
The Paths More Taken: Matching DOM Trees to Search
Logs for Accurate Webpage Clustering

Deepayan Chakrabarti
Yahoo! Research
Santa Clara, CA

deepay@yahoo-inc.com

Rupesh R. Mehta
Yahoo! Labs,

Bangalore, India
rupeshm@yahoo-inc.com

ABSTRACT
An unsupervised clustering of the webpages on a website is
a primary requirement for most wrapper induction and au-
tomated data extraction methods. Since page content can
vary drastically across pages of one cluster (e.g., all product
pages on amazon.com), traditional clustering methods typ-
ically use some distance function between the DOM trees
representing a pair of webpages. However, without know-
ing which portions of the DOM tree are “important,” such
distance functions might discriminate between similar pages
based on trivial features (e.g., differing number of reviews on
two product pages), or club together distinct types of pages
based on superficial features present in the DOM trees of
both (e.g., matching footer/copyright), leading to poor clus-
tering performance.

We propose using search logs to automatically find paths
in the DOM trees that mark out important portions of pages,
e.g., the product title in a product page. Such paths are
identified via a global analysis of the entire website, whereby
search data for popular pages can be used to infer good
paths even for other pages that receive little or no search
traffic. The webpages on the website are then clustered us-
ing these “key” paths. Our algorithm only requires informa-
tion on search queries, and the webpages clicked in response
to them; there is no need for human input, and it does not
need to be told which portion of a webpage the user found
interesting. The resulting clusterings achieve an adjusted
RAND score of over 0.9 on half of the websites (a score of
1 indicating a perfect clustering), and 59% better scores on
average than competing algorithms. Besides leading to re-
fined clusterings, these key paths can be useful in the wrap-
per induction process itself, as shown by the high degree of
match between the key paths and the manually identified
paths used in existing wrappers for these sites (90% average
precision).

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous

General Terms
Algorithms

Keywords
Wrapper induction, Clustering, Search logs

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

Figure 1: A webpage and its key portions.

1. INTRODUCTION
The Web provides unstructured data while the databases

underlying most information systems prefer structured data.
This basic mismatch has fueled a lot of work on data extrac-
tion from the Web, so that a service like pricegrabber.com
can extract structured data from webpages, store it in a
database, and then allow powerful queries into it, such as
searches by manufacturer, or store, or limited price ranges,
etc. The data gathering is typically handled by a wrapper
that, given a webpage, can extract informative fields from
it by following certain pre-defined paths in its DOM tree.
However, building wrappers is a labor-intensive task requir-
ing manual labeling of informative sections on a few example
webpages, after which an induction process automatically in-
fers paths in the DOM tree that point to those sections [15].
Since a website will typically have several types of pages,
multiple wrappers need to be learnt, and most wrapper in-
duction work assumes that some oracle can readily provide
example pages of each type.

In practice, however, such example pages must themselves
be obtained in a pre-processing step. Scalability concerns
rule out manual exploration of websites to find webpages of
each type. The typical approach is to cluster the webpages,
and then declare each cluster to be a distinct type. Any
errors in this clustering stage, however, can have a very sig-
nificant effect on the quality of wrapper induction. If pages
of the same type are split into multiple clusters, manual la-
beling and wrapper induction will have to be performed for
each, leading to scalability and cost issues. Worse still, if
a cluster is heterogeneous, then it might be impossible to
learn one wrapper for all pages in the cluster, leading to
loss of data or costly reprocessing. Thus, the quality of the
clustering plays a crucial role in the final quality and com-
prehensiveness of the extracted data.

Pages of the same type on a website could have very differ-
ent content (e.g., all“product”pages on amazon.com), imply-

ing that clustering based on content is unlikely to succeed.
Instead, we need webpages with similar structure, possibly
generated by the same server-side script. As each webpage
can be represented by a DOM tree, the obvious choice is to
cluster using some tree-matching technique that can account
for minor variations between trees. However, pre-existing
methods such as Path-shingles [5] and pq-Grams [1] con-
sider all nodes and paths in the DOM tree as equally impor-
tant. This can lead to pages being matched due to superficial
features (e.g., both contain ads/copyright notices) or incor-
rectly being split apart (e.g., differing number of reviews on
two product pages). We remedy this by leveraging search
logs to identify “key” paths in the DOM trees, and using
these to match DOM trees and cluster the webpages.

The key paths on a webpage are those whose contents
provide the basic information desired by most readers of that
webpage (Figure 1). Consequently, these are also the most
important paths for data extraction and wrapper induction.
For accurate clustering, we need to find at least one key path
for each webpage type in a website: if we cluster all pages
possessing a product title path (as in Figure 1), these will
automatically be good example pages for learning wrappers
to extract price and rating as well. The search logs aid us
by pinpointing terms in webpages that users care the most
about (the query terms), and our algorithms match query
terms to path contents, over all queries and webpages, to
identify a global set of key paths for the entire website.

Note that this work is not simply about finding the in-
formative sections of a page, but rather about paths that
are markers for pages of a certain type. Key paths typi-
cally come from informative sections, but not all paths in
the informative sections are key paths.

Our contributions. In this paper, we present a com-
pletely unsupervised approach to find key paths, that can
subsequently be used to cluster pages on the website. Our
contributions are as follows.

(1) Our algorithm performs a global analysis of the entire
site, using searches on popular pages to infer the key paths
applicable even to pages with little or no search activity.

(2) We study the problem of dependence between key
paths, for instance when they co-occur too frequently or
their content is too similar. Such dependence can lead to
incorrectly split clusters. We propose a weighted indepen-
dent set formulation to pick the best independent key paths
in such a setting. This technique is applicable to large-scale
feature selection in general, when the features have associ-
ated rankings or goodness scores.

(3) We demonstrate the accuracy of our algorithm em-
pirically on 10 real-world websites, where the automatically
generated clustering matches the ground truth with adjusted
RAND scores of 0.9 or higher on 5 sites (a score of 1 indi-
cates perfect match), and outperforming the best competing
baseline by 59% on average.

(4) The key paths found by our algorithm also match
many of the paths found manually via a separate wrapper
induction system (90% average precision), again over the 10
websites. Thus, the key paths can not only provide cues for
human labelers in the ensuing wrapper induction process,
but also makes the clusters easily interpretable.

Organization. After a discussion of related work in Sec-
tion 2, we describe our proposed method in Section 3. The
accuracy of our key paths, and the accuracy of the corre-
sponding clustering, are demonstrated in Section 4. Finally,
we conclude in Section 5.

2. RELATED WORK
There has been a lot of work on wrapper induction as

well as on matching webpages (and trees in general) based
on their structure. We split up our discussion along these
two lines.

