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Appendix A: Proofs

A.1. Example of Stable Network

To illustrate Theorem 1, consider the following example.

Example 1 (Stable points). Consider a 3-firm network where the only allowed edges are given

by F = {(1,2), (1,3)}. Suppose firms share the same covariance belief matrix Σ1 = Σ2 = Σ3 = Σ,

but have different mean beliefs M =
[
µ1 µ2 µ3

]
and risk aversions. The firms’ beliefs are:

M =

0 2/3 1/2
1 0 0
1 0 0

 ,
Σ=

 1 1/2 1/2
1/2 1 1/2
1/2 1/2 1

 , γ1 = 1, γ2 = 1/2, γ3 = 1/4

Then the A,B(i,j) matrices in Theorem 1 are given as:

A=

 0 2/3 3/4
1/2 0 0
1/2 0 0

 ,B(1,2) =

0 3/4 −1/4
0 0 0
0 0 0

 ,
B(1,3) =

0 −1/4 3/4
0 0 0
0 0 0

 ,B(2,1) =

0 0 0
1 0 0
0 0 0

 ,
B(3,1) =

 0 0 0
0 0 0
3/2 0 0


1
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Hence

C(1,2) =
1

4

 0 7 −1
−7 0 0
1 0 0

 ,C(1,3) =
1

4

 0 −1 9
1 0 0
−9 0 0

 ,
Therefore, ZF = 1

4

[
7 −1
−1 9

]
and uvec(A−AT )F = (1/6,1/4)T . Since ZF is full-rank, there exists

a unique stable point for this network setting.

A.2. Stable Points are Common

Lemma 1. Define F , ZF and Qi as in Theorem 1. Let Q′
i be such that

(Q′
i)j,k =

{
(Qi)j,k +β if j = k, (i, j)∈ F

(Qi)j,k otherwise

Then, the corresponding Z ′
F has the form Z ′

F =ZF +βI.

Proof of Lemma 1. This follows from the form of the matrices B(i,j) and C(i,j) in the statement

of Theorem 1. □

Now, we consider the Σi’s (and hence the Qi’s) to be random variables. Any distribution of

{Σi}i∈[n] induces a distribution on {Qi}i∈[n], where Qi ≻ 0. Define Q̃i :=Qi− δI, where δ > 0 is the

minimum of union of the (nonzero) eigenvalues of all the Qi’s. A distribution over {Qi} corresponds

to a distribution over ({Q̃i}, δ).

Proposition 1. If the distribution of δ given {Q̃i}i∈[n] is continuous, then a unique stable point

exists with probability 1.

Proof of Proposition 1. Let Z̃F be the |F | × |F | matrix generated from {Q̃i}i∈[n], and ZF the

corresponding matrix for {Qi}i∈[n]. By Lemma 1, ZF = Z̃F + δI. Hence, σ(ZF ) = σ(Z̃F )+ δ, where

σ(M) denote the set of eigenvalues of M . Since σ(Z̃F ) is a function of {Q̃i} and δ is continuous

given {Q̃i}, the eigenvalues of ZF are non-zero with probability 1. Hence, by Theorem 1, a unique

stable point exists for {Qi} with probability 1. □

Note that we require no condition on the distribution of {Q̃i}. The condition of Proposition 1

is satisfied if the joint distribution of the {Σi}i∈[n] is continuous and all edges are permitted, as

shown in the following example.

Example 2. Fix some n≥ 2. Suppose the joint distribution of the {Σi}i∈[n] is continuous and all

edges are permitted. Then Qi = (2γi)
−1Σ−1

i so the joint distribution of {Qi}i∈[n] is continuous. By

Bayes’ rule, P[δ|Q̃1, . . . , Q̃n]∝ P[δ, Q̃1, . . . , Q̃1] = P[Q1, . . . ,Qn]. Since P[Q1, . . . ,Qn] is continuous, we

conclude P[δ|Q̃1, . . . , Q̃n] is continuous.
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A.3. Proof of Theorem 2

Restatement of Theorem 2 . Let (W ∗, P ∗) be a stable feasible point. Then there is no feasible

(W,P ) such that (W,P )≻ (W ∗, P∗).

Proof of Theorem 2. Case 1: P = P ∗. First, consider a feasible (W,P ) such that P = P ∗. Then

W ̸=W ∗. Since W ∗ is stable, by definition each agent optimizes contracts with respect to P ∗, so

no agent is worse off under (W ∗, P ∗) then (W,P ∗). Hence (W,P ) ̸≻ (W ∗, P ∗).

Case 2: P ̸= P ∗. Second, suppose that P ̸= P ∗. Let ∆i := gi(W,P )− gi(W,P ∗). It follows that

∆i = (Wei)
T ((P ∗ −P )ei). Let A∈Rn×n be defined as Aij =Wij(P

∗
ij −Pij). Then ∆i = eT

i A1.

Next, notice that Aji = −Aij. Therefore,
∑

i∆i = 1TA1 = 0. Hence, either ∆i = 0 for all i, or

there exists k such that ∆k < 0.

Case 2(i). Suppose there exists k such that ∆k < 0. Then gk(W,P )< gk(W,P ∗). By case 1, we

have gk(W,P ∗)≤ gk(W
∗, P ∗). Therefore agent k is strictly worse off, so (W,P ) ̸≻ (W ∗, P ∗).

Case 2(ii). Suppose ∆i = 0 for all i. Then gi(W,P ) = gi(W,P ∗) for all i. By case 1, we have

gi(W,P ∗)≤ gi(W
∗, P ∗). Therefore no agent is better off, so (W,P ) ̸≻ (W ∗, P ∗). □

A.4. Proof of Theorem 3

Restatement of Theorem 3 Any stable point (W,P ) is Higher-Order Nash Stable.

Proof of Theorem 3. First, we argue (W,P ) is a Nash equilibrium. Suppose that agent i

wants to shift some of their contracts at the stable feasible point (W,P ). Suppose they propose

(w′
i,j1

, p′i,j1), . . . , (w
′
i,jm

, p′i,jm) for j1, . . . , jm ∈ [n]. Let (W ′, P ′) denote the new feasible point that

occurs if all changes are accepted. By Theorem 2 we know that (W ′, P ′) ̸≻ (W,P ), so at least one

agent does not prefer (W ′, P ′). Since the only changes are to edges {i, j1}, . . . ,{i, jm}, there must

exist a j ∈ {j1, . . . , jm} who does not prefer (W ′, P ′). Therefore, they will reject the proposal of

agent i to shift to (w′
ij, p

′
ij).

