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Financial networks help firms manage risk but also enable financial shocks to spread. Despite their impor-

tance, existing models of financial networks have several limitations. Prior works often consider a static

network with a simple structure (e.g., a ring) or a model that assumes conditional independence between

edges. We propose a new model where the network emerges from interactions between heterogeneous utility-

maximizing firms. Edges correspond to contract agreements between pairs of firms, with the contract size

being the edge weight. We show that, almost always, there is a unique “stable network.” All edge weights in

this stable network depend on all firms’ beliefs. Furthermore, firms can find the stable network via iterative

pairwise negotiations. When beliefs change, the stable network changes. We show that under realistic set-

tings, a regulator cannot pin down the changed beliefs that caused the network changes. Also, each firm can

use its view of the network to inform its beliefs. For instance, it can detect outlier firms whose beliefs deviate

from their peers. But it cannot identify the deviant belief: increased risk-seeking is indistinguishable from

increased expected profits. Seemingly minor news may settle the dilemma, triggering significant changes in

the network.
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1. Introduction

The financial crisis of 2008 showed the need for mitigating systemic risks in the financial system.

There has been much recent work on categorizing such risks (Elliott et al. 2014, Glasserman and

Young 2015, 2016, Birge 2021, Jackson and Pernoud 2021). While the causes of systemic risk

are varied, they often share one feature. This shared feature is the network of interconnections

between firms via which problems at one firm spread to others. One example is the weighted
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directed network of debt between firms. If one firm defaults on its debt, its creditors suffer losses.

Some creditors may be forced into default, triggering a default cascade (Eisenberg and Noe 2001).

Another example is the implicit network between firms holding similar assets. Sales by one firm can

lead to mark-to-market valuation losses at other firms. These can snowball into fire sales (Caballero

and Simsek 2013, Cont and Minca 2016, Feinstein 2020, Feinstein and Søjmark 2021).

The structure of inter-firm networks plays a vital role in the financial system. Small changes in

network structure can lead to jumps in credit spreads in Over-The-Counter (OTC) markets (Eis-

feldt et al. 2021). Network density, diversification, and inter-firm cross-holdings can affect how

robust the networks are to shocks and how such shocks propagate (Elliott et al. 2014, Acemoglu

et al. 2015). The network structure also affects the design of regulatory interventions (Papachristou

and Kleinberg 2022, Amini et al. 2015, Calafiore et al. 2022, Galeotti et al. 2020).

Despite its importance, many prior works use simplistic descriptions of the network structure.

For instance, they often assume that the network is fixed and observable. But only regulators

may have access to the entire network. Furthermore, shocks or regulatory interventions can change

the network. Others assume that the network belongs to a general class. For instance, Caballero

and Simsek (2013) assume a ring network between banks. Amini et al. (2015) derive tractable

optimal interventions for core-periphery networks. But financial networks can exhibit complex

structure (Peltonen et al. 2014, Eisfeldt et al. 2021). Leverage levels, size heterogeneity, and other

factors can affect the network topology (Glasserman and Young 2016). Hence, there is a need for

models to help reason about financial networks.

In this paper, we design a model for a weighted network of contracts between agents, such

as firms, countries, or individuals. The contracts can be arbitrary, and the edge weights denote

contract sizes. In designing the model, we have two main desiderata. First, the model must account

for heterogeneity between firms. This follows from empirical observations that differences in dealer

characteristics lead to different trade risk exposures in OTC markets (Eisfeldt et al. 2021). Second,

each firm seeks to maximize its utility and selects its contract sizes accordingly. In effect, each firm
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tries to optimize its portfolio of contracts (Markowitz 1952). The model must reflect this behavior.

From this starting point, we ask the following questions:

1. How does a network emerge from interactions between heterogeneous utility-maximizing

firms?

2. How does the network respond to regulatory interventions?

3. How can the network structure inform the beliefs that firms hold about each other?

Next, we review the relevant literature.

Imputing financial networks. We often have only partial information about the structure of a

financial network. For example, we may know the total liability of each bank in a network. From

this, we want to reconstruct all the inter-bank liabilities (Squartini et al. 2018). One approach is

to pick the network that minimizes KL divergence from a given input matrix (Upper and Worms

2004). Mastromatteo et al. (2012) use message-passing algorithms, while Gandy and Veraart (2017)

use a Bayesian approach. But such random graph models often do not reflect the sparsity and

power-law degree distributions of financial networks (Upper 2011). Furthermore, these models do

not account for the utility-maximizing behavior of firms.

