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ABSTRACT

We consider the problem of inferring node labels in a partially
labeled graph where each node in the graph has multiple label
types and each label type has a large number of possible labels.
Existing approaches such as Label Propagation [27] fail to con-
sider interactions between the label types. Our proposed method,
called EdgeExplain, explicitly models these interactions, while still
allowing scalable inference under a distributed message-passing
architecture. On a large subset of the Facebook social network,
collected in a previous study [4], EdgeExplain outperforms label
propagation for several label types, with lifts of up to 120% for
recall@1 and 60% for recall@3.
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1 INTRODUCTION

Consider the problem of inferring multiple fields such as the home-
towns, current cities, and employers of users of a social network,
where users often only partially fill in their profile, if at all. Here,
each user is associated with one label of each label type (such
as hometown, employer, etc.), and the set of possible labels for
each type is very high-dimensional. By predicting the profile fields,
the social network can make better friend recommendations or
show more relevant content. Consequently, accurate predictions
can greatly improve the user experience.

Such graph-based semi-supervised learning problems have been
widely studied. A standard method of label inference is label propa-
gation and its variants [2, 3, 20, 25–27], which try to set the label
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Figure 1: An example graph of u and her friends: The home-

town friends of u coincidentally contain a subset with cur-

rent city C ′
. This swamps the group from u’s actual cur-

rent cityC, causing label propagation to inferC ′
for u. How-

ever, our proposedmodel (called EdgeExplain) correctly ex-

plains all friendships by setting the hometown to be H and

current city to be C.

probabilities of nodes so that friends have similar probabilities.
However, label propagation assumes only a single category of re-
lationships. It therefore fails to address the complexity of edge
formation in networks, where nodes have different reasons to link
to each other (see Figure 1 for an example). Statistical relational
learning methods [6, 13, 14] build classifiers based on both node
attributes and links, but [15] show that the performance of these
methods is comparable to label propagation. Other powerful mod-
els [8, 12, 17, 19, 21] are difficult to scale. Graph structure has
been modeled using latent classes [1, 11, 18, 22] and latent vari-
ables [10, 16, 19], but with an emphasis on link prediction. More
recent work on attribute inference in social networks [7, 23, 24]
use variants of random walks and label propagation.

Our proposed method, named EdgeExplain, approaches the
problem from a different viewpoint, using the following intuition:
Two people form an edge in a social network because they share
the same label for one or more label types (e.g., both went to the
same college). Using this intuition, we can go beyond standard label
propagation in the following way: instead of taking the graph as
given, and modeling labels as items that propagate over this graph,
we consider the labels as factors that can explain the observed
graph structure. For example, the inferences for u made by label
propagation leave u’s edges from C completely unexplained. Our
proposed method rectifies this, by trying to infer node labels such
that for each edge u ∼ v , we can explain the existence of the
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edge in terms of a shared label — u and v are friends from the same
hometown, or college, or the like. While we are primarily interested
in inferring labels, we note that the inferred reason for each edge
can be useful by itself. For example, if a new node u joins a network
and forms and edge with v , and we can infer that the reason is a
shared college, we can recommend other college friends of v as
possible new edges for u.
Our contributions are as follows.
Formulation:We propose a probabilistic model, called EdgeExplain,
for the social network given the labels of all nodes in the network.
This model codifies the intuition of “explaining link” via shared
labels. The model has two key properties. First, the presence or
absence of a link is conditionally independent of all other nodes
and edges given the labels of the two endpoints of the link. This
enables distributed computation for inference, which is important
for scaling to large networks. Second, labels corresponding to all
the label types are jointly considered in the model.
Scalable inference: We propose two approaches for inference under
EdgeExplain: a relaxation labeling approach, and a variational
method. Both are scalable iterative methods. The difference is that
relaxation labeling works with a modified (“relaxed”) version of
the probabilistic model, while the variational approach optimizes
a lower bound of the likelihood of EdgeExplain. We present a
comparison of these two approaches under our problem setting.
Analysis:We present an analysis of the conditions that affect the
accuracy of EdgeExplain relative to label propagation. In particular,
we find conditions under which the inferences of label propagation
(which looks at each label type independently) deviate maximally
from those of EdgeExplain (which does joint inference).
Empirical evaluation: We show that EdgeExplain is more accurate
than competing baselines on several datasets, including a sample
of the Facebook social network and a movie network. On Facebook,
EdgeExplain achieves lifts of up to 120% for recall@1 and 60% for
recall@3 over label propagation. Among the inference procedures
for EdgeExplain, relaxation labeling works better than variational
inference in most cases.