Then, agent i can choose to either maintain the existing contract (wij, pij) or delete the edge

{i, j}. We claim that agent i prefers to keep the edge, since they could have chosen to set wij = 0

during the network formation process, no matter what price was offered. But wij ̸= 0 at equilibrium

(W,P ). By stability of (W,P ) we know wij is the optimal choice for agent i at prices P . Therefore,

after agent j rejects (w′
ij, p

′
ij), it follows that the edge remains at (wij, pij).

Since (W ′, P ′) was arbitrary, we conclude that at equilibrium, agent i cannot propose any set of

changes that result in a strictly better network for them. Therefore, their optimal action at (W,P )

is to not deviate from the equilibrium.

Next, we show cartel robustness. Suppose S ⊂ [n] is a strict subset and (W ′, P ′) ̸= (W,P ) is a

feasible point differing only at indices {i, j} such that i, j ∈ S. By Theorem 2, we know (W ′, P ′)

cannot dominate (W,P ), so there is some agent i ∈ [n] that does not prefer (W ′, P ′) to (W,P ).
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Since (W ′, P ′) only changes contracts where both members are in S, the utility of agents in [n]\S

must be unchanged. Therefore i ∈ S, and hence not all members of the cartel have higher utility

under (W ′, P ′). □

A.5. Price Update Rule for Pairwise Negotiations

We give an explicit formula for the updated price of a unit contract after a pairwise negotiation.

Proposition 2 (Price after Pairwise Negotiation). Consider a network setting

(µi, γi,Σi,Ψi)i∈[n]. Let Qi be as in Theorem 1. Given a price matrix P =−P T and a pair of firms

(i, j) that are permitted to trade, let P ′ be another skew-symmetric price matrix such that (a)

P ′ differs from P only in the cells (i, j) and (j, i), (b) i and j both maximize their utility at the

same contract size under P ′, and (c) i and j can choose their optimal contract sizes with all other

agents given these prices. Then,

P ′
ij =

1

Qi;j,j +Qj;i,i

(
eT
i Qj(M −P )ej

−eT
j Qi(M −P )ei

)
+Pij

Proof. Let Ai := γiQi for i ∈ [n]. Since Σi ≻ 0 and ΨiΣiΨ
T
i is a principal submatrix, we know

ΨiΣiΨ
T
i is real symmetric and positive definite, and hence its inverse is as well. Therefore Ai is

real symmetric and PSD. (It is not full rank in general, unless Ψi = I). Since {i, j} is a permitted

edge, Ψiej ̸= 0 and Ψjei ̸= 0. Therefore Ai;j,j = eT
j Aiej = (Ψiej)

T (2ΨiΣiΨ
T
i )

−1(Ψiej) > 0 since

(2ΨiΣiΨ
T
i )

−1 is positive definite. So, Ai;j,j > 0 and similarly Aj;i,i > 0.

Now, the optimal contracts for agent i under prices P ′ are given by wi = Ai(M − P ′)Γ−1ei.

Note that P ′ = P +(P ′
ij −Pij)(eie

T
j −eje

T
i ). Since both i and j maximize their utility at the same

contract size, we have:

wi;j =wj;i

⇒ eT
j wi = eT

i wj

⇒ eT
j (Ai(M −P ′)Γ−1)ei = eT

i (Aj

(M −P ′)Γ−1)ej

⇒ γje
T
j AiMei − γie

T
i AjMej = γje

T
j AiP

′ei

− γie
T
i AjP

′ej

The last line can written:

γje
T
j AiPei − γie

T
i AjPej

−(P ′
ij −Pij)

(
γje

T
j Aiej + γie

T
i Ajei

)
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Hence, we can write (P ′
ij −Pij) as:

P ′
ij −Pij =

1

γjAi;j,j + γiAj;i,i

(
eT
i ΓAj(M −P )ej

−eT
j ΓAi(M −P )ei

)
=

1

Qi;j,j +Qj;i,i

(
eT
i Qj(M −P )ej

−eT
j Qi(M −P )ei

)
□

A.6. Proof of Theorem 4

First, we characterize pairwise negotiation dynamics as linear in the price updates.

Theorem 1. Consider a network setting (µi, γi,Σi,Ψi)i∈[n]. Define Qi as in Theorem 1. Let sij = 1

if {i, j} is a permitted edge and 0 otherwise. Let L,R ∈ Rn2×n2
be diagonal matrices such that

L(i−1)n+j,(i−1)n+j =Qi;jj +Qj;ii and R(i−1)n+j,(i−1)n+j = sij, and L† be the pseudoinverse of L. Let

∆(t+1) = P (t+ 1)− P (t), where P (t) is the price matrix at time step t of pairwise negotiations.

Then,

vec(∆(t+1)) =R
(
In2 − ηL†K

)
vec(∆(t)),

where K =
n∑

r=1

(
ere

T
r ⊗Qr +Qr ⊗ere

T
r

)
.

Proof. Let {i, j} be a permitted edge. From Proposition 2, we obtain:

(∆(t+1))ij =
η

Qi;j,j +Qj;i,i

(
eT
i Qj(M −P (t))ej

−eT
j Qi(M −P (t))ei

)
⇒ (∆(t+1))ij − (∆(t))ij =

η

Qi;j,j +Qj;i,i

(
eT
i Qj(−∆(t))ej

−eT
j Qi(−∆(t))ei

)
=

−η

Qi;j,j +Qj;i,i

(
eT
i Qj∆(t)ej

−eT
j Qi∆(t)ei

)
=

−η

Qi;j,j +Qj;i,i

eT
i

(
Qj∆(t)

− (Qi∆(t))
T
)
ej
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Hence,

(Qi;j,j +Qj;i,i)
(
(∆(t+1))ij − (∆(t))ij

)
=−ηsij

·eT
i

(
Qj∆(t) +∆(t)Qi

)
ej.

We assumed that {i, j} was a permitted edge above, but notice the identity is also true for pro-

hibited {i, j} since both the numerator and denominator become 0, and we can define their ratio

to be 0. Defining Yij = eT
i

(
Qj∆(t) +∆(t)Qi

)
ej, and recalling the definitions of L and R from the

theorem statement, the above formula becomes

Lvec(∆(t+1) −∆(t)) =−ηRvec(Y ). (1)

We show next that vec(Y ) =Kvec(∆(t)), where K is defined in the theorem statement. Let tr

denote the trace operator. Then (eT
j ⊗eT

i )vec(Y ) = Yij. Hence,

Yij = eT
i

(
Qj∆(t) +∆(t)Qi

)
ej

= tr
(
eT
i Qj∆(t)ej

)
+ tr

(
eT
i ∆(t)Qiej

)
= tr

(
eT
j ∆

T
(t)Q

T
j ei

)
+ tr

(
eT
i ∆(t)Qiej

)
= tr

(
∆T

(t)Q
T
j eie

T
j

)
+ tr

(
Qieje

T
i ∆(t)

)
=vec(∆(t))

Tvec(QT
j eie

T
j +(Qieje

T
i )

T )

= vec(Qjeie
T
j +eie

T
j Qi)

Tvec(∆(t)),

where we used Qi =QT
i .