General-purpose network models. The simplest and most well-explored network model is the

random graph model (Gilbert 1959, Erdös and Rényi 1959). Here, every pair of nodes is linked

independently with probability p. Generalizations of this model allow for different degree distri-

butions and edge directionality (Aiello et al. 2000). Exponential random graph models remove

the need for independence, but parameter estimation is costly (Frank and Strauss 1986, Wasser-

man and Pattison 1996, Hunter and Handcock 2006, Caimo and Friel 2011). Several models add

node-specific latent variables to model the heterogeneity of nodes. For example, in the Stochastic

Blockmodel and its variants, nodes are members of various latent communities. The community

affiliations of two nodes determine their probability of linkage (Holland et al. 1983, Chakrabarti

et al. 2004, Airoldi et al. 2008, Mao et al. 2018). Instead of latent communities, Hoff et al. (2002)

assign a latent location to each node. Here, the probability of an edge depends on the distance

between their locations.
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All the latent variable models assume conditional independence of edges given the latent vari-

ables. But in financial networks, contracts between firms are not independent. Two firms will sign a

contract only if the marginal benefit of the new contract is higher than the cost. This cost/benefit

tradeoff depends on all other contracts signed with other firms. Unlike our model, existing general-

purpose models do not account for such utility-maximization behavior.

Network games. Here, the payoffs of nodes are dependent on the actions of their neighbors (Tar-

dos 2004). One well-studied class of network games is linear-quadratic games, with linear dynamics

and quadratic payoff functions. Prior work has explored the stability of Nash equilibria (Guo and

De Persis 2021) and algorithms to learn the agents’ payoff functions (Leng et al. 2020). But our

model does not yield a linear-quadratic game except in exceptional cases. Instead, our process

involves non-linear rational functions of the beliefs of firms. Thus, our setting differs from linear-

quadratic games. Recently, network games have been extended to settings where the number of

players tends to infinity (Carmona et al. 2022). However, we only consider finite networks.

Games to form networks. Several works study the stability of networks. In a pairwise-stable

network, no pair of agents want to form or sever edges. This may be achieved via side-payments

between agents, which our model also uses (Jackson and Wolinsky 2003). Pairwise stability has

been extended to strong stability for networks (Jackson and Van den Nouweland 2005), and also

to weighted networks with edge weights in [0,1] (Bich and Morhaim 2020, Bich and Teteryatnikova

2022). We introduce an analogous notion called Higher-Order Nash stability against any deviating

coalition. However, the weights in our network are not bounded in [0,1] and can be negative. Fur-

thermore, our edge weights denote contract size, requiring agreement from both parties. In contrast,

prior works typically interpret edge weights as the engagement level in an ongoing interaction.

Sadler and Golub (2021) study a network game with endogenous network formation, whose stable

points are both pairwise stable and Nash equilibria. We show similar results for our model. But

they consider unweighted networks and focus on the case of separable games. In our setting, this

corresponds to the case where all firms are uncorrelated. But in financial networks, correlations

are widespread and help firms diversify their contracts.
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Several authors study the effect of exogenous inputs on production networks (Herskovic 2018,

Elliott et al. 2022). Acemoglu and Azar (2020) also model endogenous network formation but

differ from our approach. Prices in their model equal the minimum unit cost of production. For us,

prices are determined by pairwise negotiations between firms. Also, each firm in their model only

considers a discrete set of choices among possible suppliers. In our model, firms can choose both

their counterparties and the contract sizes.

Risk-sharing and exchange economies. The pricing of risk is a well-studied problem (Arrow

and Debreu 1954, Bühlmann 1980, 1984, Tsanakas and Christofides 2006, Banerjee and Feinstein

2022). Most models typically price risk via a global market. However, in our model, all contracts

are pairwise, and the contract terms and payments between a buyer and seller are bespoke. There

is no global contract or global market price. Since contracts are pairwise, each firm under our

model must consider counterparty risks and the correlations between them. A firm i may make

large payments and accept a negative reward for a contract with firm j to diversify the risk from

contracts with other firms. Finally, in our model, agents can hedge their risk by betting against

one another. In contrast, Bühlmann equilibria always result in comonotonic endowments, which

firms cannot use as hedges for each other (Banerjee and Feinstein 2022, Yaari 1987).

