− α)m[(1− ϕ)p+ πs] + {1− (1− α)m}πf − qk(m)

= πf + (1− α)m[(1− ϕ)p(α, m̃)−∆]− qk(m), (2)

where ∆ = πf − πs is the difference in the opportunistic issuer’s continuation payoffs between the

failure and success states. We make the following assumption about ∆, which allows us to focus

on the interesting case where equilibrium manipulation intensity is not always maximal (i.e., one)

or always minimal (i.e., zero).
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Assumption 1. vℓ <
∆

1−ϕ < vh.

Note that this range includes 0 when vℓ < 0. When vℓ is strictly negative, ∆ too may be negative.

However, in the two-period model in Section 3, we show that a positive ∆ emerges naturally, since

successful manipulation in period 1 reveals the issuer to be the opportunistic type, which reduces

the issuer’s period-2 payoffs.

The CRA’s payoff is a function of four components. First, the CRA derives a fixed benefit

Λ > 0 from the exercise of rating the issuer. This benefit may be thought of as a combination of a

fixed fee and a reputational benefit the CRA earns from being in the rating business. We assume

that Λ is high enough to ensure that the CRA’s equilibrium expected payoff is non-negative. The

second component is the commission ϕp paid by the issuer if it sells a security. Third, screening

entails a cost c(α). Fourth, the CRA incurs a cost λ > 0 whenever it issues an erroneous rating.

This cost represents a combination of regulatory, litigation, and reputational costs. Formally, the

CRA’s expected payoff is

Ψ(α,m) = Λ + [η + γ(α,m)]ϕp(α, m̃)− c(α)− λγ(α,m). (3)

2.2 Equilibrium

A Perfect Bayesian Equilibrium (PBE) of the game is given by an optimal screening intensity

for the CRA, α∗, a best response function for a low-quality issuer, m∗(α), and a manipulation

conjecture for the CRA and investors, m̃(α), such that:

(i) For the CRA, α∗ maximizes Ψ(α,m∗(α)), subject to 0 ≤ α ≤ αmax.

(ii) For a low-quality issuer, for any α ∈ [0, αmax],m
∗(α) maximizes Π(α,m) subject to 0 ≤ m ≤ 1.

(iii) Investors’ and the CRA’s conjecture of a low-quality issuer’s manipulation intensity is correct;

that is, m̃(α) = m∗(α) for any α ∈ [0, αmax].

(iv) Investors break even in expectation given their information; that is, p(α, m̃) = E[v |rh, α, m̃(α)]

for any α ∈ [0, αmax], where the posterior probability that the project is high quality given

rh, α, and m̃(α) is determined by Bayes’ rule.
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Given (ii), (iii), and (iv), the equilibrium price of a high-rated security for a given value of α

must satisfy

p(α,m∗(α)) =
ηvh + γ(α,m∗(α))vℓ
η + γ(α,m∗(α))

. (4)

We first characterize the equilibrium in the issuer’s continuation game, taking the CRA’s choice

of screening intensity α as given. This equilibrium is characterized by m∗(α). We then analyze the

equilibrium of the overall game. This equilibrium is characterized by (α∗,m∗(α∗)).

2.3 Equilibrium in the issuer’s continuation game

We first fix α ∈ [0, αmax] and characterize the issuer’s equilibrium manipulation intensity at stage

4. A low-quality issuer chooses m to maximize its expected payoff Π as defined in equation (2),

given an observed α. We begin by establishing that, holding α fixed, the equilibrium manipulation

intensity m∗(α) at stage 4 is unique. If m∗(α) ∈ (0, 1), then the issuer’s first-order condition implies

that ∂Π
∂m = 0 or, equivalently, that

(1− α)[(1− ϕ)p(α, m̃)−∆]− qk′(m) = 0. (5)

It is straightforward to see that the second-order condition is satisfied. Since investors’ conjecture

must match the actual manipulation intensity, we can write the equilibrium condition whenm∗(α) ∈

(0, 1) as

(1− α) [(1− ϕ)p(α,m∗(α))−∆]− qk′(m∗(α)) = 0. (6)

Fixing the screening intensity α, the equilibrium manipulation intensity, m∗(α), is unique. Further,

when m∗(α) ∈ (0, 1), m∗(α) is strictly decreasing in the manipulation cost parameter q.

Lemma 1. Fix α ≤ αmax and consider the continuation game starting at stage 4. Then:

(i) The equilibrium manipulation intensity, m∗(α), is uniquely determined; there exists a thresh-

old manipulation cost parameter q (possibly negative) such that m∗(α) = 1 if q ≤ q and

m∗(α) ∈ (0, 1) if q > q.
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(ii) For q > q, the equilibrium manipulation intensity m∗(α) is strictly decreasing in the manipu-

lation cost parameter q.

The threshold q is explicitly defined in equation (23) in the proof of the lemma and depends on

the screening intensity α and the exogenous parameters. The threshold is increasing in η and in α.

Our assumption that k′(0) = 0 ensures that m∗ > 0 in equilibrium.

2.3.1 Comparative statics of m∗ with respect to α

Consider the effects of a small increase in the screening intensity α. One might naturally expect

that greater screening intensity would discourage manipulation by an issuer. However, we show that

the optimal manipulation intensity can actually increase in α if the prior probability that a project

is high quality (η), screening intensity (α), and the cost of manipulation (q) are all sufficiently

small.

As a preliminary step, we first show that the optimal manipulation intensity can increase in α

when the (endogenous) rating error rate is sufficiently high.

Lemma 2. Fix α ≤ αmax and suppose that in the equilibrium of the continuation game m∗(α) ∈

(0, 1). Then, dm∗

dα > 0 if and only if γ(α,m∗(α)) > γ̄ ≡ η

(√
1 +

vh− ∆
1−ϕ

∆
1−ϕ

−vℓ
− 1

)
.

Intuitively, an increase in the screening intensity α has two effects on the issuer’s incentives,

one direct and one indirect. Directly, an increase in α reduces the probability that a low-quality

issuer obtains a high rating, which reduces the marginal benefit of manipulation by (1− ϕ)p−∆.

However, more intense screening also increases the price of the high-rated security by decreasing

the rating error rate. This indirect price effect increases the marginal benefit of manipulation by

(1 − α)(1 − ϕ) ∂p∂α . It is easy to see from equation (4) that the equilibrium price is low when the

equilibrium rating error rate is high.12 As a result, the direct effect is small, and the indirect effect

dominates, causing manipulation to increase with screening intensity. Intuitively, when investors

12The ability to affect the equilibrium price through manipulation may be interpreted as an incentive for the
opportunistic issuer with a low-quality project to manipulate. In a somewhat different setting with moral hazard,
Goldman and Slezak (2006) show that high-powered incentives may induce a manager to misrepresent information.
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are skeptical about the informativeness of a high rating, the benefit of receiving a high rating is

small, so a change in the probability of receiving a high rating is second order.

We now completely characterize the region of the parameter space in which dm∗

dα > 0. Necessary

and sufficient conditions are (i) m∗ ∈ (0, 1) and (ii) γ(α,m∗(α)) > γ̄. The following proposition

characterizes the parameter region for which these conditions hold.

Proposition 1. There exist thresholds η̄ > 0, ᾱ(η) > 0, and q̄(η, α) > 0 such that the equilibrium

manipulation intensity m∗(α) is strictly increasing in the screening intensity α if and only if η < η̄,

α < ᾱ(η), and q ∈ (q(η, α), q̄(η, α)).

The thresholds η̄, ᾱ(η), and q̄(η, α) are all defined explicitly in the proof of the proposition.

Intuitively, the rating error rate is large (and hence the condition in Lemma 2 is satisfied) when

the ex ante probability that the project is low-quality is high, the cost of manipulating is low (and

hence manipulation intensity is high), and the CRA’s screening is lax. The condition q > q is

necessary to ensure that m∗(α) < 1. Note that this threshold is the same as the threshold q in

Lemma 2, though we write it as a function of η and α in Proposition 1 to make its dependence on

these parameters clear. The proof also demonstrates that when η < η̄, we have ᾱ(η) > 0. Further,

when η < η̄ and α < ᾱ(η), the threshold q̄(η, α) strictly exceeds q(η, α). Thus, the set of parameters

at which m∗ is strictly increasing in α is non-empty.

2.3.2 Comparative statics of γ with respect to α, ϕ, and η

Proposition 1 shows that the issuer may manipulate with greater intensity in response to an

increase in the CRA’s screening intensity. Because of this countervailing force, it is possible in prin-

ciple that the accuracy of ratings decreases rather than increases in the CRA’s screening intensity.

However, we show in the next proposition that this is never the case – the rating error rate always

at least weakly decreases in screening intensity. In contrast, we show in Section 3 that when the

model is extended to two periods, more intense screening may indeed result in less accurate ratings

in the short run.
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Proposition 2. Fix the screening intensity α ≤ αmax and consider the continuation game starting

at stage 4. Then,

(i) If q = 0 and α < 1− η
(1−µ)(1−η)

(
vh− ∆

1−ϕ
∆

1−ϕ
−vℓ

)
, the equilibrium error rate γ(α,m∗(α)) is invariant

to the screening intensity α.