Hence we need to show (eT
j ⊗ eT

i )K = vec(Qjeie
T
j + eie

T
j Qi)

T . Letting δ denote the Kronecker

delta, we obtain:

(eT
j ⊗eT

i )K = (eT
j ⊗eT

i )

( n∑
r=1

ere
T
r ⊗Qr (2)

+Qr ⊗ere
T
r

)
=

n∑
r=1

(
δjr(e

T
j ⊗eT

i Qr) (3)

+ δir(e
T
j Qr ⊗eT

i )

)
= (eT

j ⊗eT
i Qj)+ (eT

j Qi ⊗eT
i )

= (ej ⊗Qjei +Qiej ⊗ei)
T
. (4)

Now, we observe that ej ⊗Qjei is the vectorization of a matrix whose jth column is Qjei, i.e., the

matrix Qjeie
T
j . Similarly, Qiej ⊗ ei is the vectorization of a matrix whose ith row is (Qiej)

T , i.e.,

the matrix eie
T
j Qi. Hence, (eT

j ⊗eT
i )K =vec(Qjeie

T
j +eie

T
j Qi)

T , as desired.
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Plugging into Eq. (1),

Lvec(∆(t+1) −∆(t)) =−ηRKvec(∆(t))

⇒Lvec(∆(t+1)) =Lvec(∆(t))− ηRKvec(∆(t))

⇒ vec(∆(t+1)) =
(
L†L− ηL†RK

)
vec(∆(t))

⇒ vec(∆(t+1)) =
(
R− ηRL†K

)
vec(∆(t))

=R
(
In2 − ηL†K

)
vec(∆(t)),

where we used the facts that (∆t)ij = (∆(t+1))ij = 0 for disallowed edges, and L†L=R and LR=

RL=L, which can be easily confirmed by inspection of these diagonal matrices. □

We use Lyapunov theory to analyze the convergence of pairwise negotiation dynamics. In par-

ticular, we need the the discrete Lyapunov equation, also called the Stein equation.

Theorem 2 (Callier and Desoer (1994) 7.d). For the discrete-time dynamical system xt+1 =

Axt, with xt ∈Rn, the following are equivalent:

1. The system is globally asymptotically stable towards 0.

2. For any positive definite R ∈Rn×n, there exists a unique solution X ≻ 0 to the equation

AXAT −X =−R

3. For any eigenvalue λ of A, |λ|< 1.

Pairwise negotiation dynamics can be described as a discrete-time linear system in vec(∆t),

where ∆t is the price difference at time t. Clearly, the system converges iff ∆t approaches zero.

Therefore, we can use the Stein equation to prove global asymptotic stability conditions.

We will also need the commutation matrix.

Lemma 2 (Horn and Johnson (1994)). Let Π(n,n) :Rn2 →Rn2
be a permutation matrix (called

the (n,n) commutation matrix) defined as Π(n,n) =
n∑

i=1

n∑
j=1

eie
T
j ⊗ eje

T
i . Then for any A,B ∈Rn×n,

we have

A⊗B =Π(n,n)(B⊗A)(Π(n,n))T

Recall that for a linear operator T that σ(T ) denotes the eigenvalues of T . We are ready to prove

Part 1 of Theorem 4.

Proposition 3 (Part 1 of Theorem 4). Let L,R,K be defined as in Theorem 1. For a matrix

X ∈Rn2×n2
let X |R denote the principal submatrix of X corresponding to the nonzero rows/columns

of R. Define η⋆ = min
λ∈σ((L†K)|R)

2
λ
. Then, for any η ∈ (0, η⋆), vec(∆(t)) is globally asymptotically stable

towards 0.
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Proof of Proposition 3. Let T =R(I−ηL†K). By Theorem 2, the dynamics are globally asymp-

totically stable towards 0 iff for all λ∈ σ(T ), we have |λ|< 1.

From Eq. (4) for a prohibited edge (i, j), we see that (eT
j ⊗ eT

i )K = 0T , since Qiej = 0=Qjei.

Hence,K =RK. Taking transposes and noting that bothK and R are symmetric, we findKR=K.

Hence, T =R(I − ηL†K) =R(I − ηL†K)R, where we used R2 =R. Thus, T is zero except for the

principal submatrix corresponding to the nonzero columns of R. So, to apply Theorem 2, we only

require |λ|< 1 for λ∈ σ(T |R).
For clarity of exposition we will first consider the case where R= I (no prohibited edges). Then,

the eigenvalues of T |R= T equal 1− ηλ, where λ ∈ σ(L−1K) = σ(L−1/2KL−1/2) by a similarity

transformation. Also, K = U1 + U2, where U1 =
n∑

r=1

(
ere

T
r ⊗Qr

)
and U2 :=

n∑
r=1

(
Qr ⊗ ere

T
r

)
. The

matrix U1 is block diagonal with positive-definite blocks Qr ≻ 0, so U1 ≻ 0. By Lemma 2, U2 is

similar to U1 via a permutation matrix, so U2 ≻ 0. Hence, K ≻ 0, and L−1/2KL−1/2 ≻ 0. So, the

eigenvalues of L−1K are real and positive. Hence, we have convergence iff for all λ∈ σ(L−1K), we

have 1> (1− ηλ)2 = 1− 2ηλ+ η2λ2. i.e., λ< 2/η. Hence, η⋆ = 2/∥L−1K∥ as required.

Now we consider the prohibited edges setting (R ̸= I). Here, convergence occurs iff |1−ηλ|< 1 for

all λ∈ σ((L†K) |R). Since RL†R=L† and RKR=K, we have (L†K) |R=L† |R K |R= (L |R)−1K |R.
Arguing as above, it suffices to show that K |R≻ 0. We claim K |R= V1 + V2 where V1 is a block

diagonal matrix with ith block equal to (2γiΨiΣiΨ
T
i )

−1 ≻ 0, and V2 is similar to V1 via Lemma 2.