Wrapper Induction. Given a few example pages and
the tuples of information that can be extracted from them,
wrapper induction is the problem of learning a wrapper that
can then be applied to other pages of similar structure to
extract the same tuples. There has been a lot of work on
this problem [15, 8, 14, 17, 12, 7]. All of these require a
few example pages to be specified, from which learning can
occur. Our goal is to automatically create a clustering such
that each cluster corresponds to a wrapper, and pages from
each cluster can serve as examples for wrapper induction.
Thus, our work would be useful in all such approaches.

Fully automated means of wrapper induction have also
been developed [6], but these can extract data from pages
where information is repeated in a similar structure, such
as lists. However, in more general cases (say, a product
page with one title and one price), one must still revert to
the traditional semi-supervised techniques and hence need a
clustering of the webpages.

Webpage Clustering. Methods for structural cluster-
ing of webpages have used similarity metrics based on the
Fourier transform [11], distance functions over DOM trees [18,
22], URL patterns [9], and similarity of HTML tag or path [9].
Tree-matching techniques have also been studied outside the
context of clustering DOM trees [20, 21, 16]. A few meth-
ods combine the processes of webpage clustering and wrap-
per induction [22, 8]. A survey of algorithms for document
structure similarity and clustering is presented in [5].

While all of these are relevant to our work, we ideally need
clustering algorithms that are extremely fast, and do not
require pairwise distance measurements between all pairs of
trees. We discuss a few such methods below.

Buttler [5] proposed a linear time technique to measure
structural similarity between any pair of webpages by main-
taining a shingle [4] of the structure of each webpage. This
shingle consists of just a few paths in the webpage; hence we
call it Path Shingles. He showed that this simple technique
was not only the most efficient, but also accurate when com-
pared to other similarity metrics, such as tree edit distance
and Fourier-transform based distances. Due to its mix of
efficiency and accuracy, we build on this basic scheme for
our clustering algorithm.

Augsten et al. [1] proposed an approximate tree matching
technique requiring O(n log n) time. Their method creates a
sketch of a tree using “pq-Grams”, which are defined as sub-
trees of a specific shape. The similarity between two trees
is obtained by computing the pq-Gram distance, which is
based on the number of common pq-Grams between two
trees. pq-Grams provide a strong baseline against which to
compare our work.

All of these methods treat all nodes and paths as equally
important, and this can lead to heterogeneity or cluster split-
ting issues, depending on the site structure. As against all
of these methods, we incorporate search query logs in our
clustering method. This allows us to find paths and nodes
in the DOM tree that are the most relevant to users, and
we bias our clustering and distance functions towards these
paths. As we show empirically, our technique achieves high

accuracies in clustering the webpages in 10 websites, and
yields significant improvements over both Path Shingles and
pq-Grams. To the best of our knowledge, ours is the first
technique to use web search logs to identify key paths and
use them for structural clustering of web documents.

3. PROPOSED METHOD
Our goal is to cluster the webpages from a given website

so that structurally similar pages are placed together in the
same cluster. Note that pages in a cluster are allowed to be
topically distinct. The structure of a webpage is given by
its DOM tree; equivalently, the page can be represented as
a set of paths from the root (<html>) to every node in the
DOM tree. In addition, we have search logs which list the
queries for which webpages from this website were returned
as search results and clicked on by users.

Main Idea. There are three keys to our proposed method:
(a) the terms included in search queries are the primary
terms of interest to users, (b) a webpage clicked in response
to a query often contains the query terms in its main content
section, and hence, (c) the paths whose content includes such
query terms frequently are good candidates for “key” paths.
Formalizing this intuition is the first challenge.

The second challenge arises from the fact that paths can
be dependent. An obvious example of this is when some path
x1 is a prefix of another path x2: whenever x2 exists on a
page p, so must x1, and the content C(x1, p) of x1 in p must
be a superset of C(x2, p). Thus, x1 must always match at
least as many query terms as x2. Another example is when
the same information is mentioned in multiple places in the
webpage (e.g., the product title is mentioned in a header
and in the “features” section). Even though the paths are
not related, their contents are similar over many webpages.
Two paths x1 and x2 can also be dependent if they occur on
the same set of pages, even if their content is different (e.g.,
average rating only occurs on pages with a product title).
Intuitively, one can use either of x1 or x2 as a key path to
distinguish webpages of this “type” from other pages, and
having both as key paths confers no extra advantages. In
fact, it can hurt the clustering quality: for instance, if paths
x1, . . . , xn mostly co-occur in one large cluster of pages but
occasionally one or the other is missing on a few pages, then
having all of them as key paths would lead to the break-
up of the large cluster into one set of pages which contain
all the paths, plus many small chunks, each of which lacks
one particular xi. In this case, it is better to pick just one
path as a key path, creating just one large cluster. Thus,
to achieve the best clustering, we must ensure that the key
paths are independent.

Finally, once these key independent paths have been iden-
tified, the webpages must be quickly clustered according to
the presence or absence of these paths in their DOM trees.

Thus, the three steps in our algorithm are:
(1) Find key paths for a website
(2) Remove dependence by picking the best set of inde-

pendent key paths
(3) Cluster webpages using these independent key paths

The bulk of our work is in steps (1) and (2), so we present
step (3) first in Section 3.1 and then focus on the key path
identification problem in Sections 3.2 and 3.3. Finally, in
Section 3.4, we will discuss some optimizations that improve
the accuracy of the clustering.

Notation. As noted above, we use xi to represent paths in
the DOM tree, and also the nodes pointed to by those paths.
Note that these need not be leaf nodes. We use xi = 1 to
denote the presence of xi on some page, and xi = 0 to
denote its absence. If xi = 1 on page p, then p contains
an instance of xi, and C(xi, p) represents the bag of terms
in the content of xi on p. When multiple instances of xi

exist on the same page, C(xi, p) contains the union of their
contents. Associated with page p is the (possibly empty) set
of queries Q(p) for which p was returned as a search result
and was clicked; depending on the context, Q(p) also denotes
the bag of query terms in the query set. The set of matching
terms of xi on p is given by M(xi, p) = C(xi, p)

T
Q(p).

3.1 Webpage Clustering Using Key Paths
Every clustering technique requires some notion of sim-

ilarity, either between two points, or between a point and
a cluster. Our points are webpages, each of which can be
represented as a set of paths. We do not count repetitions of
a path on a page because pages of the same type can often
have different number of repetitions for the same path, e.g.,
varying number of reviews/comments on a product page. A
well-known similarity function on sets is Jaccard similarity:

J(S1, S2) =
|S1

T
S2|

|S1

S
S2|

,

which can be estimated quickly using shingles: (a) for each
set, hash all elements and pick the k elements with the min-
imum hash values, and then (b) compute the Jaccard sim-
ilarity between the shingles of S1 and S2, which is an un-
biased estimator of the Jaccard similarity between the two
sets [4]. A basic shingle-based clustering algorithm places all
sets with identical shingles in the same cluster; more com-
plicated variants allow sets sharing at least k′ < k shingle-
elements to be in the same cluster. The basic shingle-based
clustering scheme has the advantage that any new page can
be mapped to its cluster in O(1) time (once its shingle has
been computed), leading to faster runtime performance in a
production environment; hence, we modify this basic scheme
to accommodate key paths.

