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Abstract

Interesting patterns show up in large graphs in
a variety of settings: power-laws and “bow-tie”
structure in the World Wide Web, small diam-
eter for Peer-to-Peer overlay graphs, and many
others. Discovering such patterns and regular-
ities has many wide-ranging applications, from
understanding viral propagation to criminology
and law-enforcement. The NetMine system in-
cludes a toolbox of patterns that show up in
real graphs. Apart from previously studied pat-
terns such as power-laws degree-distributions, it
adds the new “min-cut plot”, which our recently
proposed R-M AT [13] generator (also a part of
NetMine) can match well. We also propose
adding a novel tool called A-plots to the graph
miner’s arsenal, and show how this can be used
to find interesting patterns and outliers in large
real-world graphs.

1 Introduction

There is increasing interest in finding common
patterns in large graphs drawn from a surpris-

ingly diverse number of settings. The World
Wide Web exhibits power laws as well as a “bow-
tie” structure [11]; most real graphs have surpris-
ingly small diameters (about 19 for the web [6],
about 5-6 for the Internet autonomous-system
topologies [18]). Similar power laws and “small
world” phenomena appear in peer-to-peer over-
lay graphs [29] and in the epinions.com who-
trusts-whom network [28]. Exactly because of
the importance of large graphs, there are several
graph generators that try to create synthetic, but
realistic-looking graphs [23, 5, 13]. Such gener-
ators are useful for simulations (eg., of internet
routing protocols, or virus propagation analysis),
extrapolations and what-if scenarios (“What will
the internet look like, when it is double its cur-
rent size?”, “How will a virus propagate, if we
immunize only the highest degree nodes?”)

Discovering patterns, laws and regularities in
large real networks has numerous applications:
Analysis of virus propagation patterns, on both
social/e-mail as well as physical-contact net-
works [33]; link analysis, for criminology and law
enforcement [15]; food webs, to help us under-
stand the importance of an endangered species;



networks of regulatory genes; networks of inter-
acting proteins [7] and so on.

How could we analyze such large graphs auto-
matically? Which patterns should we be looking
for? How can we spot suspicious/erroneous sub-
graphs quickly? These are the questions that our
NetMine system focuses on. The main contri-
butions of this paper are that

e it proposes the “min-cut plots”, an interest-
ing pattern to check for while analyzing a
graph

e it proposes the “A-plots” as a tool for
quickly finding suspicious subgraphs/nodes

e it scales very well with size of the graph
for all its tasks, and thus is able to quickly
handle graphs of hundreds of thousands of
nodes

e it shows how to interpret these plots, and
how we found surprising patterns and out-
liers on real graphs

The layout of the paper is as follows. Section 2
details previous work in the field of graph min-
ing. We then describe our proposed ideas for
mining graphs in Section 3. This is followed by
experiments in Section 4. We finally conclude in
Section 5.

2 Background and Related

Work

Let’s establish some terminology first: A graph
G=V,€)isaset Vof N nodes and a set £ of
E edges between them. For example, the net-
work of Internet routers and their physical links

is an (undirected) graph. First we discuss impor-
tant patterns that have been discovered in real
graphs, and then we discuss some existing graph
generators.

Patterns and “Laws” : Several interesting
patterns often show up in real-world graphs.
They can mainly be grouped into power-laws and
small-diameter phenomena.

Power laws: Skewed distributions, and laws of
the form y = z% appear very often. Such a
law comes out as a line of slope a, when we plot
y versus z in log-log scales. Plotting the num-
ber of nodes (¢) with a certain degree k, ver-
sus their degree k£ on a log-log scale gives the
degree-plot, which often exhibits a power-law.
Such power-law degree distributions are found
in the Internet topology [18], the World Wide
Web [21], the citation graph [27] and many oth-
ers. The eigenvalues of the adjacency matrix,
when plotted versus their rank in log-log scales
(called the “scree-plot”), also show a power-law.
Very recently, deviations from the power laws
have been observed [26], which may be explained
using lognormal distributions [8].

Diameter - small world phenomena: Most real
graphs have surprisingly small diameters: the fa-
mous “six degrees of separation” in social net-
works [24], 19 for the Web [6], and low diameters
for the Internet topology [32].

Network values of nodes: The elements vy ; in
the first eigenvector v7 of the adjacency matrix
roughly correspond to the “network values” of
nodes in an undirected graph [28]. For a directed
graph, the corresponding values are given by the
first left singular vector ¥ and the first right sin-
gular vector u1. We use these network values in
our A-plots, and point out several striking pat-



terns which show up.

Measures: There is a huge list of measures in
the literature of computer networks, social net-
works and graph theory, including the follow-
ing. For a node, we have the clustering coef-
ficient, “prestige”, and “importance” [14]; for
a whole network, we can compute the “expan-
sion”, “resilience” and “distortion” [31], and the
characteristic path length [12]; for each edge, the
“stress” [19].