Hence K |R≻ 0 and the expression for η⋆ follows. □

Proposition 4 (Part 2 of Theorem 4). We define η⋆ as in Proposition 3, and L,R,K,α as in

Theorem 1. Let η ∈ (0, η⋆). Then,

∥P (t)−P ⋆∥F ≤ αt

1−α
· ∥P (1)−P (0)∥F

Here, P ⋆ is the stable point to which the negotiation converges.

Proof. Let β denote the greatest eigenvalue in absolute value of R(In2 − ηL†K). From Theo-

rem 1, we have ∥∆t+1∥F ≤ |β|∥∆t∥F . Recall that λmax, λmin denote largest and smallest eigenvalues

of the matrix (L†K) |R respectively. Since ∥R∥ = 1, it follows that |β| = max{|1 − ηλmin|, |1 −
ηλmax|}= α.

Then,

∥P ⋆ −P (t)∥F ≤
∑
i>t

∥∆i∥F

≤ ∥∆t∥F (α+α2 + . . .)

≤ ∥∆t∥F
α

1−α

≤ (αt−1∥∆1∥F )
α

1−α

= ∥∆1∥F
αt

1−α
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Since ∥∆1∥F = ∥P (1)−P (0)∥F we are done. □

A.7. Example of Convergence Conditions and Rate

The following example illustrates Theorem 4 in the setting of Example 1 (Appendix A.1).

Example 3 (Convergence Conditions and Rate). In the setting of Example 1, we have

Q1 =

0 0 0
0 2/3 −1/3
0 −1/3 2/3

 ,Q2 =

1 0 0
0 0 0
0 0 0

 ,
Q3 =

2 0 0
0 0 0
0 0 0

 ,
Hence

K =



0 0 0 0 0 0 0 0 0
0 2

3
+1 −1

3
0 0 0 0 0 0

0 −1
3

2
3
+2 0 0 0 0 0 0

0 0 0 1+ 2
3
0 0 −1

3
0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −1

3
0 0 2+ 2

3
0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


Also, L is the diagonal matrix with Li,i = Ki,i for i ∈ [9]. Since the permitted edges are

{(1,2), (1,3)}, R= {2,3} and so (L†K)R =

[
1 −1

5−1
8

1

]
. Hence λmin = 1− 1

2
√
10
, λmax = 1+ 1

2
√
10
, and

η∗ = 2

1+(40)−1/2 ≈ 1.727.

It follows that pairwise negotiations with η ∈ (0, 2

1+(40)−1/2 ) are globally asymptotically stable.

Suppose that η = 0.99. Then α= (1− η · (1− 1
2
√
10
))≈ 0.17. Hence after t rounds, the distance of

P (t) to P ∗ shrinks by a factor of ≈ 0.17t

0.83
.

A.8. Proof of Theorem 5

We will use a series of Lemmas to reduce the result of Theorem 5 to a matrix concentration

inequality in each of the Σ̂i.

Lemma 3. Let η̂∗, η∗ be as in Theorem 5. Suppose all edges are permitted.

Suppose that for all i∈ [n], we have ∥Σ̂−1
i −Σ−1∥= o(1). Then, η̂⋆ > η⋆(1− o(1)).

Proof. Let L̂, K̂ ∈ Rn2×n2
be as in Theorem 5, but built using Σ̂1, . . . , Σ̂n instead of Σ, . . . ,Σ.

Let L,K be defined similarly to L̂, K̂ but using Σ in place of all Σ̂i.

Then η̂∗ := 2

maxσ(L̂−1K̂)
and η∗ := 2

maxσ(L−1K)
.

Let ϵL, ϵK ∈Rn2×n2
be such that L̂−1 =L−1 + ϵL and K̂ =K + ϵK . We will bound ∥ϵL∥,∥ϵK∥.

Let Qi, Q̂i be defined as in Theorem 1, so Qi := (2γiΣ)
−1 and Q̂i := (2γiΣ̂i)

−1. Let α=max
i∈[n]

∥Q̂i−

Qi∥. Notice ∥Γ−1∥=O(1), so α= o(1).



10

First, since L is diagonal, ∥ϵL∥ ≤ max
i,j∈[n]

(
(Q̂i;jj −Qi;jj) + (Q̂j;ii −Qj;ii)

)
≤ 2 max

i,j∈[n]

(
Q̂i;jj −Qi;jj

)
≤

2max
i∈[n]

∥Q̂i −Qi∥= 2a.

Second, let K̂ := Û1+ Û2 where Û1, Û2 are defined analogously to U1,U2 in the proof of Theorem

4. Letting Π be the (n,n) commutation matrix of Lemma 2, we know Û2 = ΠÛ1Π
T , so ∥ϵK∥ ≤

2∥Û1−U1∥. Since U1, Û1 are block diagonal with ith blocks Qi, Q̂i respectively, it follows ∥Û1−U1∥=

max
i∈[n]

∥Q̂i −Qi∥= α. Hence ∥ϵK∥ ≤ 2α.

Third, notice that since ∥Σ∥ and ∥Γ∥ are assumed to be O(1) that ∥L−1∥=O(maxi ∥Qi∥) =O(1)

and ∥K∥=O(maxi ∥Qi∥) =O(1). So,

∥L̂−1K̂ −L−1K∥2 ≤ ∥ϵL∥∥K∥

+ ∥L−1∥∥ϵK∥+ ∥ϵL∥∥ϵK∥

≤ 2α(∥K∥+2α)

+ 4α(∥L−1∥+α)

= 4α(∥K∥+ ∥L−1∥)+ 8α2

≤ o(1)

We conclude that ∥L̂−1K̂∥2 ≤ ∥L−1K∥2 + o(1), so η̂∗ ≥ η∗

1+(o(1)/∥L−1K∥) ≥ (1− o(1))η∗. □

Lemma 4. Suppose for i∈ [n], we have δi := ∥Σ̂i −Σ∥= o(1). Then ∥Σ̂−1
i −Σ−1

i ∥= o(1).

Proof. Weyl’s inequality implies that λmin(Σ̂i)≥ λmin(Σ)−∥Σ̂i −Σ∥. Therefore,

∥Σ̂−1
i ∥= 1

λmin(Σ̂i)

≤ 1

λmin(Σ)− δi

=
1

λmin(Σ)

(
1+

δi
λmin(Σ)

+O
(( δi

λmin(Σ)

)2))
= ∥Σ−1∥(1+ o(1))

⇒∥Σ̂−1
i −Σ−1∥= ∥Σ−1(Σi − Σ̂i)Σ̂

−1
i ∥

≤ (1+ o(1))∥Σ−1∥2δi

≤ o(1)

The last step follows from the fact ∥Σ−1∥=O(1). □

The hypothesis of Lemma 4 follows from a standard argument on the concentration of random

covariance matrices.
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Theorem 3. Under the setting of Theorem 5, with probability at least 1− e−Ω(n), we have ∥Σ̂i −

Σ∥= o(1) for all i∈ [n].