Network valuation adjustment. Some recent works price the risk due to exposure to the entire

financial network (Banerjee and Feinstein 2022, Feinstein and Søjmark 2022). The network is usu-

ally treated as exogenous and fully known to all firms. In contrast, we consider endogenous network

formation resulting from pairwise interactions between firms. The network valuation algorithm of

Barucca et al. (2020) works with incomplete information, but is not designed for network formation,

and it needs firms to share information not required to form their contracts.

Properties of equilibria. Another line of work considers the efficiency or social welfare of equilib-

ria (Jackson and Pernoud 2021, Elliott and Golub 2022). Galeotti et al. (2020) show that welfare-

maximizing interventions rely mainly on the top or bottom eigenvectors of the network. Elliott

et al. (2022) show an efficiency-stability tradeoff for their model of supply network formation.
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Like prior work, we show that stable equilibria exist and are non-dominated. But our emphasis is

on potentially valuable insights for regulators and firms. For instance, we show a negative result

about the ability of regulators to infer the causes of changes to the network structure. The linkage

between firms’ utilities and their beliefs, and its effect on stability, is not considered in prior work.

1.1. Our Contributions

We develop a new network model of contracts between heterogeneous agents, such as firms, coun-

tries, or individuals. Each agent aims to maximize a mean-variance utility parametrized by its

beliefs. But for two agents to sign a contract, both must agree to the contract size. For a stable

network, all agents must agree to all their contracts. We show that such constraints are solvable

by allowing agents to pay each other. By choosing prices appropriately, every agent maximizes its

utility in a stable network.

Characterization of stable networks (Section 2): We show that unique stable networks exist

for almost all choices of agents’ beliefs. These networks are robust against actions by cartels, a

condition that we call Higher-Order Nash Stability. The agents can also converge to the stable

network via iterative pairwise negotiations. The convergence is exponential in the number of iter-

ations. Hence, the stable network can be found quickly. Finally, we show how to infer the agents’

beliefs by observing network snapshots over time, under certain conditions.

The limits of regulation (Section 3): A financial regulator can observe the entire network

but not the agents’ beliefs. Suppose firm i changes its beliefs about firm j. Then the contract size

between i and j will change. Indirectly, other contracts will change too. We show empirically that

in realistic settings, the indirect effects can be as significant as the direct effects. In such cases,

the regulator cannot infer the underlying cause of changes in the network. Similarly, suppose the

regulator intervenes with one firm, affecting its beliefs. The resulting network changes need not be

localized to that firm’s neighborhood in the network. Thus, targeted interventions can have strong

ripple effects. Broad-based interventions aimed at increasing stability can also have adverse effects.

For instance, increasing margin requirements on contracts may even increase some contract sizes.
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Outlier detection by firms (Section 4): A firm i can observe its contracts with counterparties

but not the entire network. Suppose another firm j (say, a real-estate firm) has beliefs that are

very different from its peers. Then, we prove that under certain conditions, j’s contract size with i

is also an outlier compared to other real-estate firms. So, firm i can use the network to detect

outliers and update its beliefs. But suppose all real-estate firms change their beliefs. This changes

all their contract sizes without creating outliers. We show that i cannot determine the cause of

this change. For example, firm i would observe the same change whether all real-estate firms had

become more risk-seeking or profitable. However, firm i may want to increase its exposure if they

are more profitable but reduce exposure if they are more risk-seeking. Since the data cannot identify

the proper action, firm i remains uncertain. Exogenous, seemingly insignificant information may

persuade firm i one way or another. Thus, minor news may trigger drastic changes in the network.

Notation. We use lowercase letters, with or without subscripts, to denote scalars (e.g., c, γi).

Lowercase bold letters denote vectors (µi,w), and uppercase letters denote matrices (W,P,Σi). We

use µi;j to refer to the jth component of the vector µi, and Σi;jk for the (j, k) cell of matrix Σi. We

use vT to denote the transpose of a vector v, and ∥ ·∥p to denote the ℓp norm of a vector or matrix.

We say A⪰ 0 if A is positive semidefinite, A≻ 0 if it is positive definite, and A⪰B if A−B ⪰ 0.