(ii) In all other cases, γ(α,m∗(α)) strictly decreases in α.

First, suppose that the conditions in case (i) are satisfied. The condition on α ensures that

m∗ < 1. As seen from equation (6), when q = 0, the equilibrium manipulation intensity is pinned

down by the condition p(α,m∗(α)) = ∆
1−ϕ . Since the right-hand side is constant, the manipulation

intensity m∗(α) must adjust following a small change in screening intensity α in a manner that

keeps the price of a high-rated security, p, constant. This invariance further requires that the rating

error rate γ be invariant as α changes since, holding fixed the parameters η and µ, the price depends

solely on the error rate. That is, manipulation intensity increases exactly enough to offset the effect

of more intense screening on the error rate in this case.

In case (ii) of the proposition, there are two possible scenarios. First, it may be that m∗(α) = 1.

In this case, a small change in α leavesm∗ unchanged, so the only effect of an increase in α is a direct

reduction in the rating error rate. The other scenario is that m∗(α) ∈ (0, 1) and q > 0. Suppose, in

contradiction to the statement in part (ii) of Proposition 2, that the error rate increases with the

CRA’s screening intensity. Then, the price of the high-rated security must strictly decrease with

screening intensity. In addition, more intense screening reduces the marginal effect of an increase

in manipulation intensity on the probability of successful manipulation. Both effects weaken the

issuer’s incentive to manipulate, reducing equilibrium manipulation intensity. However, if screening

intensity increases and manipulation intensity decreases, then the error rate must decrease, which

contradicts the assumption that the error rate is increasing. Nevertheless, part (i) of the proposition

and continuity imply that the relationship may be close to flat when q is small.

Next, consider the comparative statics of the error rate γ(α,m∗(α)) with respect to the CRA’s

commission rate, ϕ, and the quality of projects in the economy, as measured by η, when m∗ ∈ (0, 1).

As ϕ increases, the issuer shares more of the proceeds from selling a security with the CRA, so the
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benefit to an issuer of obtaining a high rating decreases, leading to less manipulation in equilibrium.

Keeping the manipulation intensity m constant, an increase in η leads to a decrease in the error

rate since only low-quality projects are subject to possible rating errors. However, a lower error rate

leads to an increase in the price of a high-rated security, which strengthens a low-quality issuer’s

incentives to manipulate, and increased manipulation tends to increase the error rate. The overall

change in the error rate depends on which of these two effects dominates. As we show in part (ii) of

the following proposition, when the manipulation cost is low, the second effect dominates, so that

the equilibrium error rate in fact increases as η increases.

Proposition 3. Fix the screening intensity α ≤ αmax and suppose that q > q. Then:

(i) The error rate γ(α,m∗(α)) is strictly decreasing in the CRA’s commission rate ϕ.

(ii) There exists a threshold manipulation cost parameter q̄η such that, if q ∈ (q, q̄η), the error

rate γ(α,m∗(α)) is strictly increasing in the prior project quality η.

The threshold q̄η in part (ii) of the proposition is explicitly defined in equation (43) in the proof.

Comparing the expression to the expression for q as defined in equation (23), it can be shown that,

holding the other parameters fixed, q̄η > q when the prior project quality η is sufficiently low, with

the converse holding when η is high.

The intuition for part (ii) of Proposition 3 is as follows. Holding α fixed, the equilibrium error

rate in the continuation game is γ(α,m∗(α)) = (1 − µ)(1 − α)(1 − η)m∗(α). Here, the last two

terms depend on the prior asset quality η. An increase in η causes m∗(α) to increase more rapidly

than 1− η decreases when q is small. To see why this is the case, observe that we can rewrite the

equilibrium price of a high-rated security as

p(α,m∗(α)) =

η
1−ηvh + (1− µ)(1− α)m∗(α)vℓ

η
1−η + (1− µ)(1− α)m∗(α)

. (7)

From equation (7), it is apparent that the price depends on the ratio of high-quality to low-

quality projects, η
1−η , which increases with η at a rate greater than one. Intuitively, an increase

in η simultaneously causes the probability that the project is high quality to increase and the
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probability that the project is low quality to decrease, and both of these effects lead to an increase

in price. When q is small, the sharp increase in price with η causes the issuer’s optimal manipulation

intensity to increase sharply with η as well, and the error rate increases. However, the increased

incentive to manipulate is tempered when q is large, and the error rate may therefore decrease with

η when q is large; hence, the upper threshold q̄η in part (ii) of Proposition 3.

2.4 Equilibrium in the overall game

To this point, we have treated the screening intensity α as exogenous and analyzed the continu-

ation game in which a low-quality issuer chooses its manipulation intensitym. We next characterize

the equilibrium of the overall game, where the CRA chooses α to maximize its expected payoff Ψ as

given by equation (3). In a PBE, in making its choice the CRA accounts for the effect of α on the

manipulation intensity m∗. Using the expression for the equilibrium price p(α,m∗(α)) in equation

(4), we can rewrite the CRA’s expected payoff in equation (3) as

Ψ(α,m∗(α)) = Λ + ϕ[ηvh + γ(α,m∗(α))vℓ]− γ(α,m∗(α))λ− c(α). (8)

Writing the CRA’s expected payoff in this form provides a useful insight. The expected value

created by investment in equilibrium is ηvh + γ(α,m∗(α))vℓ. When vℓ < 0, only high-quality

projects are funded in the first-best outcome. The CRA receives a commission whenever the issuer

sells a security, regardless of the security’s true quality. However, the CRA accounts for the effect

of its screening intensity on the average price of securities being sold, which decreases when the

error rate is higher. Since the CRA’s commission is effectively a fixed fraction of expected value

created, the CRA fully accounts for the value destroyed by lower-quality projects being funded in

equilibrium, γ(α,m∗(α))vℓ.
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2.4.1 Existence of equilibrium in the overall game

We first verify existence of an equilibrium in the overall game. Taking the derivative of the

CRA’s expected payoff with respect to the screening intensity α, we have

Ψ′(α,m∗(α)) = −(λ− ϕvℓ)
dγ

dα
− c′(α). (9)

Since dγ
dα ≤ 0 by Proposition 2 and vℓ ≤ 0 by assumption, the term −(λ−ϕvℓ) dγ

dα is weakly positive.

This expression reflects the benefits to the CRA of a small increase in screening intensity due to

a lower expected error penalty and a higher expected commission. The CRA trades these benefits

off against the higher cost of screening, as reflected in c′(α).

We focus on pure strategy equilibria.13 From Lemma 1, an equilibrium may involve m∗(α) ∈

(0, 1) or m∗(α) = 1. In principle, it is also possible that the CRA’s problem has multiple local

maxima involving different values ofm∗(α) ∈ (0, 1). We rule this possibility out to make the problem

well behaved by assuming that the CRA’s screening cost function c(α) is sufficiently convex, which

ensures that the CRA’s problem is globally concave in α.

Lemma 3. There exists a pure strategy equilibrium (α∗,m∗(α∗)). Further, there is at most one

equilibrium with m∗(α∗) = 1, and, if c′′(α) > c for all α ∈ [0, αmax] (where c is a constant defined

in the proof), at most one equilibrium with m∗(α∗) ∈ (0, 1).

The proof of Lemma 3 uses the fact that αmax < 1 (instead, if α can approach one, the marginal

benefit of screening can potentially become large). For the rest of this section, we assume that the

conditions of Lemma 3 are satisfied, so that there is at most one equilibrium with m∗(α∗) ∈ (0, 1)

and at most one with m∗(α∗) = 1.

As Lemma 3 suggests, there can be two local maxima of the CRA’s payoff function, say αA with

m∗(αA) = 1 and αB with m∗(αB) ∈ (0, 1). Thus, in principle, there can be up to two pure-strategy

equilibria in the game. However, cases where Ψ(αA) = Ψ(αB) are knife-edge cases. That is, starting

with any set of parameter values for which there are two equilibria, a small perturbation in any

13As the screening intensity α is observed by the issuer, there is no benefit to the CRA from mixing.
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of η, vh, vℓ, λ, ϕ or ∆ leads to one local maximum being greater than the other one. Thus, the

equilibrium is generically unique (i.e., unique except for a measure zero set of parameter values).

2.4.2 Comparative statics of equilibrium in the overall game

We next consider the comparative statics of the CRA’s optimal screening intensity α in the

overall game. Suppose that, in an equilibrium of the overall game, we have m∗(α∗) ∈ (0, 1). We

show that optimal screening intensity α∗ generally increases with the CRA’s commission rate ϕ

and can increase with the probability that project quality is high, η.