The key path identification algorithm (described in the
following sections) returns a ranked list of key paths, and
similarity computations should be biased towards these. We
propose a two-step shingle construction process: given a
webpage with a set of paths W , we first pick the top-ranked
key paths present in W , and if there are fewer than k of
these, we then pick the remaining paths in the shingle via
the usual min-hashing scheme described above. If more than
k key paths are present in W , the shingle consists of the top-
ranked k of these. Now, all pages with the same shingle are
mapped to the same cluster. This allows pages containing
key paths to be clustered on the basis of these paths, while
defaulting to the traditional path-shingling approach [5] for
pages without any key paths (say, “Help” pages, and others
pages that are never queried for).

Thus, given a ranked list of key paths, shingle-based clus-
tering can be used to group pages quickly, and to cluster
newly crawled pages as well. Next, we look at the problem
of generating this ranked list.

3.2 Identifying Key Paths
Our proposed method first computes the goodness of each

path independently of others, and then picks the best set of
independent paths from among these. We discuss the first
step in this section, and the second step in Section 3.3.

We want paths that: (a) contain most of the query terms,
(b) contain few or no terms that are not present in queries,
and (c) occur frequently on pages that are clicked. The
first two conditions correspond to the recall and precision
of a path with respect to the query terms, while the third
ensures that the path is relevant to a significant fraction of
the query workload. We formalize these conditions in terms
of two properties of a given path x: its expected precision
and expected recall.

Expected Precision of x. Among all possible instances
of x over all pages of the website, pick one uniformly at
random. Let this page be p. The precision of this instance
is |M(x, p)|/|C(x, p)| if Q(p) is non-empty, or zero other-
wise. We multiply this precision by the probability of having
picked this instance of x, and average this over all instances
of x to get the expected precision EP (x):

Prec(x, p) =

 |M(x,p)|
|C(x,p)| if xp = 1 and Q(p) 6= {φ}

0 otherwise

EP (x) =
X

p

P (xp = 1) · P (Q(p) 6= {φ}) · Prec(x, p) (1)

The first term in Equation 1 is the fraction of pages on which
x is present, and when combined with the second term, it
gives the fraction of queried and clicked pages where x is
present. Depending on the application, these factors could
be given different relative weights as well.

Expected recall of x. The recall of an instance of x in
page p is given by |M(x, p)|/|Q(p)|. Weighing this by the
probability of picking this instance, and averaging over all
instances, gives us the expected recall ER(x):

Rec(x, p) =

 |M(x,p)|
|Q(p)| if xp = 1 and Q(p) 6= {φ}

0 otherwise

ER(x) =
X

p

P (xp = 1) · P (Q(p) 6= {φ}) · Rec(x, p) (2)

Combining the two. A good path is one that scores highly
on both of these, and we observe empirically that precision
is more important than recall. The usual method of com-
bining precision and recall is via the F1 score, which is the
harmonic mean of the two; weighted versions of the F1 mea-
sure can be used to handle different weights for precision
and recall. However, the scores themselves can vary con-
siderably across websites, due to page structure (pages with
more text per DOM node might have lower precision and
higher recall on average), query workload distribution over
pages, and other such factors. Any particular combination
of these scores might not work on all sites. Instead, we for-
mulate this as a rank-aggregation problem [10], as follows.
We rank all paths according to expected precision, yielding
a ranking RP . We create another ranking RR according to
expected recall. Now, we combine these rankings into one
ranking, using Borda’s Method [3]: each path is assigned a
score that is the sum of the positions of that path in RP

and RR, and then all paths are ranked according to this
score to yield a final ranking RF . The relative importance
of precision to recall can be incorporated into the score com-
putation by scaling the position of each path in RR by some
constant factor β. Intuitively, this is the same as saying that
gaining one rank in the precision ranking RP is worth los-
ing 1/β ranks in the recall ranking RR (in our experiments,
β = 0.3). Apart from easy interpretability, this method is

also immune to differences in the typical precision and recall
values between websites.

To summarize, we compute expected precision and ex-
pected recall for all paths in a website, and then perform
rank aggregation to obtain one final ranking RF of paths.
However, each highly-ranked path might have several other
dependent paths, which might also have similarly high ranks.
We need to pick one set of paths that are highly-ranked ac-
cording to RF , and are independent of each other as well.
We discuss this next.

3.3 Picking Independent Key Paths
We are given a ranking RF of paths, and need to pick a

subset S that will be used in the clustering algorithm dis-
cussed in Section 3.1 (the ranking on S is induced by the
ranking RF). Recall that the clustering algorithm picks up
to k paths from a webpage, with preference being given to
paths in S. As noted before, paths may be dependent, and
having all of them in S can lead to unnecessary splitting of
clusters and poor clustering accuracy. We will first show how
we measure dependence between paths, and then present the
algorithm to pick the set S of independent paths.

Measuring Dependence. Let us consider a few examples
of dependent paths that occur in practice, which will natu-
rally lead to our algorithm for picking S. Suppose there are
two paths x1 and x2 that are both highly ranked according
to RF . Let P (x1) and P (x2) be the set of webpages in which
x1 and x2 are present. Three cases occur frequently.

(1) P (x1) ≈ P (x2): There are two common instances of
this. The first example is when x1 is the parent or close
ancestor of x2. The second example is when x2 points to
the product title header, and x1 to the product price. In
either case, keeping both x1 and x2 in S will mean that the
shingle for each page will contain either both x1 and x2,
or neither. Clearly, in the former case, two out of the k
available slots in the shingle are being used to represent the
same information, leading to suboptimal shingling. Hence,
either x1 or x2 should be kept in S, and not both.

(2) P (x1) ⊂ P (x2), similar content: An example of this is
when x2 points to the product title header, while x1 points
to another mention of the product title, but in the “product
features” section of the page. Since the features section does
not exist on all pages, P (x1) ⊂ P (x2). Now, if both x1 and
x2 are placed in S, then the cluster of product pages would
get split in two: the pages with the product title mentioned
in features section, and the pages without. Clearly, x2 does
not provide extra information on top of x1, and so such a
split hurts the quality of the clustering.

(3) P (x1) ⊂ P (x2), different content: An example of this
is when x2 points to the product title header, while x1 points
to the list of customer reviews, if any. Here, the decision to
split or not is application-dependent. However, for the task
of wrapper induction on product-centric websites, we find
that such splits are unnecessary. One problematic case is if
x1 is ranked much higher than x2 in RF and gets picked in S:
then, P (x1) and P (x2) \ P (x1) must be in different clusters
whether or not x2 is placed in S. Our solution is to bias the
precision and recall computations towards paths that occur
more frequently (by assigning a high relative weight to the
first term in Equations 1 and 2) so that x2 is likely to be
ranked higher than x1 in RF , and hence likelier to be picked
in S. When this is not the case, it usually implies that x1

is significantly more important than x2, and P (x1) deserves
to be in a cluster of its own.