The vectors e1, . . . ,en denote the standard basis in Rn, and In is the n × n identity matrix. If

A ∈Rm×n,B ∈Rp×q then A⊗B ∈Rmp×nq denotes their tensor product: (A⊗B)ij,kℓ =AikBjℓ. For

an appropriate matrix M , tr(M) calculates its trace, vec(M) vectorizes M by stacking its columns

into a single vector, and uvec(M) vectorizes the upper-triangular off-diagonal entries of M . For an

integer r≥ 1, we use [r] to denote the set of integers [r] := {1,2, . . . , r}.

2. The Proposed Model

We consider a weighted network W ∈ Rn×n between n agents (such as firms, countries, or indi-

viduals). The element Wij represents the size of a contract between agents i and j. We make no

assumptions about the content of the contract. For instance, the contract could be a interest rate

swap, a stock swap, or an insurance contract. We assume that each pair of firms can form a con-

tract of a standard type, and negotiate only on the contract size and price (discussed below). Since
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contracts need mutual agreement, Wij = Wji. We take Wii to represent i’s investment in itself.

Note that a negative contract (Wij =Wji < 0) is a valid contract that reverses the content of a

positive contract. For example, if a positive contract is a derivative trade between two firms, the

negative contract swaps the roles of the two firms.

Let wi denote the i
th column of W (i.e., wi;j =Wji for all j). Each agent i would prefer to set its

contract sizes wi to maximize its utility. But other agents will typically have different preferences.

So, to achieve an agreement about the contract size Wij, agents i and j can agree on a price for

the contract. For example, i may agree to pay j an amount Pji ·Wji in cash at the beginning of

the contract. Since payments are zero-sum and Wji =Wij, we must have Pji = −Pij. We do not

model how firms raise funds to pay the price.

Each contract yields a stochastic payout, and agents have beliefs about these payouts. We rep-

resent agent i’s beliefs by a vector µi of expected returns and a covariance matrix Σi ≻ 0. Thus, Σi

represents firm i’s perceived risk of trading with other firms, and includes both contract-specific

risk and counterparty risk. Note that we do not assume that the contracts are zero-sum or that

the beliefs are correct, even approximately. Thus, the overall expected return from all contracts of

i is wT
i (µi −Pei), and the variance of the overall return is wT

i Σiwi. We assume that each agent

has a mean-variance utility (Markowitz 1952):

agent i’s utility

gi(W,P ) :=wT
i (µi−Pei)− γi ·wT

i Σiwi,

(1)

where γi > 0 is a risk-aversion parameter. In practice, we expect the set {γi}i∈[n] to be not too

heterogeneous (Metrick 1995, Kimball et al. 2008, Ang 2014, Paravisini et al. 2017). Note that

Eq. (1) ignores costs for contract formation; we will consider these in Section 3.1. Also, we assume

that Pji does not change the perceived risk.

Example 1 (Insurance Contract). Suppose firm i buys fire insurance from insurer j. Then,

µi;j is the buyer’s expected insurance payout minus the insurance premium. The expected payout

depends on the probability of a fire, for which the buyer and insurer may have different estimates.
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Also, the insurance contract is negatively correlated with the buyer’s other contracts (reflected in

Σi). This is because the buyer gains a payout from the insurer in case of a fire, but incurs losses

on other contracts. Hence, the buyer i may be willing to accept a contract with negative expected

reward, and even pay a higher-than-usual premium Pji per contract.

Example 2 (Interest rate swap contract). Suppose firm i makes fixed-rate payments to

firm j, and receives floating-rate payments in return. Then, µi;j is the expected net present value

of these payments for i from a standard unit-sized contract. This value depends on i’s forecast of

future interest rates and need for floating-rate income, e.g., to match future liabilities. Hence, it

may be quite different from µj;i. Also, the firms agree to a price Pij =−Pji per contract. If Pij > 0,

then firm j must pay firm i the price Pij ·Wij; if Pij < 0, then firm i makes the payment.

Example 3 (Loan contract). Suppose borrower i takes a loan of size Wij from lender j. Then,

µj;i ·Wij represents the lender j’s expected value for this loan. The expected value depends on the

repayment schedule, the collateral, j’s estimate of the probability of default, the recovery rate in

case of default, etc. The borrower’s expected value µi;j ·Wij depends on the planned use of this

loan. For example, if the borrower wants the loan to purchase equipment, µi;j is the net present

value of expected extra profits due to that equipment. Hence, µi;j may not be a function of µj;i.