Proposition 4. Suppose that, in an equilibrium of the overall game, m∗ ∈ (0, 1). Then:

(i) If vℓ < 0 and q > 0, the optimal screening intensity α∗ is strictly increasing in the CRA’s

commission rate ϕ, whereas if vℓ = 0 or q = 0, then α∗ is invariant to ϕ.

(ii) There exists a threshold manipulation cost q̂ > 0 such that, if q < q̂, the optimal screening

intensity α∗ increases in η.

Consider first the effect of a small increase in ϕ, the CRA’s commission as a fraction of the price

of any security sold. One might naturally expect an increase in ϕ to weaken the CRA’s incentives

to screen since more intense screening reduces the probability that the security receives a high

rating and therefore that the CRA collects a fee. However, as noted after equation (8), the CRA’s

expected commission when choosing α increases with the expected value created by investment

since the CRA internalizes the effect of screening on the price of a high-rated security. Expected

value created decreases with the rating error rate, so increasing the CRA’s commission rate has the

same effect as punishing the CRA more for a rating error.

Next, consider the effect of a small increase in the quality of projects in the economy, as reflected

by the parameter η, on the equilibrium of the overall game. One might naturally intuit that an

increase in η results in lower screening intensity since there are fewer low-quality projects for the

CRA to screen out through the rating process. However, we show that optimal screening intensity

can, in fact, increase with η. That is, optimal screening increases precisely when it would appear
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there is less need for it. The intuition follows directly from Proposition 3 part (ii). When q is

low, the error rate increases with η, holding α fixed. As a result, the CRA optimally screens more

intensely.

Proposition 4 assumes that, in the equilibrium of the overall game, m∗ ∈ (0, 1). From Lemma 1

part (i), a sufficient condition to ensure that m∗ is in the interior is that q > q. As q increases in η

and α∗, the condition is more likely to be satisfied when η is low and α∗ is low (i.e., the cost function

c(α) is steep). Of course, the optimal screening intensity may increase (decrease) discontinuously

in η if there is a change from an equilibrium in which m∗ ∈ (0, 1) (m∗ = 1) to one in which m∗ = 1

(m∗ ∈ (0, 1)).

2.5 Numerical example

We now consider a numerical example to illustrate equilibrium behavior in the overall game.

We make two points in the example: (i) The error rate γ can increase in prior project quality η,

and (ii) the issuer’s response to a change in screening intensity pulls the CRA’s optimal screening

policy towards the extremes — that is, because the CRA anticipates the issuer’s response, it screens

less intensely when α is optimally low and more intensely when α is optimally high. We illustrate

this second point by comparing optimal screening intensity to optimal intensity in an alternative

version of the model where the issuer does not observe screening intensity and therefore cannot

respond to it.

We set vh = 1, vℓ = −1, ϕ = 0.1,∆ = 0, µ = 0.5, qk(m) = 0.25m2, λ = 1, and c(α) = 0.5α2.

Although the marginal cost of screening is finite for all α ≤ 1, the optimal value of α remains

strictly below 1 for all parameter values we consider. Figure 1 shows the optimal values of α∗,

m∗(α∗) and the error rate γ(α∗,m∗(α∗)) as η varies.

For many values of η, the CRA’s payoff function Ψ has two local maxima, one with m∗ ∈ (0, 1)

and one with m∗ = 1. At η ≈ 0.69, the two local maxima are almost equal; for η < 0.69, the local

maximum with m∗ ∈ (0, 1) is the global maximum of Ψ, whereas for η > 0.69, the local maximum

with m∗ = 1 is the global maximum. As a result, at η ≈ 0.69, there is a discontinuous jump in

α∗. For values of η just below 0.69, m∗ decreases with α, and the CRA chooses a relatively high
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This figure shows the optimal screening intensity of the CRA (α∗) and manipulation intensity of the issuer

(m∗), and the equilibrium error rate (γ(α∗,m∗(α∗)) as the prior project quality (η) varies. The parameters

are vh = 1, vℓ = −1, ϕ = 0.1,∆ = 0, µ = 0.5, qk(m) = 0.25m2, λ = 1, and c(α) = 0.5α2.

Figure 1: Effect of varying prior project quality η

level of screening intensity to discourage manipulation. Around η = 0.69, equilibrium manipulation

intensity becomes sufficiently close to 1 that the CRA chooses to economize on screening intensity

and allow manipulation intensity to reach its maximum. The equilibrium outcome thus has the

flavor of an “arms race” (see, e.g., Baliga and Sjöström, 2004), with one optimum featuring low

screening and low manipulation, and the other high screening and high manipulation.

Equilibrium error rate

Consistent with the intuition of Proposition 4, for η ∈ (0, 0.69), the optimal screening intensity

α∗ increases in η. In this region, the manipulation intensity m∗ increases sharply in η, and the

CRA responds by increasing its screening intensity even though the underlying project quality is

higher. In fact, in the region η ∈ (0, 0.35), the manipulation intensity increases in η so sharply that

even after taking into account the greater screening intensity α∗, the overall error rate increases

in η. That is, in equilibrium a better overall quality in the prior pool leads to more low-quality

projects being financed. Note that this does not imply that the average quality of projects being

21



financed declines, since there are now proportionately more high-quality projects in existence.

Note the difference between this result and the result in part (ii) of Proposition 3. In Proposition

3, α is held fixed. Here, we allow the CRA to choose α optimally. The intuition for this result is as

follows. As part (ii) of Proposition 3 shows, the issuer’s manipulation incentives increase sufficiently

sharply with η when q is relatively small that the rating error rate increases as η increases (holding

α fixed). As Proposition 4 shows, the CRA optimally increases its screening intensity as η increases

to counter the effect of the increased manipulation intensity. However, the former effect dominates.

As a result, the equilibrium error rate increases with a small increase in η as long as q is not too

large.

Comparison between observed and unobserved α

To see how the CRA’s screening intensity α affects the issuer, it is useful to consider an alter-

native variant of the model in which screening intensity α is unobserved. The issuer and investors

both form beliefs about CRA screening intensity, and these beliefs must be correct in equilibrium.

However, because α is unobserved, the issuer’s manipulation intensity decision does not change as

the actual value of α changes. The equilibrium in this game represents a fixed point, with the

equilibrium value of m representing the issuer’s best response given the CRA’s equilibrium choice

of α, and the equilibrium value of α representing the CRA’s best response given the issuer’s equi-

librium choice of m. Figure 2 shows the equilibrium screening intensities in the base model and in

the corresponding game with unobserved screening intensity.

As shown in the figure, when the prior project quality η is low (i.e., for η < 0.35), optimal

screening is higher when α is unobserved than in the base model. Thus, observability of screening

intensity in this case dampens the CRA’s optimal screening intensity. This result parallels the

finding of Goldman and Slezak (2006) that manipulation by the agent leads to flatter incentives,

and is also similar to that in Frankel and Kartik (2022). For higher values of η (i.e., η > 0.35), the

opposite happens — observability of screening intensity increases the CRA’s optimal screening in-

tensity. Since optimal screening intensity tends to be high when η is high, observability of screening

intensity pulls the CRA’s optimal screening intensity towards the extremes. The intuition follows
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This figure shows the optimal screening intensity of the CRA (α∗) and manipulation intensity of the issuer

(m∗), and the equilibrium error rate (γ(α∗,m∗(α∗)) as the prior project quality (η) varies. The parameters

are vh = 1, vℓ = −1, ϕ = 0.1,∆ = 0, µ = 0.5, qk(m) = 0.25m2, λ = 1, and c(α) = 0.5α2.

Figure 2: Equilibrium screening intensity in sequential- and simultaneous-move games

from Proposition 1, which shows that manipulation increases (decreases) with observed screening

intensity when η is small (large). The CRA curbs screening intensity when η is small to avoid

encouraging manipulation. In contrast, the CRA amplifies screening to discourage manipulation

when η is large.

3 Two-Period Model

In the single-period model of the previous section, the equilibrium manipulation intensity m∗

sometimes increases in the screening intensity α (Proposition 1), but the error rate γ(α,m∗(α))

is always at least weakly decreasing in α (Proposition 2). We now show that when the model is

extended to two periods, the equilibrium error rate in period 1 may also increase with the screening

intensity.

Consider a two-period version of the model described in Section 2. The sequence of events in

each period is identical to the sequence of events in the single-period model. The game begins with
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the issuer drawing and observing its truthfulness type (O or T ), which persists across periods. For

t = 1, 2, let vt ∈ {vh, vℓ} denote project quality in period t, which is assumed to be independent

across periods. Let αt and mt denote the CRA’s period-t choice of screening intensity and the

opportunistic issuer’s period-t choice of manipulation intensity, respectively, and let m̃t denote

investors’ and the CRA’s belief about the value of mt. Let gt denote the CRA’s signal in period

t and rt its rating in period t. Finally, let µt denote investors’ and the CRA’s belief about the

probability that the issuer’s type is truthful entering period t, with µ1 being a primitive of the

model but µ2 emerging endogenously.