These examples show that dependent paths can lead to
incorrect splits of clusters. Moreover, the proper shingle
size k for use in the clustering algorithm must then be ad-
justed for the degree of dependence in each website: if k is
too small, the shingle will be filled up entirely by dependent
paths, and if k is too large, there will be too many cluster
splits. Finally, if dependent paths are not removed, then
the set of key paths S becomes very large (by more than
an order of magnitude). In a production environment where
newly crawled pages from a large number of websites need
to be clustered in a streaming fashion, having to maintain
a large S in memory for each website can degrade runtime
performance or introduce bottlenecks. Thus, S must con-
tain only independent paths, and the previous discussion
suggests two factors that are important in determining the
degree of dependence.

Similarity of occurrence: Among all the pages where path x1

is present, what is the fraction in which x2 is present as well?
This tells us the degree to which the set of instances of x1 is
contained within those of x2. Considering this fraction, and
its converse, gives us the similarity of occurrence H(x1, x2):

H(x1, x2) =
|x1 = 1 ∧ x2 = 1|

min(|x1 = 1|, |x2 = 1|) .

High values of H(.) imply that one path is mostly contained
within the other, and so at most one of them can be present
in S.

Similarity of content: The relevance of a path’s content is
given by the degree to which it matches query terms. Hence,
we consider two paths to have similar content if they match
similar query terms whenever they co-occur on the same
page. We measure the degree of content similarity as just
the average fraction of shared query terms:

F (x1, x2, p) =
|M(x1, p)

T
M(x2, p)|

min(|M(x1, p)|, |M(x2, p)|)
F (x1, x2) = Ep∈P [F (x1, x2, p)] ,

where the expectation is taken over the set of pages P where
both x1 and x2 are present. Higher values of F (.) imply high
degree of content similarity.

Thresholds can be used to determine the level of depen-
dence that is suitable for the application. For the purposes
of clustering for improving the subsequent wrapper induc-
tion process, we use only similarity in occurrence (similarity
in content was empirically observed to be not useful, as ob-
served in case (3) above). Thus, two paths x1 and x2 are
dependent if H(x1, x2) ≥ θocc for some threshold θocc (in
our experiments, θocc = 0.97).

Picking Independent Paths. Given the relationships be-
tween paths, we need to pick the best set S of independent
paths. We formalize this as a graph problem, as follows.
The nodes of the graph are the set of top-k ranked paths
in RF (we empirically find that k = 100 is sufficient). Two
nodes are connected by an edge if they are dependent. Since
S must only contain pairwise-independent paths, no pair of
nodes in S must have an edge connecting them. In addi-
tion, each node (path) contains some information relevant
to queries on the website, so we want to cover as many of
them as possible. Finally, since the set of nodes originally
had a ranking RF , we would like to stay true to it, and pick
nodes preferentially from the top of the ranking. This same
setting is also applicable to the broader problem of feature

selection when we have some external data about the rela-
tive weights or rankings of the features, and would like to
pick an independent set of features.

This problem can be formulated as the well-known Maxi-
mum Weighted Independent Set problem, as follows.

Problem 1 (Maximum Weighted Independent Set).
Given a graph G = (V, W, E), where each node i ∈ V has
weight wi, pick a set of nodes S ⊆ V so as to:

Maximize
X
i∈S

wi

subject to (i, j) /∈ E ∀i, j ∈ S

In our particular setting, we observe that the top-ranked
paths are much more significant and useful than those lower
down in the ranked list, so we propose an exponential weight-
ing scheme for the paths. In effect, wi = αRF (i), where
RF (i) is the position of path i in RF (the top-ranked path
having position 1), and α < 1 is the exponential weighting
factor. Note that when α = 1, all weights are equal and
there is no extra reward for picking the top-ranked paths.

While the Maximum Weighted Independent Set problem
is NP-Hard in general, for certain weight settings a greedy al-
gorithm can get provably optimal solutions. We first present
the algorithm and then the proof of optimality.

Algorithm Greedy MWIS

input: the weighted graph G = (V, W, E)

Feasible set F = V ; Result set S = {φ}
while F 6= {φ}

new← arg maxi∈F wi // Pick top-ranked feasible node

S ← S ∪ {new} // Update result set

F = F \ ({new} ∪ {i | (new, i) ∈ E}) // and feasible set

end while

The greedy algorithm essentially picks the highest-weighted
node that is still feasible at every stage, and continues un-
til no nodes can be added. When this happens, every node
that is not in S is connected to some node in S, and so every
vertex in V is “covered.” Next, we see that this is optimal
for some values of the exponential weighting factor α.

Lemma 1. Greedy MWIS is optimal when α ≤ 0.5.

Proof. Suppose the Greedy MWIS solution S and the
optimal solution OPT differ. Let v ∈ V be the node with
the highest weight that belongs to S but not to OPT . Then,X

i∈S

wi −
X

i∈OPT

wi ≥ wv −
X

i∈OPT\S

wi

≥ wv −
X

{i|wi<wv}

wi

≥ wv − wv ·

0@ X
1≤j<∞

αj

1A
≥ wv − wv ·

α

1− α
≥ 0 ∀α ≤ 0.5

Here, step (2) is true since nodes in OPT with higher weight
than wv must be present in S as well, and step (3) follows
from the exponential weighting formula.

We note here that (a) experiments run without an expo-
nential weighting scheme (e.g., linear combination of pre-
cision and recall scores) yielded poor results, as the top-
ranked paths are indeed the best in discriminating clusters,
(b) results obtained for α > 0.5 using a different greedy
scheme [19] yielded similar solutions and clustering accu-
racy, and (c) as α → 1, the quality of results decreases,
since the highest-ranked paths in RF are no longer picked.

To summarize, we build a graph of the paths obtained
from RF , with edges marking dependence restrictions be-
tween paths, and then use Greedy MWIS to pick the max-
imum weight independent set S (for α < 0.5). The ranking
RF induces a ranking on S as well, and this ranked list S is
then used for shingle-based clustering, as described before
in Section 3.1.

3.4 Optimizations for Better Clustering
There are two optimizations that enhance the quality of

the clustering.

Currently-open Tab. Consider a webpage with multiple
tabs, e.g., “reviews”, “screenshots”, “specifications”, etc., of
which only one is currently open1. There is a special path
for the currently open tab, call it x. Then, clustering based
on whether x is present or not will clump all review, screen-
shots, and specs pages together since x is present in all of
them (only the content of x tells us if this page contains
reviews, or screenshots). However, a page with the “screen-
shots” tab open should ideally not be in the same cluster as
a page with similar structure except that the “reviews” tab
is open. We detect such tabs by looking for paths that are
present on many pages, but whose content is only of a few
types (between 2 and 10). Then, during clustering, the set
of pages containing such tabs are split further according to
the content of the tab.