Now, the borrower and lender must settle on a contract price to reach an agreement on the contract

size. If the standard loan contract requires the lender to give cash to the borrower at the beginning

of the contract, this loan amount can be adjusted for the price. Otherwise, if the borrower firm

needs to pay the price, it must arrange a separate bridge loan.

The model above allows contracts between all pairs of agents. But some edges may be prohibited

due to logistical or legal reasons. For each agent i, let Ji ⊆ [n] denote the ordered set of agents

with whom i can form an edge. So, if k /∈ Ji (and hence i /∈ Jk), we have Wik =Wki = Pik = Pki = 0.

Similarly, if i /∈ Ji, then self-loops are prohibited (Wii = Pii = 0). We will encode these constraints in

the binary matrix Ψi ∈R|Ji|×n where Ψi;jk = 1 if k is the jth element of Ji, and Ψi;jk = 0 otherwise.

In other words, Ψi is obtained from In by deleting the rows corresponding to the prohibited
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counterparties of i. Thus, for any v ∈Rn, Ψiv selects the elements of v corresponding to Ji. If all

edges are allowed, we have Ψi = In for all i.

Definition 1 (Network Setting). A network setting (µi, γi,Σi,Ψi)i∈[n] captures the beliefs

and constraints of n agents. When there are no constraints (i.e., all edges are allowed), we drop the

Ψi = In terms to simplify the exposition. Finally, we will use M ∈Rn×n to denote a matrix whose

ith column is µi, and Γ to denote a diagonal matrix with Γii = γi.

2.1. Characterizing Stable Points

In the above model, every agent tries to optimize its own utility (Eq.(1)). We now characterize the

conditions under which selfish utility-maximization leads to a stable network.

Definition 2 (Feasibility). A tuple (W,P ) is feasible if W = W T , P = −P T , and W and P

obey the constraints encoded in (Ψi)i∈[n].

Definition 3 (Stable point). A feasible (W,P ) is stable if each agent achieves its maximum

possible utility given prices P :

gi(W,P ) =

max
feasible(W ′,P ) under {Ψi}

gi(W
′, P ) ∀i∈ [n].

Example 4. Suppose we only have two firms with the following setting:

mean beliefs M =



0 3

1 4




covariance Σ1 =Σ2 =



1 0

0 2




risk aversion γ1 = γ2 = 1.

So, both firms perceive a benefit from trading (M12 > 0,M21 > 0). If trading is disallowed, the

optimum W is diagonal with W11 = 0 and W22 = 1 (and P is the zero matrix). The corresponding
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(b) Firm 2 pays 5/3 per contract (c) Network

Figure 1 Example of a stable point for a borrower (Firm 1) and a lender (Firm 2): (a) When the borrower

cannot pay the lender an additional payment, the firms may be unable to agree to a contract, even if

trading improves their utilities. (b) By allowing for contract-specific payments, both firms can agree on

a contract size. In effect, the borrower (Firm 2) shares its utility with the lender (Firm 1) to achieve

agreement. (c) The stable network is shown.

utilities are 0 for firm 1 and 2 for firm 2. Suppose we allow trading but do not allow pricing

(Figure 1a). Then, the two firms can each improve their utility by trading, but achieve their

optimum utilities at different contract sizes. Hence, they may be unable to agree to a contract. In

Figure 1b, firm 2 pays firm 1 a specially chosen price of 5/3 per unit contract. At this price, both

firms achieve their optimum utilities at the same contract size W12 =W21 = 2/3. Hence, they can

agree to a contract. By paying the price, firm 2 shares some of its utility with firm 1 to achieve

agreement on the contract. This choice of W and P is a stable point (Figure 1c). The following

results show that this is the only stable point. □

Define Qi =ΨT
i (2γiΨiΣiΨ

T
i )

−1Ψi. When all edges are allowed, Ψi = In and Qi = (2γiΣi)
−1. Let

F = {(i, j) : 1≤ i < j ≤ n,Ψiej ̸= 0} denote the ordered pairs i < j where Pij is allowed to be non-

zero. Note that |F | ≤ n(n− 1)/2. For any n×n matrix X, let uvec(X)F ∈R|F | be a vector whose

entries are the ordered set {Xij | (i, j)∈ F}.
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Theorem 1 (Existence and Uniqueness of Stable Point). Define n× n matrices A, B(i,j),

and C(i,j) as follows:

Aij = eT
i QjMej,B(i,j) = eie

T
j Qi,

C(i,j) = (B(i,j)−B(j,i))− (B(i,j)−B(j,i))
T .