Graph Generators There are several
methods for generating graphs. The earli-
est model was the random graph model by
Erd6és and Rényi [16], but it does not match
power-laws. Given a degree distribution (typi-
cally following a power-law), several models try
to find a graph that matches this degree distribu-
tion [2, 3, 22, 25]. Other models try to provide
a simple set of rules of placing edges between
nodes; the typical representative here is the
Barabési-Albert (BA) method [4] with the “pref-
erential attachment” idea: Keep adding nodes;
new nodes prefer to connect to nodes with high
degrees. Several modifications and alternatives
have been suggested [5, 21, 12, 26, 23]. Another
class of generators consider geometry [10, 17].
A recently proposed graph generator is
R-M AT [13], which has successfully matched
many of the patterns mentioned before. The
R-M AT (for Recursive MATrix) model re-
cursively subdivides the adjacency matrix into
four equal-sized partitions, and distributes edges
within these partitions with unequal probabili-
ties: Starting off with an empty adjacency ma-
trix, we “drop” edges into the matrix one at a
time. Each edge chooses one of the four parti-
tions with probabilities a, b, ¢, d respectively. Of

course, a + b+ c+ d = 1. The chosen partition
is again subdivided into four smaller partitions,
and the procedure is repeated until we reach a
simple cell (=1 x 1 partition).

NetMine provides patterns and checkpoints
which any graph generator must match, if it is
to realistically model real-world graphs. Thus,
the NetMine toolkit would be essential to eval-
uating the performance of graph generators.

3 Proposed Ideas

The contributions outlined here are twofold: (1)
we present the “min-cut plot”, a new checkpoint
for comparing a synthetically-generated graph
to a real one, and (2) we present a novel tool
called A-plots for interactive inspection of graphs
and for finding erroneous/outlier nodes and sub-
graphs. Both of these are described below.

“Min-cut plots”: Several criteria have been
previously proposed to compare a synthetic
graph to a real-world graph. These include
degree distributions, hop-plots, scree-plots and
others. NetMine includes all these, and adds
“min-cut plots”.

A min-cut of a graph G = (V,€) is a parti-
tion of the set of vertices V into two sets V; and
VY — V1 such that both partitions are of approx-
imately the same size, and the number of edges
crossing partition boundaries is minimized. The
number of such edges in the min-cut is called
the min-cut size. Min-cut sizes of various classes
of graphs has been studied extensively, and are
known to have important effects on other proper-
ties of the graphs [30]. For example, Figure 1(a)
shows a regular 2D grid graph, and one possible
min-cut of the graph. We see that if the number



of nodes is N, then the size of the min-cut (in
this case) is O(V'N).

The min-cut plot is built as follows: given a
graph, its min-cut is found, and the set of edges
crossing partition boundaries deleted. This di-
vides the graph into two disjoint graphs; the min-
cut algorithm is then applied recursively to each
of these sub-graphs. This continues till the size
of the graph reaches a small value (set to 20 in
our case). Each application of the min-cut algo-
rithm becomes a point in the min-cut plot. The
graphs are drawn on a log-log scale. The x-axis
is the number of edges in a given graph. The
y-axis is the fraction of that graph’s edges that
were included in the edge-cut for that graph’s
separator.

Figure 1(b) shows the min-cut plot for the 2D
grid graph. In plot (c), the value on the y-axis
is averaged over all points having the same x-
coordinate. The min-cut size is O(vV/N), so this
plot should have a slope of —0.5, which is exactly
what we observe.

A-plots: A simple way to find suspicious
nodes/subgraphs in a large graph could be very
useful in a variety of situations. However, the ob-
vious approach of trying to visualize the graph
does not work very well: visualization of large
graphs is notoriously tough and time consuming,
and is a research topic in its own right. Our pro-
posed solution, called A-plots, consists of three
types of plots for undirected graphs: (1) the plot
of the adjacency matrix with nodes sorted in de-
creasing order by their network values (RV-RV
plot, for Rank of network Value), (2) the plot
of the degree of a node verses its rank of net-
work value (D-RV plot, for Degree verses Rank
of network Value), and (3) the plot of the ad-

jacency matrix with nodes sorted in decreasing
order by their degrees (RD-RD plot, for Rank
of Degree). Together, these plots often reveal
interesting patterns and properties of the graph.
We propose these as valuable tools for getting an
overall view of an undirected graph.

4 Experiments

We performed experiments to answer the follow-
ing questions:

e Q1l: How do the min-cut plots look for
real-world graphs, and does R-M AT match
them?

e Q2: How can A-plots be used for analyzing
large graphs?