Template Removal. Detecting templated content on a
webpage, such as menus, navigation bars, and ads, has been
studied extensively [2]. Occasionally, these can match query
terms and pollute the set of key paths. We use the site-
template detection method used in [2] to remove such in-
stances. This is orthogonal to our work, and a better tem-
plate detection method can only improve the clustering.

4. EXPERIMENTS
In this section, we present an empirical evaluation of our

proposed method (named KeyClus). First, in Section 4.1,
we discuss the dataset, the ground truth, and the baseline
methods that we compare against. Then, in Section 4.2, we
compare the clustering achieved by KeyClus to the ground
truth, and demonstrate that it achieves significantly higher
accuracy than existing techniques. In Section 4.3, we show
that the key independent paths found by KeyClus (call
these paths IndepPaths) are also close to paths picked by
a separate wrapper induction process, showing that the In-
depPaths are indeed picking out important structure in the
webpages. Finally, in Section 4.4, we discuss a few issues and
limitations of our work.

4.1 Data and Baselines
A random sample of around 20, 000 webpages was col-

lected from each of 10 websites (listed in Table 1) in April,

1See, for example, http://reviews.cnet.com/pc-games/
penumbra-black-plaguepc/4505-9696_7-32622390.html.

2009. We conduct all our experiments on these webpages.
There is large variance in the number of paths per web-
site, from 4, 050 for www.insiderpages.com to over 2× 106

for www.hotels.com, with an average of around 480, 000 per
site. Recent search logs were collected for this website, yield-
ing an average of around 4, 800 distinct searches per site.
Note that this is much smaller than the number of webpages
per site, and not all webpages see search activity.

Ground Truth Collection. These pages were also used
to build site-specific wrappers via a separate supervised-
learning approach that is unrelated to our work. The in-
duced wrappers use a few paths to extract important con-
tent, such as product title, prices, hotel locations, etc., from
a subset of pages on the website that are judged to be use-
ful for data extraction. We have access to these paths used
in the wrappers (call them GT-Paths) and also the subset
of pages where they apply (call it WrapperPages). This
becomes our first ground-truth set: we will show that our au-
tomatically generated IndepPaths match these GT-Paths,
and thus can be used not only in webpage clustering but
also in wrapper induction.

We also build the ideal ground-truth clustering on these
pages, via an iterative process that interleaves human label-
ing with automatic clustering. We start with an automatic
clustering of all webpages — each wrapper w induces a clus-
ter of pages such that w can extract data from those pages
with high confidence; pages not falling within any wrapper-
induced cluster are then clustered via an in-house clustering
method. Then, human editors view 10 random pages and
10 of the most structurally-dissimilar pages in each cluster,
and judge each cluster to be homogeneous or not. A cluster
is said to be homogeneous iff the presented set of pages have
similar look and feel, and represent the same content class
(such as product, business, or movies). Homogeneous clus-
ters can also be merged if an editor finds them to be similar
based on look and feel, and content class.

The clusters judged to be heterogeneous are split further
by changing the thresholds in the automatic clustering al-
gorithm, and the process is repeated until less than 5% of
the pages in a website remain unclustered. The clusters
are subjected to a separate manual inspection to confirm
their homogeneity, with particular attention being paid to
the largest clusters, and those intersecting significantly with
WrapperPages. The end result is a ground-truth cluster-
ing for all the 10 sites (call it GT-Clusters). Clearly, this
is an extremely time-consuming and expensive process, and
a fully-automated clustering algorithm like KeyClus would
be most valuable for these purposes.

Baseline Algorithms. There are three baseline algorithms
that we compare KeyClus against.

Path-shingles: Introduced in [5], Path-shingles is equivalent
to KeyClus with no key paths. In other words, this is
performance that is possible without access to search logs.

pq-Grams: Instead of using paths to represent a DOM tree,
pq-Grams use the neighborhood of nodes [1]. In particular,
the pq-Gram of a node X includes X, the p− 1 ancestors of
X, and some q children of X (if any of these do not exist, null
values are used). Just as with path-shingles, a DOM tree
can be represented as a shingle of pq-Grams, which can then
be used in the clustering step described in Section 3.1. The
original paper suggested p = 2 and q = 3, but we experiment
with multiple settings and report the best scores.

m/k Path shingles: Recall that, for efficiency reasons, we
use the basic shingle-based clustering technique: every dis-
tinct k-shingle is in a cluster of its own. We could also use a
more complicated variant where two shingles can be placed
in the same cluster if they share only m < k elements. In
our implementation, clusters are represented by the most
common m-element subsets of the k-element shingles of all
webpages in the website, and any webpage whose shingle
contains these m elements is placed in the cluster. This
allows the merging of clusters that would otherwise be sep-
arated by the basic clustering algorithm. We show results
with m = 6, k = 8, but results obtained with several other
combinations (e.g, 2/4, 3/4) were also similar, with no one
setting dominating the others.

4.2 Accuracy of Key Paths and Clusters
We shall compare KeyClus to the baselines in terms of

clustering accuracy, measured using the adjusted RAND in-
dex, described next.

Adjusted RAND index. Given two clusterings C1 and
C2 of the same set of points, we count the number of pairs
of points that the clusterings agree or disagree about. In
particular, let a be the number of pairs which are placed in
the same cluster in both C1 and C2, b the number of pairs
placed together in C1 but not in C2, c the pairs separated in
C1 but together in C2, and d the number of pairs separated
in both. In essence, the two clusterings agree over a + d
pairs, and disagree about b + c pairs. The adjusted rand
index [13] is given by:

AR =
2(a · d− b · c)

(b + a) · (b + d) + (c + a) · (c + d)

The value of AR is upper-bounded by 1, and the expected
score for a random clustering is 0. Higher scores are better.

Accuracy of Clustering. KeyClus and the three base-
line algorithms were run with 50 random seeds, for shingle
size varying from k = {1 . . . 8}. Then, for each algorithm
and each website, the best average score was picked among
all shingle-sizes. The average scores and standard deviations
are shown in Table 1. Two observations are immediate.

(1) KeyClus outperforms all baseline algorithms over all
sites. The RAND score is over 0.9 for 5 sites, and Key-
Clus delivers a 59% relative improvement on average upon
the scores of the next best algorithm (Path Shingles). This
clearly demonstrates the importance of search logs. The rel-
atively poor performance of Path Shingles and pq-Grams
shows that randomly picked paths or subgraphs from the
DOM tree are unlikely to pick out distinguishing character-
istics of pages. m/k Path Shingles performs even worse than
plain Path Shingles (only the 6/8 case is shown here, but re-
sults are similar for all other cases we tried). This is because
each cluster is now marked by the most common m-element
subset among all the k-element path shingles, and these com-
mon subsets tend to contain some very common paths, such
as generic high-level paths present on most pages, which are
not useful in distinguishing clusters. Template removal did
not significantly affect baseline accuracy.