Let ZF be the |F |× |F | matrix whose rows are the ordered sets {uvec(C(i,j))F | (i, j)∈ F}. Then, we

have the following:

1. A stable point (W,P ) under {Ψi} exists if and only if uvec(A−AT )F lies in the column space

of ZF .

2. If a stable point (W,P ) exists, then ZFuvec(P )F = uvec(A−AT )F .

3. A unique stable point always exists if ZF is full rank.

Theorem 1 is proved in Appendix 6.1. When the Σi are random variables, we give a simple

sufficient condition that a stable point exists and is unique with probability 1 (see Sections A.1

and A.2 in the supplementary material). Also, Appendix 6.2 provides closed-form formulas for the

stable point when all agents have the same covariance (Σi = Σ for all i ∈ [n]). This occurs when

the risk of a contract is primarily counterparty risk (so Σi;jk depends on j and k, not i) and there

is reliable public data on such risks (say, via credit rating agencies).

Next, we consider some properties of the stable point. For two feasible tuples (W1, P1) and

(W2, P2), let (W2, P2) dominate (W1, P1) if for all i ∈ [n], gi(W1, P1)≤ gi(W2, P2), with at least one

inequality being strict.

Theorem 2 (Stable points cannot be dominated). Suppose a stable point (W,P ) exists.

Then, there is no feasible (W ′, P ′) that dominates (W,P ).

The proofs of Theorem 2 and all subsequent claims are provided in the supplementary material.

The stable point obeys a strong form of robustness that we call Higher-Order Nash Stability. This

strengthens the notions of pairwise stability (Hellmann 2013) and pairwise Nash (Calvó-Armengol

and Ilkılıç 2009, Sadler and Golub 2021) by allowing for agent coalitions, instead of just considering
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pairs of agents. It is also closely related to the concept of Strong Nash equilibrium, which strengthens

Nash equilibrium by requiring that no subset of agents can deviate at equilibrium without at least

one agent being worse off (Mazalov and Chirkova 2019).

Definition 4 (Agent Action). At a given feasible point (W,P ), an “action” by agent i is the

ordered set (w′
i,j, p

′
i,j)j∈Ji , where Ji ⊆ [n] is the set of permissible edges for agent i. The action

represents a set of proposed changes to i’s existing contracts. Each agent j ∈ Ji responds as follows:

1. If the new (w′
ij, p

′
ij) raises j’s utility, then j agrees to the revised contract and price.

2. Otherwise, i must either keep the existing contract or cancel it (wij = pij = 0). We assume

that i cancels the contract if and only if this strictly increases i’s utility.

We call the shifted (W ′, P ′) the resulting network.

Definition 5 (Higher-Order Nash Stability). A feasible (W,P ) is Higher-Order Nash Sta-

ble if:

1. Nash equilibrium: No agent i has an action such that the resulting network (W ′, P ′) is strictly

better for i.

2. Cartel robustness: For any proper subset S ⊂ [n] of agents, there is no feasible point (W ′, P ′)

that differs from (W,P ) only for indices {i, j} with i∈ S, j ∈ S such that all agents in S have higher

utility under (W ′, P ′) than (W,P ).

Theorem 3 (Higher-Order Nash Stability). Any stable point (W,P ) is Higher-Order Nash

Stable.

2.2. Finding the Stable Point via Pairwise Negotiations

To compute the stable point in Theorem 1, we must know the beliefs of all agents. But in practice,

contracts are set iteratively by negotiations among pairs of agents. We will now formalize the

process of pairwise negotiations and characterize the conditions under which such negotiations can

converge to the stable point.