All agents are risk-neutral and value period-2 cash flows using a common “discount” factor

δ ≥ 0. We allow for the possibility that δ > 1, in which case period-2 payoffs may be interpreted

as a reduced-form way to capture the present value of all payoffs beyond period 1 in a game that

extends for many periods. We assume that the CRA faces an adjustment cost to changing screening

intensity from period 1 to period 2, β(α2 − α1)
2, where β ≥ 0 is a constant. The adjustment cost

captures the idea that the CRA has a standard screening process, and departing from that process

is costly because it requires changing procedures and/or ratings models.

There are four decision points in the game. In turn, these are: at time 1, (i) the CRA chooses the

screening intensity α1, and (ii) an opportunistic issuer with a low-quality period-1 project chooses

the manipulation intensity m1, and, at time 2, (iii) the CRA chooses the screening intensity α2, and

(iv) an opportunistic issuer with a low-quality period-2 project chooses the m2. The CRA’s choices

are publicly observed, whereas the issuer’s choices remain unobserved by the CRA and investors.

We start by characterizing the last choice, m2, and then work backwards. Let γ(µ, α,m)

and p(µ, α,m) denote functions mapping a generic prior µ over the issuer’s type, CRA screening

intensity α, and beliefs over manipulation intensity m to a rating error rate and the market price

of a high-rated security, respectively. These functions are given by

γ(µ, α,m) = (1− η)(1− µ)(1− α)m, (10)

p(µ, α,m) =
ηvh + γ(µ, α,m)vℓ
η + γ(µ, α,m)

. (11)
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There is no continuation value beyond period 2. Therefore, an opportunistic issuer with a low-

quality period-2 project chooses m2 to maximize the period-2 expected payoff given by

π2 = (1− α2)m2 × (1− ϕ) p(µ2, α2, m̃2)− q k(m2), (12)

subject to 0 ≤ m2 ≤ 1. Let m∗
2(µ2, α2) denote the solution to the opportunistic issuer’s period-2

problem. In equilibrium, it must be that m̃2 = m∗
2(µ2, α2).

Prior to the opportunistic issuer’s choice of m2, the CRA chooses α2, its observable period-2

screening intensity, to maximize

ψ2 = [η + γ(µ2, α2,m
∗
2(µ2, α2))]ϕ p(µ2, α2,m

∗
2(µ2, α2))

− γ(µ2, α2,m
∗
2(µ2, α2))λ− c(α2)− β(α2 − α1)

2. (13)

Let α∗
2(µ2) denote the solution to the CRA’s period-2 problem.

Next, consider an opportunistic issuer’s choice of period-1 manipulation intensity, m1. When

choosing m1, the issuer must take into account the potential impact of this choice on investors’

and the CRA’s information sets entering period 2. Recall that the period-1 cash flow is revealed

at the end of the period. Thus, there are three possible states at the beginning of period 2, each

corresponding to a different value of µ2. In state s (“success”), the issuer has received a high rating

in period 1 but has been revealed to have low cash flow at the end of the period. This state occurs

if and only if the issuer is opportunistic and has a low-quality period-1 project but manipulation

succeeds. In state f (“failure”), the issuer has received a low rating in period 1 and therefore has not

sold a security. This state occurs if project-1 project quality is low and the issuer either is truthful

or is opportunistic but manipulation fails to induce a high rating. In state h (“high-quality”), the

issuer has received a high rating in period 1 and cash flow is also high. This state occurs if and

only if the period-1 project is high quality, independent of the issuer’s type.

Note that the CRA does not directly observe the manipulation intensity in either period. Thus,

if the CRA observes signal gℓ in the first period and then subsequently observes a low cash flow

(which is always the case when the signal is gℓ), it does not know whether the issuer is truthful
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or is opportunistic but was unsuccessful at manipulating its signal. From the issuer’s standpoint,

successful manipulation in period 1 is a double-edged sword. While successful manipulation allows

the issuer to sell a security and therefore increases its period 1 payoff, it also reveals the issuer to

be opportunistic. This resulting reputational effect lowers the issuer’s expected period-2 payoffs,

as skeptical investors set a lower period-2 price, and the CRA potentially screens more intensely in

period 2.

Let µj denote the posterior probability that the issuer is truthful in state j = s, f, h, given

investors’ and the CRA’s updated beliefs after period 1. State s (high rating, low cash flow) reveals

the issuer to be opportunistic. Thus, µs = 0. State h reveals no information about the issuer’s type,

so µh = µ1. Finally, state f can be reached by either type of issuer, but generally causes positive

updating the probability that the issuer is truthful since an opportunistic type with a low-quality

period-1 project sometimes succeeds in reaching state s instead of f . The posterior belief in state

f is

µf =
µ1

µ1 + (1− µ1)[1− (1− α1)m̃1]
=

µ1
1− (1− µ1)(1− α1)m̃1

. (14)

Let α∗
j = α∗

2(µj) and m∗
j = m∗

2(µj , α
∗
j ). Furthermore, let πj denote an opportunistic issuer’s

discounted period-2 expected payoff in state j = s, f, h. Then,

πj = δ
{
[η + (1− η)(1− α∗

j )m
∗
j ] (1− ϕ) p(µj , α

∗
j ,m

∗
j )− (1− η)qk(m∗

j )
}
, (15)

where the term in the square brackets represents an opportunistic issuer’s probability of receiving a

high rating in period 2. Note that πj is independent of the opportunistic issuer’s actual manipulation

intensity m1 for j = s, f, h. However, πf depends on m̃1 (i.e., the belief of investors and the CRA

about the manipulation intensity) through its dependence on µf . Similarly, it also depends on the

screening intensity in period 1, α1. We therefore write πf = πf (α1, m̃1).

An opportunistic issuer with a low-quality project in period 1 chooses m1 to maximize

Π = (1− α1)m1 [(1− ϕ)p(µ1, α1, m̃1) + πs] + [1− (1− α1)m1]πf (α1, m̃1)− qk(m1) (16)

= πf (α1, m̃1) + (1− α1)m1 {(1− ϕ)p1(µ1, α1, m̃1)− [πf (α1, m̃1)− πs]} − qk(m1). (17)
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The first term is independent of the issuer’s choice m1. Thus, recalling that ∆ = πf −πs in the base

model, the two-period expected payoff is exactly comparable to the single-period payoff defined in

equation (2).

Let Π′ denote the derivative of Π with respect to m1. Then,

Π′(m1) = (1− α1) {(1− ϕ)p(µ1, α1, m̃1)− [πf (α1, m̃1)− πs]} − qk′(m1). (18)

Let m∗
1(α1) denote the solution to the opportunistic issuer’s period-1 problem. In equilibrium,

m̃1 = m∗
1(α1) must hold, so that, if m∗

1(α1) ∈ (0, 1), it is given by the solution to Π′(m∗
1(α1)) = 0.

The condition Π′(m∗
1(α1)) = 0 is similar to the equilibrium condition in the one-period model

(see equation (6)), with the important difference that, in the two-period model, ∆ = πf − πs is

endogenous and depends (through πf ) on α1 and the conjectured (and equilibrium) value of m1.

Finally, let ψj(α1) denote the CRA’s discounted expected period-2 payoff as of the end of period

1 in state j = s, f, h. That is, ψj(αj) = δψ2(αj , µj). With probability η, the issuer has high cash

flow in period 1, leading to state h. With probability γ(µ1, α1,m
∗
1(α1)), an issuer with a low-quality

project obtains a high rating, leading to state s. If neither state h nor state s obtains, we are in

state f . Thus, the CRA chooses α1 to maximize

Ψ = [η + γ(µ1, α1,m
∗
1(α1))]ϕ p(µ1, α1,m

∗
1(α1))− γ(µ1, α1,m

∗
1(α1))λ− c(α1)

+ η ψh(α1) + γ(µ1, α1,m
∗
1(α1))ψs(α1) + [1− η − γ(µ1, α1,m

∗
1(α1))]ψf (α1). (19)

Let α∗
1 denote the solution to the CRA’s period-1 problem.

Note that the general two-period model is intractable. However, we are able to derive analyt-

ical results for the special case where infinite screening adjustment costs fix the CRA’s screening

intensity across periods (and therefore across period-2 states). We then consider the more general

case with finite adjustment costs in a numerical example. Our main result in this section is that,

in contrast to the single-period model, the error rate in period 1 can increase with the CRA’s

screening intensity, α1.
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3.1 Screening Intensity Fixed Across Periods

We first consider a special case in which the CRA’s screening intensity is the same across both

periods (i.e., the adjustment cost β is infinite). While this is an extreme case, a CRA typically relies

on a common model when rating securities of a given type. Changing a ratings model may take

considerable time and effort and potentially exposes the CRA to reputational risk if the unproven

model proves faulty. In this case, more intense screening in period 1 causes the issuer to anticipate

more intense screening in period 2 as well, which feeds back into optimal period-1 manipulation

through its effect on the issuer’s continuation payoffs.