(2) The standard deviation of KeyClus is far smaller than
that of the baselines. This is because most of the shingle
elements are key paths, which do not change over multiple
runs. However, the baselines represent the same webpage
with different paths/nodes in different iterations, leading to
instability. This is crucial in a real-world system, where one

clustering must be picked for subsequent use. With no way
to differentiate between clusterings, it is possible that the
clustering that is picked is of very poor quality. The low
variability of KeyClus is advantageous here.

We note that, contrary to the trend of very high RAND
scores, www.epinions.com and shopping.yahoo.com achieve
relatively lower RAND scores, even though KeyClus still
outperforms the baselines on them. A closer inspection re-
vealed that this was due to an unavoidable error during the
ground truth collection process. There are several sets of
clusters whose pages look alike, and hence these clusters
were merged into one by the human editors. However, the
DOM trees of the pages in these clusters are completely dif-
ferent. For example, the results of a search list are contained
in a <form> tag in one set of pages but in a tag in the
second. KeyClus places these pages in two different clus-
ters, and this is the correct behavior if the clusters are to be
subsequently used for wrapper induction. However, it is im-
possible for human editors to distinguish these pages simply
by look-and-feel.

Shingle size. Table 2 shows the best shingle sizes for Key-
Clus, Path Shingles, and pq-Grams (6/8 Path Shingles al-
ways uses a shingle-size of 8). We see that a shingle-size of
only 1 or 2 suffices for KeyClus, which has a few important
implications.

(1) With a shingle size of 1, most pages have a shingle con-
sisting of just one key path; and no randomly picked paths
need to be added to the shingle. The accuracy achieved
with such a small shingle shows that our carefully picked key
paths are enough to discriminate between pages of different
types. The corresponding clusters are also stable across mul-
tiple iterations using different random seeds, leading to the
low variances observed above. Also, we find that the bulk of
the pages on all website are covered by such key-path-only
clusters; only 18% of the pages on average are not covered
by any key path.

(2) A shingle-size of 1 gives good results for all web-
sites, with shingle-size of 2 performing better only on www.
epinions.com and www.target.com. This allows us to just
pick a shingle-size of 1 for any new website, without having
to worry about parameter tuning.

(3) A single-element shingle also speeds up execution in
a real-world system. Each cluster is defined by just one
path, and there are only a few clusters per website, meaning
that every time a new page enters the system, it needs to
be checked for the existence of only a few paths. In fact,
if some of these paths can be uniquely identified by special
attributes (e.g., unique id or class tags), then we can even
just search for these attributes in the HTML file without
building the DOM tree, leading to significant time savings.

(4) The high accuracy with a shingle size of 1 is an effect
of picking independent paths in KeyClus: rarely do two
key paths occur in the same cluster. As against this, for the
baseline algorithms, the optimal shingle size depends con-
siderably on the website, again contributing to the difficulty
of using the baseline algorithms in a real-world situation.

Cluster sizes. Since small clusters are typically not worth
the labeling effort in wrapper induction, webpages falling
into such small clusters are often unused. We find KeyClus
and pq-Grams place less than 1.5% of the pages into such
clusters on average, but Path Shingles places nearly 8% of
the pages in such clusters, which can lead to significant loss
of informative and extractable content from a website.

Website KeyClus Path Shingles pq-Grams 6/8 Path Shingles
reviews.cnet.com 0.95 (±0.011) 0.85 (±0.12) 0.47 (±0.22) 0.54 (±0.18)

search.barnesandnoble.com 0.86 (±0.019) 0.51 (±0.16) 0.58 (±0.25) 0.34 (±0.12)
shopping.yahoo.com 0.65 (±0.005) 0.61 (±0.1) 0.49 (±0.19) 0.32 (±0.14)
www.amazon.com 0.79 (±0.076) 0.51 (±0.11) 0.55 (±0.15) 0.4 (±0.06)

www.bhphotovideo.com 0.97 (±0.0033) 0.52 (±0.23) 0.38 (±0.23) 0.18 (±0.1)
www.cduniverse.com 0.91 (±0.0033) 0.26 (±0.24) 0.36 (±0.27) 0.09 (±0.04)
www.epinions.com 0.61 (±0.034) 0.53 (±0.089) 0.33 (±0.19) 0.48 (±0.06)
www.hotels.com 0.74 (±0.0065) 0.64 (±0.15) 0.63 (±0.21) 0.36 (±0.13)

www.insiderpages.com 0.99 (±0.0049) 0.83 (±0.2) 0.76 (±0.24) 0.72 (±0.14)
www.target.com 0.94 (±0.056) 0.58 (±0.17) 0.47 (±0.25) 0.54 (±0.15)

Table 1: Comparison of Adjusted RAND index for KeyClus and three baseline algorithms. KeyClus clearly
outperforms the rest, showing the importance of using search logs.

Website Number of Number of
indep. paths tabs

reviews.cnet.com 3 5
search.barnesandnoble.com 2 0

shopping.yahoo.com 3 0
www.amazon.com 13 0

www.bhphotovideo.com 4 10
www.cduniverse.com 5 5
www.epinions.com 19 9
www.hotels.com 7 7

www.insiderpages.com 5 0
www.target.com 3 0

Table 3: Number of IndepPaths and tabs.

In the case of applications requiring human involvement
on a per-cluster basis, e.g., wrapper induction, the number
of clusters matters as well, since the cost of human interac-
tion is proportional to number of clusters. Table 2 also lists
the number of clusters with at least 20 webpages obtained
by each algorithm. The number of clusters in KeyClus
is always close to that for GT-Clusters, without any pa-
rameter tuning. The baseline algorithms get similar results
only for their best parameter settings, which can vary signif-
icantly across websites. For a new website, and without any
human supervision, it is unclear which parameters should
be picked and how well the algorithms will perform.

Nature of IndepPaths. Finally, we discuss the nature
of IndepPaths picked up by KeyClus. Table 3 lists, for
each website, the number of independent paths, and tabs
found, where each tab is a unique (tab path, tab content)
pair. Recall that each tab corresponds to a cluster formed by
the combination of a path and its content (see Section 3.4).
Even with such a small size of independent paths for each
website, we still obtain significant improvement in RAND
score compared to baseline algorithms. The small size of the
independent path set also means that the memory footprint
required for clustering is very small, potentially improving
runtime performance.

Table 4 shows the top-most independent path2 picked by
KeyClus for several sites, and what it refers to in the page.
We observe that the paths typically represents the key in-
formation of the page such as product title, business name,
or hotel address. Several of these paths end in <h1> or <h4>,
i.e., they pick out headers. Note that KeyClus prefers
paths representing mandatory information such as product

2This set of webpages was crawled in April’09, so it is pos-
sible that page structure might have changed.

title, over paths representing optional information such as
reviews or product description. The selection of such paths
gives KeyClus an edge over baseline algorithms.