We used several natural and synthetic datasets
in our experiments. Epinions is a graph of who-
trusts-whom from www.epinions.com. Lucent is
an undirected graph of network routers, obtained
from www.isi.edu/scan/mercator/maps.html.
Router is a larger graph (the SCAN+Lucent
map) from the same URL, which subsumes
the Lucent graph. Clickstream is a bipartite
graph linking user-ids to web-domains. Google
is a graph of webpage connectivity from the
Google [1] programming contest. Characteristics
of these datasets are shown in Table 1.

4.1 [Q1] Min-cut Plots

We plotted min-cut sizes for a variety of graphs.
For each graph listed we used the Metis graph
partitioning library [20] to generate a separa-
tor, as described by Blandford, Blelloch, and
Kash [9].
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Figure 1: Plot (a) shows a portion of a regular 400x400 2D grid, and a possible min-cut. Plot (b)
shows the full min-cut plot, and plot (c) shows the averaged plot. If the number of nodes is N, the
length of each side is v/N. Then the size of the min-cut is O(v/N), which leads to a slope of —0.5,

which is exactly what we observe.

Graph Nodes | Edges
Epinions 75888 | 508837
Lucent 112969 | 181639
Router 284805 | 898492
Clickstream | 222704 | 952580
Google 916428 | 5105039

Table 1: List of datasets used in the experiments
and their details.

Figure 2 shows min-cut sizes of some real-
world graphs. For random graphs, we expect
about half the edges to be included in the cut.
Hence, the min-cut plot of a random graph would
be a straight horizontal line with a y-coordinate
of about log(0.5) = —1. A very separable graph
(for example, a line graph) might have only one
edge in the cut; such a graph with IV edges would
have a y-coordinate of log(1/N) —log(N),
and its min-cut plot would thus be on the line
y = —x. As we can see from Figure 2, the plots

for real-world graphs do not match either of these
situations, meaning that real-world graphs are
quite far from either random graphs or simple
line graphs.

Observation 1 (Noise) We see that real-
world graphs seem to have a lot of “noise” in
their min-cut plots, as shown by the first row of
Figure 2.

Observation 2 (“Lip”) The ratio of min-cut
size to number of edges decreases with increas-
ing edges, except for graphs with large number of
edges, where we observe a “lip” in the min-cut
plot.

The min-cut plot contains important informa-
tion about the graph [30]. Hence, any syntheti-
cally generated graph meant to simulate a real-
world graph should match the min-cut plot of
the real-world graph. In Figure 3, we compare
the mincut-plots for the Epinions graph with a
graph generated R-M AT. As can be seen, the
basic shape of the plot is the same in both cases,
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Figure 2: These are the min-cut plots for several datasets. We plot the ratio of mincut-size to edges
versus number of edges on a log-log scale. The first row shows the actual plots; in the second row,
the cutsize-to-edge ratio is averaged over all points with the same number of edges.

though the R-M AT plot appears to be shifted
slightly from the original.

Observation 3 The graphs generated
by R-M AT appear to match the basic shape of
the min-cut plot for several real-world graphs.

4.2 [Q2] A-plots

Figures 4 and 5 show A-plots for the Router
dataset.  Figure 4 shows the RV-RV and
RD-RD plots, and Figure 5 shows the D-RV
plot under different scalings. We can make the
following observations:

Observation 4 (“Water-Drop”) The
RV -RV plot has a clean and smooth oval-shaped
boundary for the edges in the graph.

Explanation: The boundary of the edges is
defined by the one-degree nodes in the graph.
There are many such nodes because of the power
law distribution of the degrees. Let I; denote the
network value of node i; if node ¢ has a degree of
one and node j is the only node it is connected
to, the properties of spectral decomposition of a
matrix imply that

where \; is the largest eigenvalue of the adja-
cency matrix of the graph [34]. Therefore the
boundary of edges in the RV-RV plot can be cal-
culated from the first eigenvalue and eigenvector.
Figure 4(b) shows just this; the solid curve rep-
resents degree-one nodes. These are obviously
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Figure 3: Here, we compare min-cut plots for the Epinions dataset and a dataset generated by
R-M AT, using properly chosen parameters (in this case, a=0.5, b=0.2, ¢=0.2, d=0.1) We see from
plot (c) that the shapes of the min-cut plots are similar.

the boundary curves for plot (a).

We also see that there is no edge at all outside
of the boundary. Let node ¢ have network value
I;, and have node j with network value I; as its
most “important” neighbor (in the sense of high
network value). Then, I; > 1/A; * I;. Therefore
all edges are confined within the boundary in the
RV-RV plot.

Observation 5 (Nested Water-Drops)
There are a pair of “secondary” lines within the
boundary of the edges in the RV-RV plot.