For each state j = s, f, h, the analysis of the period-2 equilibrium is identical to the analysis of

the issuer’s continuation game equilibrium in the single-period setting in Section 2 with continuation

payoffs set to 0 (i.e., ∆ = 0). We therefore focus our analysis on period 1. To obtain an analytic

result, we set the issuer’s manipulation cost parameter q to zero. In addition, we assume that the

average project has weakly positive NPV. As we show in the proof of Proposition 5, these two

assumptions together imply that the equilibrium manipulation intensity in period 2 is equal to one

in all states, which simplifies the analysis. By continuity, these insights hold for small q as well.

Define γ1 = γ(µ1, α1,m
∗
1) to be the induced error rate in the first period when, following a given

α1, a perfect Bayesian equilibrium is played in the rest of the game. That is, the opportunistic

issuer chooses an optimal first-period manipulation intensity m∗
1, and, for each state j = s, f, h

at time 2, the CRA chooses an optimal screening intensity α∗
j followed by the issuer choosing an

optimal manipulation intensity m∗
j .

Proposition 5. Suppose that (i) β = ∞ (so that the CRA’s screening intensity is fixed across

periods; i.e., α1 = α2), (ii) the expected NPV of the issuer’s project is nonnegative (i.e., ηvh+(1−

η)vℓ ≥ 0), and (iii) the issuer’s manipulation cost is zero (i.e., q = 0). Then, there exist thresholds

δ̄ and δ, with 0 < δ < δ̄, such that, for all δ ∈ (δ, δ̄), the period-1 rating error rate γ1 strictly

increases in the CRA’s screening intensity α1.

In the proof of the proposition, we show that when δ ∈ (δ, δ̄), it follows that m∗
1 ∈ (0, 1). When

δ ≤ δ, m∗
1 = 1, and when δ ≥ δ̄, m∗

1 = 0. In other words, under the conditions of the proposition,

wheneverm∗
1 is in the interior, the first-period error rate strictly increases in the screening intensity.
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Our two-period result contrasts with the single-period case exhibited in part (i) of Proposition

2, where the equilibrium error rate is invariant to the screening intensity α when q = 0 and the

manipulation intensity is between zero and one. As discussed after Proposition 2, in the single-

period case when q = 0 and m∗ ∈ (0, 1), the equilibrium manipulation intensity is determined

by the equation p∗(α,m∗(α)) = ∆
1−ϕ . Therefore, the price of the high-rated security must remain

constant when the screening intensity α changes by a small amount. As a result, the error rate γ

must also remain constant.

In the two-period case, when there is a cost to adjusting the screening intensity across periods,

a change in the first-period screening intensity α1 has an additional effect: the payoff difference

between the failure and success states, ∆, also changes with α1. In particular, an increase in α1

leads to the opportunistic issuer anticipating greater screening intensity in period 2 as well. More

intense screening in period 2 reduces the benefit of arriving in period 2 with a favorable reputation

(i.e., higher µ2) since the opportunistic issuer is more likely to be screened out when it has a low-

quality project in period 2. As µf > µs, this effect reduces the payoff difference ∆. The net result

is that the opportunistic issuer’s incentives to manipulate in period 1 are strengthened, relative to

the single-period model. This added effect shifts the outcome from one where the error rate γ is

invariant to a small change in screening intensity to one where the error rate in period 1 increases

with screening intensity.

3.2 Comparative Statics

We illustrate the comparative statics of the two-period model through an example. We have

already shown (Example 1) that, in the single-period model, the optimal screening intensity α∗ and

the error rate γ(α∗,m∗(α∗)) may both increase as the prior quality of the project improves (i.e.,

as η increases). We now show that, in the two-period model, the equilibrium error rate in the first

period, γ∗1 = γ1(µ1, α
∗
1,m

∗
1(α1)), may also increase with λ, the penalty the CRA suffers when it

erroneously confers a high rating on a low-quality project. A necessary condition for our two-period

result is that γ1(µ1, α1,m
∗(α1)) must be increasing in α1, so the example also illustrates that the

conditions in Proposition 5 are not particularly restrictive — even after relaxing these conditions,
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there exist parameter values such that γ1 is increasing in α1.

In the one-period model, an increase in λ leads to the CRA screening more intensely (i.e.,

α∗ increases), and by Proposition 2, the result is fewer errors by the CRA. In contrast, in the

two-period model, the first-period equilibrium error rate may instead increase with λ, as shown in

Figure 3. In this example, we set vh = 1, vℓ = 0, η = 0.5, ϕ = 0.1, µ1 = 0.7, δ = 2, the manipulation

cost to qk(m) = 0.15m2, the CRA’s screening cost to c(α) = α2, and β = 1 (so that the CRA’s

adjustment cost in period 2 is (α2 −α1)
2). At each value of α1, we choose the lowest manipulation

intensity m∗
1 that represents an equilibrium.14 We vary λ between 1 and 3.5. As seen from the

figure, throughout this region, γ∗1 is increasing in λ, with a discontinuous jump at λ ≈ 3.05. This

jump occurs because, when λ is just below 3.05, period-1 manipulation is close to 1 and increasing

in λ. For slightly higher values of λ, the CRA economizes on screening intensity and allows period-1

manipulation intensity to reach 1.
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This figure shows how the equilibrium first period error rate γ1 varies as the penalty on the CRA for rating

errors (λ) increases. For each value of λ, we compute an equilibrium of the two-period game and the resulting

error rate. The parameters are vh = 1, vℓ = 0, η = 0.5, ϕ = 0.1, µ1 = 0.7, δ = 2, qk(m) = 0.15m2, c(α) = α2,

and β = 1.

Figure 3: Effect of increased CRA’s error penalty on first-period equilibrium error rate

14In the two-period model, given an α1, there may be multiple equilibria in the remainder of the game. In particular,
there may be multiple values of m∗

1(α1) that each represent an equilibrium.
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4 Implications

Our results yield practical implications for researchers studying credit ratings (and other cer-

tification settings), for rating agencies (and other certification providers), and for regulators and

policymakers. For researchers, our results produce distinct testable implications. For example, our

results in Proposition 1 suggest that manipulation may increase (decrease) in response to a posi-

tive (negative) shock to screening, say due to a court ruling affecting rating agency culpability for

rating errors.15 Such a response would be difficult to square with other ratings models. Alp (2013)

presents evidence that rating standards may indeed change meaningfully over time. In addition,

our results in Proposition 5 suggest that ratings accuracy may worsen (improve) in the short run

after a positive (negative) shock to screening, which, again, would be difficult to square with other

models.

For ratings agencies, our results in Proposition 1 suggest the importance of considering how

issuers are likely to respond to changes in screening policies. If conditions generally support accurate

ratings (few low-quality projects, high cost of manipulation), then tougher screening policies may

have two benefits – making it harder for issuers to mislead and discouraging them from doing so.

On the other hand, if conditions generally make accurate ratings challenging (many low-quality

projects, low cost of manipulation), then tougher screening policies may exacerbate incentives to

mislead, at least partly undermining the benefit of making it harder for issuers to mislead. Both the

direct and incentive effects of screening should factor into screening policy decisions. Our results in

Proposition 4 also suggest somewhat counterintuitively that a rating agency may want to consider

increasing diligence in response to an overall improvement in the distribution of asset quality in

the economy, for example during a period of economic expansion.

For regulators and policymakers, our results offer two sets of policy implications. First, our

results in Proposition 5 and depicted in Figure 3 suggest that efforts to encourage greater CRA

diligence (a higher λ in the model) may appear ineffective or counterproductive in the short run,

even if they are effective at improving diligence and making ratings more informative in the long

15Several court cases over the years involve questions of First Amendment protections for rating agencies. See, for
example, https://www.reuters.com/article/idUSN1E7AO0H7.
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run. It is noteworthy that Dimitrov et al. (2015) find that the quality of credit ratings may have

worsened rather than improved following the passage of the Dodd-Frank Act. Second, our results

in Proposition 3 suggest that increasing disclosure requirements to weed out low-quality projects

before they even reach the potential funding stage, which can be interpreted as increasing η, may

encourage issuers who meet the requirements to further mislead rating agencies, undermining the

effectiveness of the requirements.

5 Conclusion

Our analysis highlights the importance of accounting for the possibility that an issuer manipu-

lates the information on which a CRA relies when rating a security in evaluating the effectiveness

of CRA policies. It suggests that issuer manipulation can either dampen or magnify the effect of

more diligent CRA screening, making it difficult to infer the effectiveness of policies that encour-

age more diligent screening from observed rates of rating errors. Indeed, because of the dynamic

reputational effects illustrated in the two-period version of the model, more diligent screening may

actually result in more rating errors in the short run. Our analysis is also relevant for other settings

in which a certification seeker can manipulate the information on which a certifier relies to assess

certification-seeker quality.