2 THE EDGEEXPLAIN MODEL

Consider an undirected networkG = (V ,E)with nodesV and edges
E. Let T = {t1, . . . , t |T |} denote the set of label types. For each
label type t ∈ T , let L(t) denote the (high-dimensional) set of labels
for that label type. Each node in the graph is associated with binary
variables Sut ℓ ∈ {0, 1}, where Sut ℓ = 1 if nodeu ∈ V has label ℓ for
label type t . Let SV ⊂ {Sut ℓ | u ∈ V , t ∈ T , ℓ ∈ L(t)} denote the set
of variables whose values are known (the “visible” variables). Let
SH denote the remaining variables (the “hidden” variables). Our
goal is to infer the correct values of SH , given SV and G.

One simple approach is to apply Label Propagation separately
for each label type. However, this is flawed, because it treats the
label types as independent. For example, in the context of social
networks, it implicitly assumes that friends tend to be similar in all
respects (i.e., all label types). However, intuitively, each friendship
tends to have a single reason: two people are friends because they
share the same high school or college or current city, etc. Thus,
friendships need to be modeled by considering all label types jointly.

We propose a probabilistic model (called EdgeExplain) for such
networks.

P(SV , SH | G) =
1
Z

∏
u∼v

softmax
t ∈T

(r (u,v, t)) (1)

r (u,v, t) =
∑

ℓ∈L(t )

Sut ℓSvt ℓ (2)

softmax
t ∈T

(r (u,v, t)) = σ

(
α

∑
t ∈T

r (u,v, t) + c

)
, (3)

where Z is a normalization constant, and σ (x) = 1/(1 + e−x ) is
the sigmoid function. Here, r (u,v, t) indicates whether a shared
label type t is the reason underlying the edge u ∼ v (Eq. 2). Eq. 1 is
maximized if the softmax function achieves a high value for each
edge u ∼ v , i.e., if each edge is “explained.” This is achieved if the
sum

∑
t ∈T r (u,v, t) is relatively high, which in turn is satisfied if

the product Sut ℓSvt ℓ is 1 for even one label ℓ — in other words,
when there exists any label ℓ that both u and v share.

3 INFERENCE

We consider two methods for parameter inference under Edge-
Explain. The relaxation labeling approach, called REL, solves a
relaxed optimization problem where the binary hidden variables
Sut ℓ ∈ {0, 1} are replaced by real-valued variables fut ℓ ∈ [0, 1].
The variational approach, called VAR, maximizes a lower bound on
the likelihood of EdgeExplain. Both approaches can scale to large
networks, and our work serves as a comparison of these two in the
context of network inference.

3.1 Relaxation Labeling

Inference under EdgeExplain can be viewed as the problem of
maximizing the model likelihood (Eqs. 1-3) over the hidden vari-
ables Sut ℓ ∈ {0, 1}. In the spirit of [27], we propose a relaxation in
terms of a real-valued function f , with fut ℓ ∈ [0, 1] representing
the probability that Sut ℓ = 1, i.e., the probability that user u has
label ℓ for label type t . This yields the following optimization:

Maximize
f

∑
u∼v

log
(
softmax
t ∈T

(r (u,v, t))
)

(4)

where r (u,v, t) =
∑

ℓ∈L(t )

fut ℓ fvt ℓ , (5)∑
ℓ∈L(t )

fut ℓ = 1(∀t ∈ T ), fut ℓ ≥ 0. (6)

The problem is not convex in f , but is convex in f u = { fut ℓ |t ∈
T , ℓ ∈ L(t)} if the distributions f v are held fixed for all nodes
v , u. Hence, we propose an iterative algorithm to infer f . Given
f v for all v , u, finding the optimal f u corresponds to solving the
following sub-problem:

Maximize
f u

д(f u ) =
∑

v ∈Γ(u)

log
(
softmax
t ∈T

(r (u,v, t))
)
,

where the summation is only over the set Γ(u) of the friends of u,
and we again restrict f u to be a set of |T | probability distributions,
one for each label type. We note that д(·) is convex and Lipschitz
continuous with constant L = α · |Γ(u)|, where |Γ(u)| is the number
of friends of u. Thus, the sub-problem can be optimally solved by



projected gradient ascent. We iteratively solve such sub-problems,
one for each node u, until we converge to a local optimum of Eq. 4.

3.2 Variational Inference

From Eqs. 1-3, we have:

P(SV , SH | G) =
1
Z

∏
u∼v

σ

(
α

∑
t ∈T

∑
ℓ∈L(t )

Sut ℓSvt ℓ + c

)
.