Proof of Theorem 3. Let X1, . . . ,Xm
iid∼ N (0,Σ) be the samples. Let µ̂ = 1

m

m∑
i=1

Xi, and Σ̃i :=

1
m

m∑
i=1

XiX
T
i . Then, Σ̂i =m/(m− 1) · (Σ̃i − µ̂µ̂T ). Hence,

∥Σ̂i −Σ∥ ≤m/(m− 1) ·
(
∥Σ̃i −Σ∥+ ∥µ̂µ̂T∥

)
=m/(m− 1)

(
∥Σ̃i −Σ∥+ ∥µ̂∥2

)
.

Now, µ̂∼N (0, 1
m
Σ), so

√
mΣ−1/2µ̂∼N (0, In). By Vershynin (2018) (4.7.3 and 2.8.3), there exist

constants c, c2 > 0 such that for any u, ϵ > 0,

P
[
∥Σ̃i −Σ∥2 ≤ c∥Σ∥2

(√
n+u

m
+

n+u

m

)]
≥ 1− 2e−u,

P
[∣∣∣∣ 1n∥√mΣ−1/2µ̂∥22 − 1

∣∣∣∣≤ ϵ

]
≥ 1− 2e−c2nmin(ϵ,ϵ2)

Now we set ϵ > 1 and u = c3n for some constant c3 > 0. Then, when m = ⌈n logn⌉, we have

(n+u)/m= o(1) Then, with probability at least 1− 2e−c3n − 2e−c2ϵn, we have

∥Σ̃i −Σ∥2 ≤ ∥Σ∥ · o(1),

and ∥Σ−1/2µ̂∥22 ≤
(1+ ϵ)n

m

⇒∥µ̂∥2 ≤ (1+ ϵ)n∥Σ∥
m

= ∥Σ∥ · o(1),

⇒∥Σ̂i −Σ∥ ≤ ∥Σ∥ · o(1).

Choosing large enough c3 and ϵ, this statement holds for all i ∈ [n] with probability greater than

1− elogn−c4n = 1− e−Ω(n). □

Theorem 5 follows easily.

Proof of Theorem 5 When all edges are permitted, the proof follows from Theorem 3, Lemma 3,

and Lemma 4.

If there are prohibited edges, then we must use matrix concentration to bound maxσ(L̂†K̂)

instead of maxσ(L̂−1K̂). Notice that prohibited edges have the effect of simply zeroing out certain

rows and columns of Qi, so that Qi := Ψi(2γiΨ
T
i ΣiΨi)

−1ΨT
i , rather than (2γiΣi)

−1. Therefore, we

can use Theorem 3 to bound ∥ΨT
i Σ̂iΨi−ΨT

i ΣΨi∥ for all i, and then prove the appropriate analogue

of Lemma 3. In particular, the sample size requirement remains the same. □
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A.9. Proof of Proposition 1

Restatement of Proposition 1. Finding the maximum likelihood estimator of Σ under

Assumption 1 is equivalent to the following SDP:

min
Σ

T−1∑
t=1

∥∥Σ(W (t+1)−W (t))

+ (W (t+1)−W (t))Σ
∥∥2
F

s. t. Σ⪰ 0, tr(Σ) = 1.

Recall that in Assumption 1 we assumed that Mij(t) varies independently according to a Brow-

nian motion with the same parameters for all (i, j). To avoid ambiguity, we recall the definition of

a standard Brownian motion as follows.

Definition 1 (Brownian Motion). For d ≥ 1, a d-dimensional Brownian motion with scale

parameter σ > 0 is a stochastic process {Xt : t≥ 0} such that Xt ∈Rd for all t, the components of

Xt are independent, and for all j ∈ [d],

i) The process {(Xt)j : t≥ 0} has independent increments.

ii) For r > 0, the increment (Xt+r)j − (Xt)j is distributed as N(0, rσ2).

iii) With probability 1, the function t 7→Xt is continuous on [0,∞).

We can derive the SDP of Proposition 1 as follows.

Proposition 5. Under Assumption 1, the maximum likelihood estimator for Σ is the unique Σ≻ 0

such that trΣ= 1 and

• Consistency: For all t∈ [T ],

W (t)Σ+ΣW (t) =
1

2
(M(t)+M(t)T )

for some M(1),M(2), . . .M(t)

• Minimum mean shift: The resulting M(1), . . . ,M(T ) minimize the objective

T−1∑
t=1

∥M(t+1)−M(t)∥2F

Proof of Proposition 5.

P(M(1), . . . ,M(T ) |W (1), . . . ,W (T ),Σ)

∝P(W (1), . . .W (T ) |M(1), . . . ,M(T ),Σ)

·P(M(1), . . . ,M(T ) |Σ)
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=

( T∏
t=1

1W (t)Σ+ΣW (t)=0.5(M(t)+M(t)T )

)

·
( T−1∏

t=1

P(M(t+1)−M(t))

)

=

( T∏
t=1

1vec(W (t))=0.5(Σ⊗I+I⊗Σ)vec(M(t)+M(t)T )

)

·
( T−1∏

t=1

exp(−∥vec(M(t+1)−M(t))∥2

2σ2
)

)
,

where the first step follows from Bayes’ Rule, the second step from Corollary 2, and the third

from Assumption 1. The theorem follows from the observation that for any matrix X, we have

∥vec(X)∥2 = ∥X∥2F . □

The proof of Proposition 1 follows easily.

Proof of Proposition 1. By Proposition 5, we obtain the SDP

min
Σ

T−1∑
t=1

∥M(t+1)−M(t)∥2F

∀t∈ [T ] :W (t)Σ+ΣW (t) =
1

2
(M(t)+M(t)T )

under the assumptions of Σ≻ 0 and tr(Σ) = 1. Since the Frobenius norm is invariant under trans-

poses, we have

T−1∑
t=1

∥M(t+1)−M(t)∥2F ∝
T−1∑
t=1

∥(M(t+1)+M(t+1)T )− (M(t)+M(t)T )∥2F .