While our model explicitly focuses on the interaction between a CRA and an issuer, its implica-

tions apply to other settings as well. For example, more intense emissions standards screening for

automobiles may lead to greater incentives to cheat in order to pass tests if car buyers are willing

to pay a premium for low-emission cars.16 Our model also suggests that efforts to curb cheating

by students may incentivize more cheating since a high grade would represent a stronger signal of

student quality in such a setting.17

16While it is difficult to link one specific instance of such cheating to changes in screening standards, it is worth
noting that the Volkswagen emissions scandal took place during an environment in which the demand for low-emissions
cars was increasing significantly.

17Consider, for example, the cheating incident at Harvard in 2012; see https://www.nytimes.com/2012/08/31/

education/harvard-says-125-students-may-have-cheated-on-exam.html.
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Appendix: Proofs

Proof of Lemma 1. (i) As shown in equation (2), the payoff of the opportunistic issuer with a

low-quality project is

Π(m) = (1− α)m[(1− ϕ)p(α, m̃)−∆]− qk(m), (20)

where m̃ is the market’s belief about the extent of manipulation. The derivative of Π with respect

to m is

Π′(m) = (1− α)[(1− ϕ)p(α, m̃)−∆]− qk′(m). (21)

In equilibrium, the market’s belief must be correct, that is, m̃ = m∗(α). Making this substitution,

we have

Π′(m∗(α)) = (1− α) [(1− ϕ)p(α,m∗(α))−∆]− qk′(m∗(α)). (22)

From equation (4), it follows that p(α,m) is strictly decreasing in m. Since k′′(m) ≥ 0, we therefore

have that Π′′(m) < 0. Further, noting that p(α, 0) = vh >
∆

1−ϕ (Assumption 1) and that k′(0) = 0,

it follows that Π′(0) > 0.

Observe that Π′(1) = (1−α)[(1−ϕ)p(α, 1)−∆]− qk′(1). There are now two cases to consider:

(a) Π′(1) < 0. Then, by the intermediate value theorem, there exists a unique equilibrium intensity

m∗(α) ∈ (0, 1) such that Π′(m∗(α)) = 0.

(b) Π′(1) ≥ 0. In this case, it must be that the equilibrium manipulation intensity is m∗(α) = 1.

Now, the condition Π′(1) ≥ 0 is equivalent to q ≤ q, where

q =
(1− α) [(1− ϕ)p(α, 1)−∆]

k′(1)
=

(1− α)
[
(1− ϕ)ηvh+(1−µ)(1−η)(1−α)vℓ

η+(1−µ)(1−η)(1−α) −∆
]

k′(1)
. (23)

(ii) From part (i), when q > q, we have m∗(α) ∈ (0, 1), so that Π′(m∗(α)) = (1 − α)[(1 −

ϕ) p(α,m∗(α))−∆]− qk′(m∗(α)) = 0. Observe that the expression Π′(m∗(α)) is strictly decreasing

in both m∗(α) and q. Therefore, if q increases by a small amount, m∗(α) must decrease to restore
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Π′(m∗(α)) = 0. That is, m∗(α) is strictly decreasing in q.

Proof of Lemma 2. Given α, the equilibrium condition whenever m∗(α) ∈ (0, 1) is

(1− α)[(1− ϕ)p(α,m∗(α))−∆]− qk′(m∗(α)) = 0. (24)

Applying the implicit function theorem, we have

dm∗

dα
=

−[(1− ϕ)p(α,m∗(α))−∆] + (1− α)(1− ϕ) ∂p∂α
−(1− α)(1− ϕ) ∂p

∂m + qk′′(m∗(α))
(25)

From equation (4), we have

∂p

∂m
=
dp

dγ

∂γ

∂m
= −η(vh − vℓ)

(η + γ)2
(1− µ)(1− η)(1− α) < 0. (26)

In addition, k′′(m) ≥ 0. Thus, the denominator of dm∗

dα in equation (25) is strictly positive. Hence,

the sign of dm∗

dα is equal to the sign of the numerator, or the sign of

w = (1− α)
∂p

∂α
+

∆

1− ϕ
− p(α,m∗(α)). (27)

From equation (4), it follows that

∂p

∂α
=
dp

dγ

∂γ

∂α
=
η(vh − vℓ)

(η + γ)2
(1− µ)(1− η)m =

η(vh − vℓ)

(η + γ)2
γ

1− α
. (28)

Hence,

w =
η(vh − vℓ)γ

(η + γ)2
+

∆

1− ϕ
− ηvh + γvℓ

η + γ
=

1

η + γ

(
η(vh − vℓ)γ

η + γ
+

∆(η + γ)

1− ϕ
− (ηvh + γvℓ)

)
. (29)

Therefore, dm∗

dα > 0 if and only if

η(vh − vℓ)γ

η + γ
> η

(
vh −

∆

1− ϕ

)
− γ

(
∆

1− ϕ
− vℓ

)
. (30)

Note that the left-hand side of this inequality is increasing in γ, whereas the right-hand side is
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decreasing in γ (because vℓ <
∆

1−ϕ by Assumption 1). Furthermore, the inequality does not hold

if γ = 0. Thus, there exists a unique threshold error rate γ̄ > 0 such that dm∗

dα > 0 if and only if

γ > γ̄ (and m∗ ∈ (0, 1)). This threshold γ̄ is given by the unique positive root of the equation

η(vh − vℓ)γ = η2
(
vh −

∆

1− ϕ

)
− ηγ

(
∆

1− ϕ
− vℓ

)
+ ηγ

(
vh −

∆

1− ϕ

)
− γ2

(
∆

1− ϕ
− vℓ

)
, (31)

or, equivalently, of the equation

γ2 + 2ηγ − η2
vh − ∆

1−ϕ

∆
1−ϕ − vℓ

= 0, (32)

and hence is given by

γ̄ = η


√√√√1 +

vh − ∆
1−ϕ

∆
1−ϕ − vℓ

− 1

 . (33)

Assumption 1 ensures that both the numerator and the denominator of the second term under

the square root sign are positive, so that the term under the square root is greater than 1, which

implies that γ̄ > 0.

Proof of Proposition 1. From Lemma 2, two conditions are necessary and sufficient for dm∗

dα > 0.

First, it must be that γ > γ̄, and second, it must be that m∗(α) ∈ (0, 1).

Consider first the condition that γ > γ̄ or, equivalently, that (1 − µ)(1 − η)(1 − α)m∗(α) > γ̄.

The maximum value of (1 − α)m∗(α) is 1 (when α = 0 and m∗(α) = 1), so a necessary condition

for γ > γ̄ is that (1− η)(1− µ) > γ̄ or, equivalently, that

η <
1− µ√

1 +
vh− ∆

1−ϕ
∆

1−ϕ
−vℓ

− µ

≡ η̄. (34)

Clearly, η̄ ∈ (0, 1).

Now suppose that η < η̄. Then, γ > γ̄ requires that (1 − α)m∗(α) > γ̄
(1−µ)(1−η) . As the

maximal value of m∗(α) is 1, it must therefore be that α < 1 − γ̄
(1−µ)(1−η) ≡ ᾱ(η). Observe that,

by construction, η < η̄ implies that (1− η)(1− µ) > γ̄, so that ᾱ(η) > 0.

Next, suppose that η < η̄ and α < ᾱ(η). Then, γ > γ̄ if and only if m∗(α) > γ̄
(1−µ)(1−η)(1−α) ≡
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m̄(η, α). Observe that m̄(η, α) = 1−ᾱ(η)
1−α < 1 when α < ᾱ(η). Recall that m∗(α) is unique given α,

and that m∗(α) is strictly decreasing in q. Therefore, the condition m∗(α) > m̄(η, α) is equivalent

to

(1− α)[(1− ϕ)p(α, m̄(η, α))−∆] > qk′(m̄(η, α)) (35)

or

q <
(1− α)[(1− ϕ)p(α, m̄(η, α))−∆]

k′(m̄(η, α))
≡ q̄(η, α). (36)

As mentioned above, if η < η̄ and α < ᾱ(η), then m̄(η, α) < 1. Given that m∗(α) is strictly

decreasing in q, it is now immediate that q, the value of q at which m∗(α) = 1 (defined in the proof

of Lemma 1), is strictly less than q̄. Furthermore, if q = 0, it follows from the equilibrium condition

in equation (5) that p(α,m∗(α)) = ∆
1−ϕ or, equivalently, that γ = η

(
vh − ∆

1−ϕ

)/(
∆

1−ϕ − vℓ

)
. This

error rate clearly exceeds the threshold γ̄ defined in equation (33), which implies that q̄(η, α) > 0.

Thus, there exist thresholds η̄ > 0, ᾱ(η) > 0, and q̄(η, α) > 0 such that, if η < η̄, α < ᾱ(η), and

q ∈ (q, q̄(η, α)), then m∗(α) ∈ (0, 1) and γ > γ̄. This concludes the “if” part of the proof.

For the “only if” part, observe that if any of the following three conditions are met, then

γ ≤ γ̄: (i) η ≥ η̄, (ii) α ≥ ᾱ(η), or (iii) m∗(α) ≤ m̄(η, α). The third condition corresponds to

q ≥ q̄(η, α).