4.3 Matching IndepPaths to GT-Paths

The previous section presented indirect evidence of the
goodness of the IndepPaths by measuring clustering accu-
racy. In this section, we will directly verify their goodness
by comparing them to paths that are actually used in wrap-
pers, namely GT-Paths. If IndepPaths match GT-Paths,
it means that IndepPaths point to information that is con-
sidered important by human editors (since GT-Paths are
generated using human input), and that the clusters gener-
ated by KeyClus are interpretable.

Detecting a match. An exact match between paths in In-
depPaths and GT-Paths is obviously the clearest indicator
of a match, but this is rare due to two reasons: (a) wrapper
induction typically picks paths/nodes that are high up in the
DOM Tree, while our paths are geared more towards preci-
sion and hence lower down in the tree, and (b) two paths
can be very close and have very similar content and yet not
be identical, e.g., one path leading to a node and another
to its only child, or paths leading to two very close siblings.
Intuitively, if two path differ only in the tail, they typically
belong to the same section within the page, and we would
like to count this as a match. We handle this by allowing
matches on long common prefixes, as follows.

A path x1 in IndepPaths is considered a match to a path
x2 in GT-Paths if the longest common prefix between the
two is at least 90% of the length of x2. Thus, x1 can “fork
off” from x2 only at some close ancestor of x2. Note that this
is a fairly harsh condition: if x2 points to a node at depth 9
or less, then x1 can only match by matching x2 exactly or
by being a descendant of x2.

Results. Table 5 presents the precision of IndepPaths
when compared to GT-Paths; recall is unimportant here
because our goal in producing IndepPaths was not to ex-
tract all content, but only enough to distinguish between
different types of pages. From the table, we can observe
that although the precision is high overall, it is poor on a
few sites. The reason for this is that wrappers were induced
only on certain types of pages judged to be more important,
and not on others. For example, it is more important to
extract information from a page about one product, than
to extract a listing of products from a “category list” page,
especially if the product page itself also notes the category
of the product. However, for the purposes of clustering, it
is important to pick relevant paths from the “category list”
pages as well, in order to distinguish these pages from other

Website KeyClus Path Shingles pq-Grams GT-Clusters
Shingle #Clusters Shingle #Clusters Shingle size #Clusters #Clusters

size size and (p,q)
reviews.cnet.com 1 49 1 54 7 (4,3) 80 37

search.barnesandnoble.com 1 7 2 15 1 (3,1) 7 8
shopping.yahoo.com 1 16 1 20 3 (4,5) 32 21
www.amazon.com 1 45 2 32 3 (4,2) 63 29

www.bhphotovideo.com 1 17 1 32 2 (1,5) 24 10
www.cduniverse.com 1 14 1 13 1 (3,5) 8 9
www.epinions.com 2 38 3 34 3 (1, 1) 18 19
www.hotels.com 1 20 2 17 4 (4, 2) 17 9

www.insiderpages.com 1 10 2 19 2 (3,1) 14 21
www.target.com 2 9 4 23 2 (3,1) 12 14

Table 2: Best shingle size and average number of clusters for each algorithm.

Website Top-most independent path What it refers

reviews.cnet.com html body[@class=“siteId7 pageType4505”] div[@id=“rb bodyWrap”] div[@id=“rb
shell”] div[@id=“rb content”] div[@id=“contentMain”] div [@id=“overviewHead”] h1

product title

shopping.yahoo.com

html body[@id=“sl-search][@class=“rsprite1”] div[@id=“outerdoc”] div[@id=“doc4”]
[@class=“search”] div[@class=“doc-wrapper1 vsprite1”] div[@class=“doc-wrapper4
vsprite1”] div[@id=“bd”] div[@id=“list”] div[@id=“list l”] div[@id=“list cont”][@class=
“list-cont-rlp”] div[@id=“list lhs”] div[@id=“list lhs w”] div[@class=“narrow”]
div[@class=“narrow w”] h4

search results
header

www.amazon.com html body[@class=“dp”] div[@class=“singlecolumnminwidth”] form[@id=“handleBuy”]
div[@class=“buying”]

product title

www.epinions.com html body div[@class=“xkb”] table tbody tr td table tbody tr td table tbody tr td table
tbody tr td h1[@class=“title”]

product title

www.hotels.com

html body div[@id=“sizer”] div[@id=“contentBody”][@class=“clearFix”] div[@id= “prop-
ertyHeaderTripDetails”] [@class=“curvedBorder”] div[@class=“innerWrap clearFix ”]
div[@id=“propertyHeaderHotelDetails”] [@class=“clearFix”] div [@class =“hotelSnippet
vcard”] div[@class=“hotelAddress”] div[@class=“adr”] span[@class=“locality”]

hotel address

www.insiderpages.com
html body div[@id=“width”] div[@id=“min width”] div[@class=“content”] ta-
ble[@id =“main info”] tbody tr td table tbody tr td div[@class=“business card”]
div[@class=“business info”] h1

business name

www.target.com html body div div[@id=“mainContent”] div[@id=“middleSlots”] div[@id=“mainBody”]
div[@id=“middleUpperSlots”] div[@id=“rightColumn”] div[@id=“right-2”]

product title

Table 4: Top-most independent path for a few sites, and what it refers to in the page

page types. Thus, the comprehensiveness of IndepPaths
hurts it in this comparison.

To make a fair comparison, we look at the subset of pages
on which GT-Paths can extract information. These are the
pages for which the wrappers were induced. We find the set
S′ of paths in IndepPaths that are present on this subset of
pages. Now, S′ and GT-Paths are applicable to the same
subset of pages, and hence a comparison between them is
fair. The results are presented in Table 5, and show the
high precision achieved on almost all sites (90% precision on
average). Thus, the key independent paths that were gener-
ated completely automatically by our algorithm are able to
match paths picked by human editors to extract important
content from webpages. Not only does this make our paths
and clusters more interpretable, but it also helps editors in
the wrapper-induction step following the clustering obtained
by KeyClus. Given the significant cost and effort required
in manual labeling, any such help is very useful.

We also looked deeper into the paths in IndepPaths that
did not match GT-Paths even on the wrapper-extractable
pages. There are two main reasons behind such mismatches.
First, some independent paths are actually “tabs,” such as
“overview”, “reviews,” and “screenshots,” as discussed before
in Section 3.4. These are clearly important to get the clus-
tering correct, but their content is not specific to the content
of the webpage. So, they are not useful for data extraction
from the page, and are absent from GT-Paths. The second

reason is that several websites use multiple variants for lay-
ing out the same information. Common examples include
extra <div>, <table>, and <tbody> tags that are inserted
into pages of the same type; these do not affect the visual
layout of the webpage but can fragment information about
essentially the same path in our analysis. We are currently
studying ways to deal with such flexible paths. However,
we note here that even without such flexibility, we get very
good matches between IndepPaths and GT-Paths over all
10 websites.