We can replace M(t) + M(t)T with 2W (t)Σ + 2ΣW (t) for all t ∈ [T ] to obtain the equivalent

objective function
T−1∑
t=1

∥(W (t + 1) − W (t))Σ + Σ(W (t + 1) − W (t))∥2F (up to a constant). This

substitution enforces the fixed point equation W (t)Σ+ΣW (t) = 1
2
(M(t) +M(t)T ) for all t ∈ [T ],

so the conclusion follows. □

Remark 1 (The prohibited edges setting.). Proposition 1 generalizes straightforwardly to

the setting of prohibited edges. Let E denote the set of permitted edges. Then minimum mean

shift assumption is equivalent to minimizing
T−1∑
t=1

∑
{i,j}∈E

(
M(t+1)+M(t+1)T −M(t)−M(t)T

)2
ij
.

In words, the objective just zeroes out prohibited edges, since mean estimates for prohibited edges

have no effect on the network. For a network setting (µj,Σ, γj,Ψj)j∈[n], some algebra gives M(t)ij =

eT
i 2γj(Ψ

T
j Ψj)Σ(Ψ

T
j Ψj)W (t)ej. Notice ΨT

j Ψj ∈Rn is a diagonal matrix with (ΨT
j Ψj)ii = 1 if {i, j} ∈

E and zero otherwise. Therefore, it is clear that upon substitution, the objective is an SDP in Σ

with the same constraints.
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A.10. Proof of Theorem 6

Restatement of Theorem 6 Suppose that for each firm i ∈ [n], the function Fi : Rn → R is

twice differentiable, and there exist strictly increasing functions fji :R→R such that for all x∈Rn,

∇Fi(x) = [f1i(x1), . . . , fni(xn)]
T . Then there exists a unique stable point.

Proof of Theorem 6. Note that the Hessian of Fi(wi) is a positive diagonal matrix due to the

conditions on Fi(.). So, any stationary point is a local maximum. Hence, it suffices to show the

existence of a unique stationary point.

Let R(W ) be an n× n matrix whose (i, j)th entry R(W )ij := fij(Wij). If a stable point (W,P )

exists, it must satisfy W =W T , P =−P T , and

M −P = 2ΣWΓ+R, (5)

following the same steps as the proof for Corollary 2. Adding this equation to its transpose, the

stable point must satisfy

(M +MT )/2 = (ΣWΓ+ΓWΣ)

+ (R(W )+R(W )T )/2.

For a stable point, [R(W ) + R(W )T ]ij = fij(Wij) + fji(Wji) = (fij + fji)(Wij), using W = W T .

Define S(W ) to be an n×n matrix with S(W )ij = (1/2) · (fij + fji)(Wij). Hence, the stable point

must satisfy

(M +MT )/2 = S(W )+ (ΣWΓ+ΓWΣ) (6)

⇔ vec((M +MT )/2) = vec(S(W )) (7)

+ (Γ⊗Σ+Σ⊗Γ)︸ ︷︷ ︸
Q

vec(W ).

Note that Q is positive-definite (from the proof of Corollary 2), and each entry of vec(S(W )) is

a function of the corresponding entry of vec(W ). By Theorems 1 and 2 of Sandberg and Willson

(1972), Eq. (6) has a unique solution if (1) for all diagonal D≻ 0, det(D+Q)> 0 and (2) for any

x,y ∈ Rn2
such that x =Qy, we have xTy ≥ 0. The first condition holds because det(D +Q) =

det(D1/2(I +D−1/2QD−1/2)D1/2) = det(D) · det(I +D−1/2QD−1/2) > 0. The second condition is

true because xTy= yTQy≥ 0. Hence, Eq. (6) has a unique solution W.

We now show that this solution satisfies the conditions of the stable point, that is, W =WT ,

and there exists a skew-symmetric P which satisfies Eq. (5). Observe that

[S(W)T ]ij = S(W)ji

= (1/2) · (fij + fji)(Wji)

= S(WT )ij,
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so S(W)T = S(WT ). Taking the transpose of Eq. (6) and using Σ = ΣT , Γ = ΓT , and S(W)T =

S(WT ), we find

(M +MT )/2 = (ΣWTΓ+ΓWTΣ)+S(WT ).

But since there is only one solution to Eq. (6), we must have W =WT .

Finally, we choose

P =M − 2ΣWΓ−R

⇒ P +P T = (M +MT )− 2(ΣWΓ+ΓWΣ)

− 2S(W )

= 0,

using the fact thatW =WT is a solution for Eq. (6). Hence, this choice of P is both skew-symmetric

and satisfies Eq. (5). □

A.11. Proof of Theorem 7

Restatement of 7. Suppose Σi =Σ for all firms, and let M be the matrix of expected returns.

Then, we have the following:

1. Change in beliefs about expected returns: Let Σ have the eigendecomposition Σ =

V ΛV T . Then for i, j, k, ℓ∈ [n],

∂Wij

∂Mkℓ

=
1

2
√
γiγjγkγℓ

·
∑

s,t∈[n]

VisVksVjtVℓt +VisVℓsVjtVkt

λs +λt

.
(8)

In particular, Wij is monotonically increasing with respect to Mij.

2. Risk scaling: If the covariance Σ changes to cΣ (c > 0), then W changes to (1/c)W .

3. Increase in perceived risk: Suppose γi = γ for all i, and the covariance Σ increases to

Σ′ ≻Σ. Let W and W ′ be the stable points under Σ and Σ′ respectively. Then, tr(MT (W ′−W ))< 0.

Proof of Theorem 7. 1. Let (λi,vi) denote the ith eigenvalue and eigenvector of Γ−1/2ΣΓ−1/2,

and let Vij = eT
i vj. By Corollary 2,

W =Γ−1/2

( n∑
s=1

n∑
t=1

vT
s Γ

−1/2(M +MT )Γ−1/2vt

2(λr +λs)
vsv

T
t

)
Γ−1/2

⇒ ∂Wij

∂Mkℓ

= eT
i Γ

−1/2

( n∑
s=1

n∑
t=1
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vT
s Γ

−1/2(eke
T
ℓ +eℓe

T
k )Γ

−1/2vt

2(λs +λt)

vsv
T
t

)
Γ−1/2ej

=
1

2
√
γiγjγkγℓ

( n∑
s=1

n∑
t=1

vT
s (eke

T
ℓ +eℓe

T
k )vt

(λs +λt)
(eT

i vs)(v
T
t ej)

)
=

1

2
√
γiγjγkγℓ

n∑
s=1

n∑
t=1

(
VisVksVjtVℓt +VisVℓsVjtVkt

λs +λt

)
This proves Eq. (3). If i= k, j = ℓ, we have:

∂Wij

∂Mij

= (2γiγj)
−1

 n∑
s=1

n∑
t=1

V 2
isV

2
jt +VisVjsVjtVit

λs +λt︸ ︷︷ ︸
Zst


= (4γiγj)

−1

(
n∑

s=1

n∑
t=1

Zst +
n∑

t=1

n∑
s=1

Zts

)

= (4γiγj)
−1

n∑
s=1

n∑
t=1

(Zst +Zts)

= (4γiγj)
−1

n∑
s=1

n∑
t=1

(VisVjt +VjsVit)
2

λr +λs

> 0.