Proof of Proposition 2. (i) Suppose that q = 0. Then, the equilibrium condition for an interior

value of m∗ in equation (24) reduces to p(α,m∗) = ∆
1−ϕ , which implies that m∗ = η

(1−α)(1−µ)(1−η) ×
vh− ∆

1−ϕ
∆

1−ϕ
−vℓ

. It follows that m∗ > 0, and that when α < 1− η
(1−µ)(1−η)

(
vh− ∆

1−ϕ
∆

1−ϕ
−vℓ

)
, we have m∗ ∈ (0, 1).

From the equilibrium condition, using the expression for p(α,m) in equation (4), we can explic-

itly solve for the error rate:

γ(α,m∗(α)) = η
vh − ∆

1−ϕ

∆
1−ϕ − vℓ

. (37)

It is immediate that γ(α,m∗(α)) is invariant to changes in α in this case.

(ii) Suppose that m∗(α) = 1 and consider a small increase in α. Then, either m∗(α) stays at 1,

or it decreases and becomes strictly less than 1. In either case, it is immediate that γ(α,m∗(α))

strictly decreases in α.
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Next, suppose that q > 0 and m∗(α) ∈ (0, 1). Suppose also that dγ
dα ≥ 0. In this case, m∗(α) is

the unique solution to equation (6). Totally differentiating equation (6) and rearranging, we have:

(1− α)(1− ϕ)
dp

dγ

dγ

dα
=

q

1− α
k′(m∗(α)) + qk′′(m∗(α))

dm∗

dα
. (38)

Since dp
dγ < 0 and dγ

dα ≥ 0, the term on the left-hand side is weakly negative. The first term on the

right-hand side is positive since k′(m) > 0 for m > 0. Thus, a necessary condition for this equality

to hold is that the second term on the right-hand side be negative. Noting that qk′′(m) ≥ 0, we

must have dm∗

dα < 0. However, in this case, dγ
dα = ∂γ

∂α + ∂γ
∂m

dm∗

dα < 0 because ∂γ
∂α < 0 and ∂γ

∂m > 0,

contradicting the assumption that dγ
dα ≥ 0.

Proof of Proposition 3. Suppose that m∗(α) ∈ (0, 1). Then, we can write the equilibrium con-

dition in equation (5) in terms of the error rate γ as f(γ) = 0, where

f(γ) = (1− α)

[
(1− ϕ)

ηvh + γvℓ
η + γ

−∆

]
− qk′

(
γ

(1− µ)(1− η)(1− α)

)
. (39)

From equation (39), it follows that

fγ = −(1− α)(1− ϕ)
η(vh − vℓ)

(η + γ)2
− qk′′

(
γ

(1− µ)(1− η)(1− α)

)
1

(1− µ)(1− η)(1− α)
, (40)

where fx denotes the partial derivative of f with respect to x. Since k′′(·) ≥ 0, clearly fγ < 0.

(i) The result that the error rate strictly decreases in the CRA’s commission rate ϕ follows imme-

diately from the Implicit Function Theorem because

fϕ = −(1− α)
ηvh + γvℓ
η + γ

< 0. (41)

Thus, dγ
dϕ = −fϕ

fγ
< 0.

(ii) As fγ < 0, it follows from the Implicit Function Theorem that dγ
dη = − fη

fγ
> 0 if and only if
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fη > 0. From equation (39), we have

fη = (1− α)(1− ϕ)
γ(vh − vℓ)

(η + γ)2
− qk′′

(
γ

(1− µ)(1− η)(1− α)

)
γ

(1− µ)(1− η)2(1− α)
. (42)

Since γ ≤ (1− µ)(1− η)(1− α), fη is strictly positive if

q < (1− α)(1− ϕ)
vh − vℓ

[η + (1− µ)(1− η)(1− α)]2
(1− µ)(1− η)2(1− α)

k̄2
≡ q̄η, (43)

where k̄2 = maxm∈[0,1] k
′′(m) <∞.

Proof of Lemma 3. Observe that the CRA’s payoff function Ψ in equation (8) is continuous in α.

As α must lie between 0 and αmax and Ψ is bounded above by Λ+ϕvh, it follows from Weierstrass’

Theorem that a maximum α∗ exists. Further, as shown in Lemma 1, given α, there is a unique

equilibrium m∗ in the issuer’s continuation game. Thus, a pure strategy equilibrium of the overall

game (α∗,m∗) exists.

Next, we show that there exists a c such that, if c′′(α) > c and m∗ ∈ (0, 1), then Ψ(α) is

strictly concave at that value of α. It is immediate that Ψ′(0) > 0 and Ψ′(αmax) < 0. Since

Ψ′(α) is a continuous function on (0, αmax), this implies that there exists an α∗ ∈ (0, αmax) such

that Ψ′(α∗) = 0. The screening intensity α∗ is uniquely determined by the first-order condition

Ψ′(α∗) = 0 if Ψ′′(α) < 0 for all α ∈ (0, αmax), where

Ψ′′(α) = −(λ− ϕvℓ)
d2γ

dα2
− c′′(α). (44)

The error rate γ is implicitly defined by the condition f(γ) = 0, where f(γ) is defined in equation

(39). From the Implicit Function Theorem, we have

d2γ

dα2
= − 1

f3γ

(
fαα f

2
γ − 2fαγ fα fγ + fγγ f

2
α

)
, (45)

where, as before, fx denotes the partial derivative of f with respect to x. The condition Ψ′′(α) < 0

40



is thus equivalent to

c′′(α) > (λ− ϕvℓ)

(
fαα
fγ

− 2fαγ fα
f2γ

+
fγγ f

2
α

f3γ

)
. (46)

From the definition of f(γ) in equation (39), it immediately follows that

fα = −
[
(1− ϕ)

ηvh + γvℓ
η + γ

−∆

]
− qk′′(m∗)

γ

(1− η)(1− µ)(1− α)2
, (47)

fγ = −(1− α)(1− ϕ)
η(vh − vℓ)

(η + γ)2
− qk′′(m∗)

1

(1− η)(1− µ)(1− α)
, (48)

fαα = −qk′′(m∗)
2γ

(1− η)(1− µ)(1− α)3
− qk′′′(m∗)

(
γ

(1− η)(1− µ)(1− α)2

)2

, (49)

fγγ = 2(1− α)(1− ϕ)
η(vh − vℓ)

(η + γ)3
− qk′′′(m∗)

(
1

(1− η)(1− µ)(1− α)

)2

, (50)

fαγ = (1− ϕ)
η(vh − vℓ)

(η + γ)2
− qk′′(m∗)

1

(1− η)(1− µ)(1− α)2
− qk′′′(m∗)

γ

(1− η)2(1− µ)2(1− α)3
,

(51)

where m∗ = γ
(1−η)(1−µ)(1−α) .

We first derive an upper bound for the term fαα/fγ in equation (46). Let k2 = minm∈[0,1] k
′′(m) >

0. Since α ∈ (0, αmax) and m
∗ ∈ (0, 1), we have

fγ < −(1− αmax)(1− ϕ)
η(vh − vℓ)

[η + (1− η)(1− µ)]2
− qk2

(1− η)(1− µ)
≡ f̄γ . (52)

Similarly, let k̄2 = maxm∈[0,1] k
′′(m) > 0 and k̄3 = max{maxm∈[0,1] k

′′′(m), 0} ≥ 0. A lower bound

for fαα is then given by

fαα > −
q
(
2k̄2 + k̄3

)
(1− αmax)2

≡ f
αα
. (53)

Since f̄γ < 0 and f
αα

< 0, the term fαα/fγ is bounded from above by f
αα
/f̄γ > 0.

Next, consider the term fαγ fα/f
2
γ . Clearly, fα < fα < 0, where

f
α
= − [(1− ϕ) vh −∆]− qk̄2

1− αmax
. (54)
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Furthermore,

fαγ < (1− ϕ)
vh − vℓ
η

− qk3
(1− η)(1− µ)(1− αmax)2

≡ f̄αγ , (55)

where k3 = min{minm∈[0,1] k
′′′(m), 0} ≤ 0. Since fγ < f̄γ < 0, f

α
< fα < 0, and fαγ < f̄αγ (> 0),

the term −2fαγ fα/f
2
γ is bounded from above by −2f̄αγ fα/f̄

2
γ > 0.

Finally, consider the term fγγ f
2
α/f

3
γ . Clearly,

fγγ > − qk̄3
[(1− η)(1− µ)(1− αmax)]2

≡ f
γγ
. (56)

Since fγ < f̄γ < 0, f
α
< fα < 0, and fγγ > f

γγ
(≤ 0), the term fγγ f

2
α/f

3
γ is bounded from above

by f
γγ
f2
α
/f̄3γ ≥ 0.