4.4 Discussion
While both the accuracy of KeyClus and the precision of

IndepPaths were verified in the previous sections, there are
a few issues that merit discussion. The first is that of differ-
ent paths being used to point to the same type of content
on different pages, e.g., <form> and tags being used to
list items in shopping.yahoo.com. This becomes more prob-
lematic if one of the paths occurs relatively infrequently, or
occurs on pages that receive fewer queries, making it likelier
that this path will be ranked too low in RF to be selected
into IndepPaths. One approach would be to compute the
coordinates at which DOM nodes are rendered on screen,
and match paths if their coordinates are similar.

A second problem is the proper detection of the “tabs,”
discussed before in Section 3.4. Quite often, the content
of the tab does not match queries, and so the tab is not

Website All IndepPaths
IndepPaths present on

WrapperPages
reviews.cnet.com 0.33 0.50

search.barnesandnoble.com 1 1
shopping.yahoo.com 1 1
www.amazon.com 0.84 0.80

www.bhphotovideo.com 0.75 1
www.cduniverse.com 0.60 1
www.epinions.com 0.67 0.67
www.hotels.com 0.17 1

www.insiderpages.com 0.25 1
www.target.com 0.67 1

Table 5: Precision against GT-Paths: The precision
with respect to GT-Paths is shown for (a) Indep-
Paths, and (b) the subset of IndepPaths that occur
on wrapper-extractable pages.

picked up as an important path in the website (e.g., tabs for
showing products in“list view”versus“grid view”). However,
not all paths whose content comes from a small set are tabs,
e.g, “price range $0− $99” versus “price range $100− $199,”
so matching the query workload is still important. Correct
detection of tabs would improve webpage clustering, but we
observe that detection of tabs is not as crucial for wrapper
induction, since the most informative content on a page is
often present irrespective of the currently open tab.

Another issue is that of parameter selection. The shingle
size, the dependence threshold θocc, and the number of top
ranked paths in RF that are considered in the independent-
path selection are all parameters that affect the trade-off be-
tween number of clusters and heterogeneity of clusters. We
have attempted to provide a setting that gives good results
on the adjusted RAND score, which gives equal weight to
incorrect cluster merges and splits. However, the parameter
setting should be modified based on the application.

5. CONCLUSIONS
We presented a completely automated, unsupervised ap-

proach to cluster structurally similar webpages, with the
primary goal of using the clusters in a subsequent wrapper
induction step, but not restricted to it. Our algorithm lever-
ages search logs to identify paths in DOM trees such that
their content often matches the query terms, both in terms
of precision and recall. However, some of these paths might
be related to each other, either in their patterns of occur-
rence on webpages or in their content. We formalize this
as a maximum weighted independent set problem, and pro-
pose an algorithm that is optimal under certain settings of
weights. This yields a set of independent paths, which are
then used in a shingle-based clustering of the webpages on
a website. We demonstrate empirically on a set of 10 web-
sites that the clusters found by our algorithm are in very
close agreement with the ground truth clustering, achieving
a RAND score of over 0.9 on 5 sites, and performing 59%
better on average than competing baselines. In addition, we
show that the paths themselves are very similar to the ones
found by human labelers during wrapper induction (90%
average precision), leading to increased interpretability for
both the set of independent paths picked by our algorithm,
and the associated clustering.

6. ACKNOWLEDGMENTS
We thank Ravi Kumar, Srinivasan Sengamedu, Aravin-

dan Raghuveer, Charu Tiwari, Kunal Punera, and Sandeep

Pandey for their help with formalizing the problem and with
the experiments.

7. REFERENCES
[1] N. Augsten, M. Böhlen, and J. Gamper. Approximate

matching of hierarchical data using pq-grams. In
VLDB, 2005.

[2] Z. Bar-Yossed and S. Rajagopalan. Template detection
via data mining and its applications. In WWW, 2002.

[3] J. C. Borda. Memoire sur les elections au scrutin.
Histoire de l’Academie Royale des Sciences, 1781.

[4] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. 1997.

[5] D. Buttler. A short survey of document structure
similarity algorithms. In Internet Computing, 2004.

[6] C.-H. Chang and S.-C. Lui. IEPAD: Information
extraction based on pattern discovery. In WWW, 2001.

[7] W. Cohen and W. Fan. Learning page-independent
heuristics for extracting data from web pages. In
WWW, 2002.

[8] V. Crescenzi, G. Mecca, P. Merialdo, U. Roma,

T. Universit́L, B. Universit́L, and R. Tre. Roadrunner:
Towards automatic data extraction from large web
sites. In VLDB, pages 109–118, 2001.

[9] V. Crescenzi, P. Merialdo, and P. Missier. Clustering
web pages based on their structure. Data Knowl.
Eng., 54(3):279–299, 2005.

[10] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar.
Rank aggregation methods for the Web. In WWW,
2001.

[11] S. F. Giuseppe, E. Masciari, L. Pontieri, and
A. Pugliese. Detecting structural similarities between
xml documents. In In Proc. of the 5th Intl. Workshop
on the Web and Databases, pages 55–60, 2002.

[12] A. Hogue and D. Karger. Thresher: Automating the
unwrapping of semantic content from the World Wide
Web. In WWW, 2005.

[13] L. Hubert and P. Arabie. Comparing partitions. J.
Classification, 2:193–218, 1985.

[14] U. Irmak and T. Suel. Interactive wrapper generation
with minimal user effort. In WWW, 2006.

[15] N. Kushmerick, D. Weld, and R. Doorenbos. Wrapper
induction for information extraction. In IJCAI, 1997.

[16] S. Lu. A tree-to-tree distance and its application to
cluster analysis. PAMI, 1(2), 1979.

[17] I. Muslea, S. Minton, and C. Knoblock. STALKER:
Learning extraction rules for semistructured,
web-based information sources. In AAAI Workshop on
AI and Information Integration, 1998.

[18] D. C. Reis, P. B. Golgher, A. S. Silva, and A. F.
Laender. Automatic web news extraction using tree
edit distance. In WWW, 2004.

[19] S. Sakai, M. Togasaki, and K. Yamazaki. A note on
greedy algorithms for the maximum weighted
independent set problem. Discrete Applied Math.,
126(2-3):313–322, 2003.

[20] D. Shasha and K. Zhang. Fast algorithms for the unit
cost editing distance between trees. J. Algorithms,
11(4):581–621, 1990.

[21] J. T.-L. Wang, K. Zhang, K. Jeong, and D. Shasha. A
system for approximate tree matching, 1992.

[22] S. Zheng, R. Song, J.-R. Wen, and D. Wu. Joint
optimization of wrapper generation and template
detection. In KDD, 2007.