Given a fixed assignment to the visible variables SV and any distri-
bution Q(SH ) over the hidden variables, we have the inequality:

ln P(SV | G) ≥ −
∑
SH

Q(SH ) ln Q(SH )

P(SH , SV | G)
. (7)

We shall choose a fully factorized distribution for Q(SH ):

Q(SH ) =
∏
u

∏
t ∈T

∏
ℓ∈L(t )

µSut ℓut ℓ ,

where µut · represents a multinomial distribution over all labels
ℓ ∈ L(t) for label type t for user u; for notational convenience, we
set µut ℓ to 0 or 1 if the user’s labels are known.

Define ηuvt =
∑

ℓ∈L(t ) µut ℓµvt ℓ . Let w ∈ {0, 1} |T | represent
a binary vector of length |T |, with wt being the t th component
and |w| the number of “ones”. Given the parameters µ \ {µut ·}, the
distribution µ∗ut ℓ that maximizes the RHS of Eq. 7 is given by:

µ∗ut ℓ ∝ exp


∑
{v |u∼v }

µvt ℓ
∑
w

ϕuvt (w)

 ,
where ϕuvt (w) = ln

(
1 + e−(α |w |+c)

)
(−1)wt

∏
t ′,t

κ(wt ′ ,ηuvt ′)

and κ(wt ′ ,ηuvt ′) = η
wt ′
uvt ′(1 − ηuvt ′)

1−wt ′ .

We iterate over the nodes, applying this variational update, until
convergence.

4 ANALYSIS

To analyze EdgeExplain, we set up a simplified “ego” network G

consisting of a central node u surrounded by N friends v1, . . . ,vN .
Let Yu = {Yu (t1), . . . ,Yu (t |T |)} denote the labels of u for each of
the |T | label types. Similarly, let Yi represent the vector of labels
for node vi . Let π (Yu ,Yv1 , . . . ,YvN ) denote the probability of ob-
serving these labels. Since Gu is a tree rooted at u, the labels of the
friends are conditionally independent given the labels of the ego:
π (Yu ,Yv1 , . . . ,YvN ) = π (Yu ) ·

∏
π (Yi | Yu ).

We generate node labels as follows. First, the ego u selects her
labels first according to a prior π (Yu ). Then, each friend vi inde-
pendently selects a “reason” for her friendship with u by selecting
the label type Zi that vi shares with u. This shared label type is
drawn according to a multinomial distribution q : q(Zi = t) = qt .
Thus, Yi (Zi ) = Yu (Zi ). The remaining labels of vi are drawn from
π (Yi | Yi (Zi )). This construction ofYu andYi ensures that there is a
shared label for each edge. We now analyze the following inference
problem: Given the network Gu and the labels Yi of all friends vi ,
predict the labels Yu of the ego.

Clearly, EdgeExplain can choose the correct labels Yu for the
ego, since each friendship can explained by at least one shared
label. LP fails if the ego has a label ℓ of type t (i.e., Yu (t) = ℓ), but a

different label ℓ′ , ℓ of the same type t is shared by more friends;
we will call this the event “LP fails via (t , ℓ, ℓ′).” Define

pt,t ′(ℓ) ≜ π (Yi (t) = ℓ | Yu and {Zi = t ′ , t}),

∆t, ℓ,ℓ′ ≜
∑
t ′,t

qt ′
(
pt,t ′(ℓ

′) − pt,t ′(ℓ)
)
− qt .

Theorem 4.1. If ∆t, ℓ,ℓ′ > 0, then for any small ϵ such that 0 <
ϵ < ∆t, ℓ,ℓ′ , we have:

P(LP fails via (t , ℓ, ℓ′)) ≥
∑

{Yu |Yu (t )=ℓ }

π (Yu )·
(
1 − exp{−0.5N (∆t, ℓ,ℓ′ − ϵ)2}

)
.

Thus, LP is likely to fail when ∆t, ℓ,ℓ′ is large. This happens when
the following two conditions hold: (a) label ℓ is somewhat less likely
than ℓ′ in the entire population (so that pt,t ′(ℓ′)−pt,t ′(ℓ) > 0), and
(b) friendships based on a shared label for label type t are rare (i.e.,
qt is small and consequently qt ′ can be large).

Maximizing the lower bound of Thm. 4.1 gives us the conditions
when LP is most likely to fail. When there are only two label types,
and the labels for the ego and her friends follow the same marginal
distribution, we can show the following.