Hence, Wij is monotonically increasing with respect to Mij.

2. This follows from Corollary 2.

3. By Corollary 2, vec(W ) = γ−1(Σ⊗ I + I ⊗ Σ)−1vec(M+MT

2
). Let K = γ(Σ⊗ I + I ⊗ Σ) and

K ′ = γ(Σ′ ⊗ I + I ⊗Σ′). Since Σ′ ≻Σ it follows that K ′ ≻K. Therefore K−1 ≻ (K ′)−1.

So, since vec(W ′ − W ) = ((K ′)−1 − K−1)vec(M+MT

2
), we immediately obtain 1

2
vec(M +

MT )Tvec(W ′ − W ) < 0. Since W,W ′ are symmetric it follows that vec(MT )Tvec(W ′ − W ) =

vec(M)Tvec(W ′ −W ). So we have vec(M)Tvec(W ′ −W )< 0.

Since vec(M)Tvec(W ′ −W ) = tr(MT (W ′ −W )), the conclusion follows. □

A.12. Hardness of Source Detection

We begin by defining ∣∣∣∣ ∂Wij

∂Mkℓ

∣∣∣∣
approx

:=
|VinVknVjnVℓn|

2λn

. (9)

This approximates the right hand side of Eq. (3) when the term corresponding to the smallest

eigenvalue λn dominates the sum. We now show that if the corresponding eigenvector vn is random,

source detection becomes difficult.
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Proposition 6 (Hardness of Source Detection). Suppose vn is Haar-distributed, that is, vn

is distributed uniformly on the unit sphere Sn−1. Then, if Σ= V ΛV T and Γ= I,

P
[

max
i,j∈[n]:(i,j)̸=(k,ℓ)

∣∣∣∣∂Wij

Mkℓ

∣∣∣∣
approx

<

∣∣∣∣∂Wkℓ

Mkℓ

∣∣∣∣
approx

]
≤O

(
1

n

)
.

Proof of Proposition 6. Without loss of generality we can set k= 1, ℓ= 2 (the analysis of k= ℓ

is identical). Notice that
∣∣∣∂Wij

Mkℓ

∣∣∣
approx

is maximized at the (i, j) that maximizes |VinVjn|.

Now, consider (i, j) ∈ {(1,2), (3,4), . . . , (n− 1, n)}. Notice the distribution of vn is permutation-

invariant by assumption. Hence the joint distribution of (Vin, Vjn) is the same for all such pairs

(i, j). Hence the distribution of |VinVjn| is also the same for all such (i, j). Therefore,

P
[
arg max

(i,j)∈{(1,2),(3,4),...,(n−1,n)}

∣∣∣∣∂Wij

M12

∣∣∣∣
approx

= (1,2)

]
≤O(1/n). □

A.13. Proof of Proposition 2

Restatement of Proposition 2 Suppose M,Σ,Γ exhibit community structure (Eq. (4)), and all

the error terms (ϵi)i∈[n] and (ϵ′θi,j)i,j∈[n] are independent and identically distributed. Let π : [n]→ [n]

be any intra-community permutation, and let Π :Rn →Rn be the corresponding column-permutation

matrix: Π(ei) = eπ(i). Then, W and ΠTWΠ are identically distributed.

Proof. Let H = 1
2
(M +MT ). The fixed point equation for W is given by Corollary 2 as ΣWΓ+

ΓWΣ=H. Vectorization implies (Γ⊗Σ+Σ⊗Γ)vec(W ) = vec(H). Let X ∼ Y denote that a pair

of random variables X,Y are identically distributed. We want to show ΠTWΠ∼W . Vectorization

gives vec(ΠTWΠ)= (ΠT ⊗ΠT )vec(W ). Let P = (ΠT ⊗ΠT ) and K = (Γ⊗Σ+Σ⊗Γ) for shorthand.

In this notation, we want to show that PK−1vec(H)∼K−1vec(H). Since P is a permutation,

we have PK−1vec(H) = PK−1P TPvec(H) = (PKP T )−1Pvec(H). Since the collections of random

variables {ϵi}i and {ϵ′θi,j}i,j are independent, we know vec(H) and K are independent. So to show

(PKP T )−1Pvec(H)∼K−1vec(H) it suffices to show that Pvec(H)∼ vec(H) and PKP T ∼K.

Notice Pvec(H) = vec(ΠTHΠ). Hence, we want to show ΠTHΠ∼H, which holds iff ΠT (M +

MT )Π∼M +MT . Notice that ΠTMTΠ= (ΠTMΠ)T , so if ΠTMΠ∼M then we obtain ΠTMTΠ∼

MT as well. It suffices to show ΠTMΠ∼M .

Similarly, we can simplify PKP T =ΠTΣΠ⊗ΠTΓΠ+ΠTΓΠ⊗ΠTΣΠ. It suffices to show ΠTΓΠ∼

Γ and ΠTΣΠ=Σ.
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We are left to show that ΠTΣΠ=Σ and ΠTAΠ∼A for A∈ {Γ,M}.
Proof of ΠTΣΠ=Σ. Let i, j ∈ [n]. Then (ΠTΣΠ)ij =Σπ(i),π(j) = g(θπ(i), θπ(j)). Since π only com-

mutes members within communities, g(θπ(i), θπ(j)) = g(θi, θj) =Σij. So ΠTΣΠ=Σ.

Proof of ΠTΓΠ ∼ Γ. Notice ΠTΓΠ and Γ are both diagonal. Let i ∈ [n]. Then (ΠTΓΠ)ii =

Γπ(i),π(i) = h(θπ(i))+ ϵπ(i) = h(θi)+ ϵπ(i). Since θi = θπ(i), we know ϵi ∼ ϵπ(i). The conclusion follows.

Proof of ΠTMΠ ∼ M . Let i, j ∈ [n]. Then (ΠTMΠ)ij = Mπ(i),π(j) = f(θπ(i), θπ(j)) + ϵ′θπ(i),π(j)
=

f(θi, θj)+ ϵ′θi,π(j). Since θj = θπ(j), we know that ϵ′θi,π(j) ∼ ϵ′θi,j, and the conclusion follows. □

A.14. Proof of Theorem 8

Restatement of Theorem 8 Consider two network settings S = (µi,Σ, γi)i∈[n] and S′ =

(µi,Σ, γ
′
i)i∈[n] which differ only in the risk-aversions of firms J = {j | γj ̸= γ′

j} ⊆ [n]. Then, there

exists a setting S† = (µ†
i ,Σ, γi)i∈[n] such that µi =µ†

i for all i /∈ J and the stable networks under S†

and S′ are identical.