We propose a multi-round pairwise negotiation process. In round t+ 1, every pair of agents i

and j update the price Pij(t) to Pij(t+ 1) (and hence Pji(t) to Pji(t+ 1)) as follows. First, they
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agree to a price P ′
ij between themselves, assuming optimal contract sizes with all other agents at

the current prices P (t). In other words, we assume that the other agents will accept the prices in

P (t) and the contract sizes preferred by i and j. Under this condition, P ′
ij is the price at which i’s

optimal contract size with j is also j’s optimal size with i. We provide an explicit formula for P ′
ij in

Section A.5 of the supplementary material. All pairs of agents calculate these prices simultaneously.

We create a new price matrix P ′ from these prices. Then, we set P (t+1)= (1−η)P (t)+ηP ′, where

η ∈ (0,1) is a dampening factor chosen to achieve convergence. Algorithm 1 shows the details.

Algorithm 1 Pairwise Negotiations

1: procedure Pairwise(η ∈ (0,1))

2: t← 0

3: P (0)← any skew-symmetric matrix

4: while P (t) has not converged do

5: ∀i, j ∈ [n], P ′
ij ← pairwise-negotiated price for (i, j) (Section A.5 in the supplementary

material)

6: P (t+1)← (1− η)P (t)+ ηP ′

7: t← t+1

8: end while

9: end procedure

Example 5 (Pairwise negotations for loan contracts.). Consider a 3-firm loans network

containing a national bank (firm 1), local bank (firm 2), and local firm (firm 3). Suppose that the

local firm cannot access the national bank, so the edge between firms 1 and 3 is prohibited. The

other parameters are:

Σ1 =Σ2 =Σ3 =




1 0.25 0.75

0.25 1 0.6

0.75 0.6 1



,
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M =




0 0.9 0.9

0.75 0 0.95

0.5 0.8 0



, γ1 = γ2 = γ3 = 1.

Figure 2 shows how pairwise negotiations via Algorithm 1 converge to the stable network.

W0

National Bank

Local Bank

Local Firm

-0.10 0.20

0.40 -0.31 0.74

0.44 -0.45

W5

-0.08 0.24

0.30 -0.38 0.61

0.53 -0.37

W10

-0.07 0.25

0.27 -0.40 0.58

0.55 -0.35

W∞

-0.07 0.26

0.26 -0.40 0.56

0.56 -0.34

P0

National Bank

Local Bank

Local Firm

0.00 0.00

0.00 0.00 0.00

0.00 0.00

P5

0.00 -0.19

0.19 0.00 0.17

-0.17 0.00

P10

0.00 -0.24

0.24 0.00 0.21

-0.21 0.00

P∞

0.00 -0.26

0.26 0.00 0.23

-0.23 0.00

Figure 2 Pairwise negotiations for the setting of Example 5: The contracts matrix Wt and payments matrix Pt

after t= 0,5,10 steps of Algorithm 1 (η = 0.5) converge to the stable point (W,P ) = (W∞, P∞). Cells

corresponding to forbidden edges are empty.

Now, we will show that Algorithm 1 converges. First, we define global asymptotic stability (fol-

lowing Callier and Desoer (1994)).

Definition 6 (Global Asymptotic Stability). The pairwise negotiation process is globally

asymptotically stable for a given network setting and dampening factor η if, for any initial price

matrix P (0), there exists a matrix P ⋆ such that the sequence of price matrices P (t) converges to

P ⋆ in Frobenius norm: lim
t→∞
∥P (t)−P ⋆∥F = 0.

When pairwise negotiations are globally asymptotically stable, the limiting matrix P ⋆ must be

skew-symmetric since each P (t) is skew-symmetric. Also, since prices are updated whenever two
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agents disagree on the size of the contract between them, all agents agree on their contract sizes

at P ⋆. Hence, P ⋆ must be a stable point for the given network setting.

Now, we show that for a range of η, pairwise negotiations are globally asymptotically stable

(Section A.7 in the supplementary material presents an example).

Theorem 4 (Convergence Conditions and Rate). Let Qi be defined as in Theorem 1. Define

the following n2×n2 matrices:

K :=
n∑

r=1

ere
T
r ⊗Qr +Qr⊗ere

T
r

L(i−1)n+j,(i−1)n+j =Qi;j,j +Qj;i,i ∀i, j ∈ [n]

(L is diagonal).