Theorem 4.2. With qt < 0.5, the lower bound in Theorem 4.1

under TwoLabels is maximized for

∆t, ℓ,ℓ′ = O

(√
logN
N

)
, pt,t ′(ℓ) =

1 − 2qt − ϵ

2(1 − qt )
−O

(√
logN
N

)
,

Theorem 4.2 demonstrates the link between the probability
pt,t ′(ℓ) of a person having label ℓ and the probability qt of forming
a friendship based on a shared label of type t . If pt,t ′(ℓ) is too large,
then it becomes very unlikely that another label ℓ′ can be shared
by more friends than ℓ. Conversely, if pt,t ′(ℓ) is too small, the ego
will rarely have label ℓ, so there will be fewer situations where LP
fails. Setting pt,t ′(ℓ) ≈ (1 − 2qt )/(2(1 − qt )) achieves the optimal
balance between these two.

5 EXPERIMENTS

We performed several experiments on simulated and real-world
data to verify the accuracy of EdgeExplain. Here, we present some
results based on two datasets: a snapshot of the Facebook social
network, and a movie network.

5.1 Evaluation on the Facebook network

We performed a study on a previously collected subgraph of the
Facebook social network [4]. 1 This data set consists of a large
number of users and their friendship edges, as well as the home-
town, current city, high school, college, and employer for each user,
whenever these fields are available and have their visibility set
to public. The accuracy of label inference is measured via 5-fold
cross-validation

Figure 2 shows the lift in recall achieved by EdgeExplain over LP.
We observe similar performance of bothmethods for hometown and
current city, but increasing improvements for high school, college,
1We worked on a snapshot of data, and there was no interaction with users or their
experience on the site.
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Figure 2: Accuracy of EdgeExplain: Plots (a) and (b) show the lift of EdgeExplain over label propagation (LP). Increasing

the number of friends K benefits EdgeExplain much more than label propagation for high school, college, and especially

employer. Plots (c) and (d) compare the lift of VAR and REL over LP, for K = 100. REL is seen to outperform VAR, and both are

better than LP.
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Figure 3: Precision@1 for various label inference methods on the movie network.

and employer. With fewer employer-based friendships, the proto-
typical example of Figure 1 would also occur frequently, with label
propagation likely picking common employers of (say) hometown
friends instead of the less common friendships based on the actual
employer. By attempting to explain each friendship, EdgeExplain
is able to infer the employer even under such difficult circumstances.
This ability to perform well even for under-represented label types
makes EdgeExplain particularly attractive. Plots (c) and (d) com-
pare the two inference methods (VAR and REL) for EdgeExplain.
While both outperform LP, REL is more accurate than VAR.

5.2 Evaluation on a Movie Network

We constructed a network of English-language movies, where two
movies are connected by an edge if they have the same writer, or
cinematographer, or production designer (they could share several
of these label types). 2 There are 23, 921 movies and 189, 828 edges.
We compared LP against the inference methods for EdgeExplain
(REL, VAR, and a combination of the two called HYBRID). 3 We
also tested three algorithms that have been recommended by prior
work. LINK [24] represents each node as a feature vector encoding
the IDs of its neighboring nodes, and a standard classifier is used to
predict labels from the feature vector. Given the size of the feature
vector (23, 921 binary features) and the size of the output labels
(39, 317 labels in total), we choose Naive Bayes as the classifier.
CN-SAN [9] assigns to each unlabeled node the most popular label
of each label type among the node’s neighbors, and iterates this
process until convergence. RWR-SAN [9, 23] picks labels for each

2We have also experimented with other label types such as director and composer. All
results are qualitatively similar and exhibit the same trends.
3Details of HYBRID are available in [5].

label type based on random walks with restarts on a combined
graph that includes movie-movie and movie-label edges.

Figure 3 shows the precision@1 for different fractions of the
network being labeled. All methods achieve higher accuracy for
cinematographer and production designer, but lower accuracy for
writer. This is because less than 11% of the edges have a shared-
writer as the reason for that edge. All EdgeExplain inference pro-
cedures (REL, VAR, and HYBRID) are better than the competing
methods for all label types. LP is best among the baseline methods;
LINK performed poorly and is omitted from the plots.

6 CONCLUSIONS

We proposed the problem of jointly inferring multiple correlated
label types in a large network and described the problems with
existing single-label models. In common instantiations of this prob-
lem, edges are often created for a reason associated with a particular
label type (e.g., in a social network, two users may link because they
went to the same high school, but they did not go to the same col-
lege). We propose the EdgeExplain model which explicitly tries to
“explain” the reason behind each edge in terms of at least one shared
label between nodes.We presented two inference methods for Edge-
Explain: a relaxation-labeling method and a variational approach,
both of which lead to fast iterative inference that is equivalent in
running time to basic label propagation. Our empirical evaluation
on a large subset of the Facebook graph amply demonstrates the
benefits of EdgeExplain, with significant improvements across a
set of different label types.
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