Putting everything together, we thus have

(λ− ϕvℓ)

(
fαα
fγ

− 2fαγ fα
f2γ

+
fγγ f

2
α

f3γ

)
< (λ− ϕvℓ)

(
f
αα

f̄γ
−

2f̄αγ fα
f̄2γ

+
f
γγ
f2
α

f̄3γ

)
. (57)

A sufficient condition for the objective function Ψ(α) to be strictly concave at α is therefore given

by

c′′(α) > c ≡ (λ− ϕvℓ)

(
f
αα

f̄γ
−

2f̄αγ fα
f̄2γ

+
f
γγ
f2
α

f̄3γ

)
. (58)

Thus, if c′′(α) > c for all α ∈ [0, αmax], strict concavity of Ψ implies that, in the region of α over

which m∗ ∈ (0, 1), there can be at most one maximum α∗, and hence at most one equilibrium of

the overall game.

Next, consider the region of α over which m∗ = 1. Then,

Ψ(α) = Λ + ϕηvh − (λ− ϕvℓ)(1− η)(1− µ)(1− α)− c(α), (59)

which is immediately seen to be strictly concave in α. Thus, fixing m∗ = 1, there can be at most

one value of α at which Ψ is maximized, and hence at most one equilibrium of the overall game.

Proof of Proposition 4. The optimal screening intensity α∗ is determined by the first-order con-
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dition Ψ′(α) = 0. Using equation (9), we can write this condition as

−(λ− ϕvℓ)
dγ

dα
− c′(α) = 0. (60)

(i) From the Implicit Function Theorem, we have dα
dϕ = −

∂Ψ′
∂ϕ

Ψ′′(α) . Now, Ψ′′(α) < 0 at the optimal

value α∗, as this is just the second-order condition for optimality. Further, ∂Ψ′

∂ϕ = vℓ
dγ
dα .

Now, suppose that q > 0. Then, from part (ii) of Proposition 2, we have dγ
dα < 0. Therefore,

if vℓ < 0, it follows that dα
dϕ > 0. Conversely, if q = 0, then dγ

dα = 0 (Proposition 2, part (i)), so

∂Ψ′

∂ϕ = 0. Similarly, if vℓ = 0, then ∂Ψ′

∂ϕ = 0.

(ii) From the Implicit Function Theorem, we have dα
dη = −

∂Ψ′
∂η

Ψ′′(α) . As commented above, Ψ′′(α) < 0,

so the sign of dα
dη is equal to the sign of ∂Ψ′

∂η . From equation (9), we have

∂Ψ′

∂η
= −(λ− ϕvℓ)

∂

∂η

(
dγ

dα

)
. (61)

Thus, ∂Ψ′

∂η > 0 if and only if ∂
∂η

(
dγ
dα

)
< 0.

If m∗ ∈ (0, 1), the equilibrium condition in equation (6) can be written in terms of the error

rate γ as

(1− α)

[
(1− ϕ)

ηvh + γvℓ
η + γ

−∆

]
− qk′

(
γ

(1− η)(1− µ)(1− α)

)
= 0. (62)

From the Implicit Function Theorem, it hence follows that

dγ

dα
= −

(1− ϕ) ηvh+γvℓ
η+γ −∆+ qk′′

(
γ

(1−η)(1−µ)(1−α)

)
γ

(1−η)(1−µ)(1−α)2

(1− α)(1− ϕ) η(vh−vℓ)
(η+γ)2

+ qk′′
(

γ
(1−η)(1−µ)(1−α)

)
1

(1−η)(1−µ)(1−α)

(63)

= −
(η + γ)

[
ηvh + γvℓ − (η + γ) ∆

1−ϕ

]
+ qk′′

(
γ

(1−η)(1−µ)(1−α)

)
γ(η+γ)2

(1−ϕ)(1−η)(1−µ)(1−α)2

(1− α)η(vh − vℓ) + qk′′
(

γ
(1−η)(1−µ)(1−α)

)
(η+γ)2

(1−ϕ)(1−η)(1−µ)(1−α)

. (64)

In the limit as q → 0, we have

∂

∂η

(
dγ

dα

)
=

∂

∂η

−
(η + γ)

(
vh − ∆

1−ϕ

)
−
(
1 + γ

η

)
γ
(

∆
1−ϕ − vℓ

)
(1− α)(vh − vℓ)

 (65)
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= −
vh − ∆

1−ϕ +
(
γ
η

)2 (
∆

1−ϕ − vℓ

)
(1− α)(vh − vℓ)

, (66)

which is strictly negative because, by assumption, vℓ <
∆

1−ϕ < vh. Since
dγ
dα is a continuous function

of q, this implies that, if q ≤ 0 (and hence m∗ ∈ (0, 1) for any q ≥ 0), there exists a threshold q̂ > 0

such that, for all q < q̂, ∂Ψ′

∂η > 0 and hence dα
dη > 0.

Proof of Proposition 5. When β = ∞, the CRA’s screening intensity is the same across both

periods. Denote this screening intensity by α. By assumption, ηvh + (1 − η)vℓ ≥ 0. Because

α ≤ αmax < 1, in period 2 we have γj = (1− µj)(1− η)(1−α)mj < 1− η for each state j = s, f, h.

Thus, for each state pj > 0, where pj is the price of the high-rated security in state j. In period 2,

the continuation payoff ∆2 is zero, so (1− ϕ)pj > ∆2, and our analysis of the single-period model

when q = 0 implies that the equilibrium manipulation intensity is m∗
j = 1 for j = s, f, h.

Now, consider the difference in the opportunistic issuer’s continuation payoffs in period 1,

∆(δ) = πf − πs. In state j in period 2, this issuer obtains a high rating with probability η + (1−

η)(1− α) (because m∗
j = 1). The price of the security in state j is pj = p(µj , α, 1). Thus,

∆(δ) = δ(1− ϕ)[η + (1− η)(1− α)] [p(µf , α, 1)− p(0, α, 1)] . (67)

If q = 0 and m∗
1 ∈ (0, 1), the equilibrium condition in the two-period model in equation (18)

reduces to

(1− ϕ)p(µ1, α,m
∗
1) = ∆(δ). (68)

Since p(µ, α,m) is strictly increasing in µ and µf > µs = 0, we have p(µf , α, 1) > p(0, α, 1). Thus,

∆(δ) > 0 for any δ > 0. Hence, there exists a δ > 0 such that (1 − ϕ)p(µ1, α, 1) = ∆(δ) and a

δ̄ > 0 such that (1 − ϕ)p(µ1, α, 0) = ∆(δ̄). That is, m∗
1 = 1 when δ = δ and m∗

1 = 0 when δ = δ̄.

Furthermore, the first-period price p(µ1, α,m
∗
1) decreases in m∗

1, the second-period price in state

f , p(µf , α, 1), increases in m
∗
1 (because µf increases in m∗

1), and the second-period price in state s,

p(0, α, 1), is invariant to m∗
1. Hence, it follows that δ < δ̄ and that m∗

1 ∈ (0, 1) for δ ∈ (δ, δ̄).

Now, suppose that δ ∈ (δ, δ̄) so that the manipulation intensity m∗
1 satisfies the equilibrium
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condition in equation (68). Let γ1 = γ(µ1, α,m
∗
1) = (1−µ1)(1−η)(1−α)m∗

1 denote the first-period

error rate. From equation (11), we know that the first-period price p(µ1, α,m
∗
1) can be written in

terms of γ1. Let w(α, γ1 | µ1) = (1 − ϕ)p(α, γ1 | µ1) −∆(δ). Then, equation (68) may be written

as w(α, γ1 | µ1) = 0. By the implicit function theorem,

dγ1
dα

= − ∂w/∂α

∂w/∂γ1
. (69)

Now, an increase in γ1 reduces p, the first-period price. Further, it leads to an increase in µf ,

the posterior probability of the truthful issuer in state f , and hence an increase in the second-period

price in state f , p(µf , α, 1). That is, it increases ∆(δ). Thus, ∂w
∂γ1

< 0. It therefore follows that

dγ1
dα > 0 if and only if ∂w

∂α > 0.

Since the first-period price p(µ1, α,m
∗
1) depends on α only through its effect on γ1 (i.e., dp

dα = 0

for γ1 fixed), ∂w
∂α has the opposite sign to ∂∆

∂α . From the definition of ∆(δ) in equation (67), we have

∆(δ) = δ(1− ϕ)[η + (1− η)(1− α)]

(
ηvh + (1− µf )(1− η)(1− α)vℓ
η + (1− µf )(1− η)(1− α)

− ηvh + (1− η)(1− α)vℓ
η + (1− η)(1− α)

)
(70)

= δ(1− ϕ)
µfη(1− η)(1− α)(vh − vℓ)

η + (1− µf )(1− η)(1− α)
(71)

= δ(1− ϕ)
µfη(vh − vℓ)

1− µf + η
(1−µf )(1−η)(1−α)

. (72)

Since µf = µ1

1− γ1
1−η

does not depend on α for a given γ1, it follows immediately that ∂∆
∂α < 0. Hence,

dγ1
dα > 0.
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