Explanation: These lines are the results of
some two-degree nodes. When a node ¢ has two
degrees and the two nodes it is connected to
have about the same network values (say, I;), we
can calculate where the involved edges will show
up in the RV-RV plot similar to the one-degree
case:

I =2/\ + I (2)

The dashed lines in Figure 4(b) show the re-
sults, which match with the RV-RV plot. The
presence of these “secondary” lines in the plot
means that a significant number of the two-
degree nodes in the graph are connected to two

“similar” (similar as is defined by similar net-
work values) nodes. The presence of the faint
“tertiary” lines can be explained accordingly.

Observation 6 (Diagonal) There is more or
less a solid line that goes through the diagonal
of the RV-RV plot even though the adjacency
matriz does not include any self-edges.
Explanation: This means a node is more likely
to be connected with “similar” nodes.

Observation 7 (White Stripes) There

are white stripes (both vertical and horizontal)
visible in both the RV -RV and the D-RV plots.
Explanation: The stripes come from a large
number of nodes that are connected to exactly
the same nodes, usually just one or two. Since
nodes that are connected the same way have ex-
actly the same network values, they show up as
a group and become visible in the RV-RV and
D-RV plots (Figures 4(a) and 5(a, b) respec-
tively).

Observation 8 (Isolated Components)

The largely empty white square in the corner
of the RD-RD plot results from connections be-
tween one-degree nodes.
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Figure 4: A-plots for the “Router” graph: Plot (a) shows the RV-RV plot, and a very interesting

“Water-Drop” pattern is immediately apparent.

The outermost “boundary stripes” are due to

nodes of degree one (solid curve) and two (broken curve), whose positions can be calculated using
Equations 1,2 as shown by plot (b). Plot (c) shows the RD-RD plot.

Explanation: Any dots (edges) in this area cor-
respond to two-node isolated components.

Observation 9 (Degree vs. Importance)
Figure 5(c) shows several points in the D-RV
plot having high degree, but low network value
(and thus low rank). Thus, high degree does not
imply high “importance”.
Explanation: The D-RV plot in Figure 5(c)
shows that the two highest-degree nodes actu-
ally have low ‘network value’. This is counter-
intuitive - how could it possibly be the case, in
a power-law graph? Is it a data collection error?
The answer is surprising, and actually also ex-
plains the white stripe in Figure 5(a,b): The
two highest-degree nodes (labeled ‘Spikel’ and
‘Spike2’), and a large number of two-degree
nodes, form a subgraph like the one shown in
Figure 5(d). ‘Spikel’ and ‘Spike2’, being away
from the core of the network, have much lower
network value than what their high degree would

promise. Their satelites (= all the 2-degree

nodes connected to them) have identical, rela-
tively high network values, which cause the white
strip in Figure 5(a,b). We are currently investi-
gating with domain experts the reasons for such
a weird sub-graph. However, our point is that
the proposed D-RV and RV-RV plots exactly
spotted this strange pattern, which would go un-
detected if we only used the traditional, or even
recent tools, like degree-plots, scree-plots etc.

5 Conclusions

We propose several new tools for mining large
graphs. Our emphasis is on scalable algorithms
that can handle arbitrarily large graphs. When
applied on real graphs, our new tools discovered
patterns that were not visible with the known
tools (like degree plots, hop-plots etc).

The contributions of this work are:

e A-plots: These plots provide new view-
points for inspecting large graphs. We no-
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Figure 5: A-plots for the “Router” dataset: Plot (a) shows the D-RV plot, and plot (b) shows a
blowup of a portion, clearly demonstrating the “white stripes” phenomenon. Plot (c) shows the
D-RV plot in the linear-linear scale; nodes with the highest degree do not have the highest network
value. Plot (d) shows the actual network configuration of routers involved in the stripe and spikes.
An explanation is provided in Observation 9 in the text.

ticed some striking patterns (“water-drops”,
stripes, “lone” points), and we showed how
to interpret them.

e Min-cut plots: They show the relative size
of the minimum cut in a graph partition.
For regular 2-d and 3-d grid-style networks
(like Delaunay triangulations for finite el-
ement analysis), these plots have a slope
that depends on the intrinsic dimensional-
ity of the grid. However, for real graphs,
these plots show significantly more ‘noise’,
as well as a ‘lip’. We were pleasantly sur-
prised when our recently proposed R-M AT
model [13] showed a very similar behavior.

Thanks to the proposed tools, we were able
to make several interesting observations. We
showed how A-plots can be used to spot out-
liers, and make observations about the degree of
nodes, by simply looking at the adjacency matrix
in different ways.

Future work could focus on the introduction of
additional tools. These have to be selected care-
fully so that they are orthogonal to the existing

tools; moreover, their implementation has also
to be done carefully, so that they are scalable for
large graphs (10* — 10° nodes and edges).
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