Proof of Theorem 8. First, consider the network settings S and S′. Let Γ∈Rn×n be a diagonal

matrix with Γi,i = γi; define Γ′ similarly under S′. Let the corresponding networks be W and W ′,

and let ∆W =W ′ −W and ∆Γ =Γ′ −Γ. By Corollary 2, we have

ΣWΓ+ΓWΣ=
M +MT

2

=ΣW ′Γ′ +Γ′W ′Σ

⇒ M +MT

2
=Σ(W +∆W )(Γ+∆Γ)

+ (Γ+∆Γ)(W +∆W )Σ

=ΣWΓ+ΓWΣ (10)

+Σ∆WΓ+Γ∆WΣ

+ΣW∆Γ +∆ΓWΣ

+Σ∆W∆Γ +∆Γ∆WΣ

⇒Σ∆WΓ+Γ∆WΣ=−(ΣW∆Γ +∆ΓWΣ

+Σ∆W∆Γ +∆Γ∆WΣ)

=−(ΣW ′∆Γ +∆ΓW
′Σ) (11)

Next, consider S versus S†. Suppose that M † has columns µ†
1, . . . ,µ

†
n and let ∆M =M †−M . Let

W † be the fixed point network under S†, given by ΣW †Γ+ΓW †Σ= M†+(M†)T

2
. Let ∆†

W =W †−W .

Then a similar argument gives:

∆M +∆T
M

2
=Σ∆†

WΓ+Γ∆†
WΣ (12)
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Therefore, from Eq (11) and (12), it follows that W ′ =W † if

∆M +∆T
M

2
=−(ΣW ′∆Γ +∆ΓW

′Σ).

Hence, W ′ =W † if we set ∆M =−ΣW ′∆Γ.

It remains to show that M † differs from M only in columns corresponding to J . Suppose that

i ̸∈ J . Then γi = γ′
i, so ∆Γei = 0. We conclude that ∆Mei = 0 and hence Mei =M †ei. □

A.15. Additional Discussion of Theorem 6

Theorem 6 considers budget constraints or penalties of the form Fi(wi), where wi is the vector of

contracts for agent i. Consider the more general setting of Fi(w
T
i Pei) or Fi(wi ⊙Pei). Using the

techniques from Sandberg and Willson (1972), we cannot prove the existence and uniqueness of

stable points in the general setting, except in trivial cases.

To see this, note that we must impose conditions on the first derivative fji =
∂Fi
∂Wij

of the penalty

function Fi. Specifically, we need Sij := fij + fji to be a function of Wij alone. But if Fi were to

depend on P , so would fij. Each entry of P depends on all entries of W in general, not just Wij.

Hence, we cannot handle general forms of Fi(W,P ).

In the special case where Fi(W,P ) :=wT
i Pei, we have Sij = Pij + Pji = 0, and Theorem 6 still

applies. However, this case is trivial since it amounts to modifying the payments matrix by a factor

of 2:

agent i’s utility gi(W,P ) :=wT
i (µi −Pei)

− γi ·wT
i Σiwi −Fi(wi)

=wT
i (µi − 2Pei)

− γi ·wT
i Σiwi.

If we instead have a positive penalty only when the total payment is positive (say, Fi(W,P ) :=

max(0,wT
i Pei)), the approach no longer works.

Appendix B: Experimental Details

B.1. Fama-French Stock Market Data

We use the Fama-French value-weighted asset returns dataset, for 96 assets over 625 months (Fama

and French 2015).

B.2. OECD International Trade Data

We use international trade statistics from the OECD to get quarterly measurements of bilateral

trade between 46 large economies, including the top 15 world nations by GDP OECD (2022). The

data are available at the OECD Statistics webpage (https://stats.oecd.org/). The data are

https://stats.oecd.org/
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measured quarterly from Q1 2010 to Q2 2022. We take the sum of trade flows i→ j and j → i to

measure the weight of an edge {i, j}.

To obtain the corresponding Σ, we run our inference procedure (Section 2.4). Since there is no

data for within-country trade, the network has no self-loops (Wii = 0). So we modify the inference

according to Remark 1 in Appendix A.9.

B.3. Outlier Detection Simulation

The experiments in Figure 6 proceed as follows. Fix a number of communities k and number of

firms n. Fix a value of σ > 0. For us, k = 2, n ∈ {20,100,300}, and σ ∈ {σ1, . . . , σ10}, where the σi

are logarithmically spaced on the interval [0.1,1], so that

σ ∈ {0.1,0.12915497,0.16681005,

0.21544347,0.27825594,0.35938137,

0.46415888,0.59948425,0.77426368,1.0}

For a setting of n,k,σ, we perform the following simulation m= 500 times.

Generate communities. Generate the community membership matrix Θ ∈ {0,1}n×k with rows

independently and uniformly at random from {e1, . . . ,ek}.

Generate the network setting. The deterministic functions f, g,h for M,Σ,Γ respectively are

as follows. First f(θ1, θ2) = f(θ2, θ1) = 1 and f = 0 otherwise. Next, let G ∈ Rk×k be the matrix

Gij = g(θi, θj). Then G is generated from a normalized Wishart distribution centered at Ik and

with 5 degrees of freedom. Finally, h(θi) = 1 for all i.

The noise variables for agent beliefs are as follows. Sample i.i.d. ϵi according to a N(0, σ2)

distribution truncated to [−0.5,0.5] for all i. Sample ϵ′θi,j
iid∼N(0, σ2) for all i, j.

Designate an outlier. Set the the noise parameter ϵ1 = −0.5 for firm 1 (the risk-seeker), so as

σ→ 0, γ1 gets further separated from all other γi.

Outlier detection simulation. Then for a random firm i such that θi ̸= θ1, we test whether the

outlier ĵ := arg max
j:θj=θ1

|Wi,j| is equal to the true outlier firm 1.

Collate results. Once the m = 500 runs are completed for a single setting of n,k,σ, we obtain

an estimate p̂ for the probability of successful deviator detection at this setting of parameters. We

plot a confidence interval [p− 2
√

p̂(1−p̂)

m
, p+ 2

√
p̂(1−p̂)

m
]. This is plotted on the y-axis. The x-axis

quantifies how much γ1 deviates from the mean, in terms of the number of standard deviations of

the truncated normal distribution ϵi.
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