Let L† denote the pseudoinverse of L, and (L†K) |R denote the principal submatrix of L†K con-

taining the rows/columns (i− 1)n+ j such that the edge (i, j) is not prohibited. Let λmax, λmin be

the largest and smallest eigenvalues of the matrix (L†K) |R respectively. Let η∗ = 2
λmax

. Then, we

have:

1. For all η ∈ (0, η∗), pairwise negotiations with η are globally asymptotically stable.

2. For such an η, the convergence is exponential in the number of rounds t:

∥P (t)−P ⋆∥F ≤
αt

1−α
· ∥P (1)−P (0)∥F ,

where α=max{|1− ηλmin|, |1− ηλmax|}.

Here, P ⋆ is the stable point to which the negotiation converges.

Remark 1. For clarity of exposition we restrict η ∈ (0,1) in Algorithm 1. However, Theorem 4

shows that we only need η < η∗ for convergence to the stable point.

2.3. Pairwise Negotiations under Random Covariances

So far we have made no assumptions about agents’ beliefs. In this section, we analyze the conver-

gence of pairwise negotiations for “data-driven” agents. Specifically, each agent i now estimates
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its covariance matrix. For this section only, we will call the covariance matrix Σ̂i instead of Σi to

emphasize that it is an estimated quantity.

Suppose each agent i observes m independent data samples. Each sample is a vector of the

returns of unit contracts with all n agents. The samples for agent i are collected in a matrix

Xi ∈Rn×m, with one column per sample. The sample covariance of this data is Σ̂i.

We assume that all agents observe samples from the same return distribution, which has covari-

ance Σ. Under a wide range of conditions, ∥Σ̂i −Σ∥→ 0 in probability (Vershynin 2018). Hence,

at convergence, the maximum allowed dampening rate η⋆ in Theorem 4 would be a function of Σ.

But for finite sample sizes, each agent’s Σ̂i can be different. Hence, the maximum dampening η̂⋆

may be less than η⋆. The smaller the η̂⋆, the worse the rate of convergence of pairwise negotiations.

However, even with a few samples, η̂⋆ is close to η⋆, as the next theorem shows.

Theorem 5 (Small Sample Sizes are Sufficient for Fast Convergence). Suppose that

∥Σ∥,∥Σ−1∥,∥Γ∥, and ∥Γ−1∥ are O(1) with respect to n and all edges are allowed. Also, suppose

that each sample column of Xi is drawn independently from a N (0,Σ) distribution, and let

µ̂= 1
m

∑
iXi and Σ̂i :=

1
m−1

∑
i(Xi− µ̂)(Xi− µ̂)T . Let η̂⋆ be the maximum dampening factor using

(Σ̂i)i∈[n] as defined in Theorem 4. Let η⋆ be the dampening factor if Σ̂i were replaced by Σ for all i.

If m= ⌈n logn⌉, then for large enough n, η̂⋆ ≥ (1− o(1))η⋆ with probability at least 1−exp(−Ω(n)).

Theorem 5 shows that data-driven agents using a broad range of dampening factors are still likely

to find the stable point via pairwise negotiations. Furthermore, the amount of data they need is

comparable to the number of agents (up to a logarithmic factor). We note that if firms use datasets

of fixed sizesm1, . . . ,mn, then the conclusion of Theorem 5 still holds, as long as minimi ≥ ⌈n logn⌉.

For example, firms might use different look-back periods for covariance estimation.

2.4. Inferring Beliefs from the Network Structure

Suppose we are given a network that lies at a unique stable point as defined in Theorem 1. How

can we infer the beliefs of the agents?
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Non-identifiability of beliefs. Suppose we are given a network W that is generated using a single

covariance Σi =Σ≻ 0. We want to infer the agents’ beliefs (M,Γ,Σ). By Corollary 2,

1

2
vec(M +MT ) = (Γ⊗Σ+Σ⊗Γ)vec(W ).

Clearly, the agents’ beliefs can only be specified up to an appropriate scaling of M , Γ, and Σ.

But even if we specify a scale (e.g., tr[Γ] = tr[Σ] = 1), for any valid choice of Γ and Σ we can

find a corresponding M . Thus, even in the simple setting of identical covariance and fixed scale,

the network W cannot be used to select a unique combination of the parameters (M,Γ,Σ). By a

similar argument, we cannot identify the underlying beliefs even if we observe multiple networks

generated using the same Σ and Γ (but different M). Thus, we need further assumptions in order

to infer beliefs.

Assumption 1. Consider a sequence of networks W (t) over timesteps t ∈ [T ]. We assume that

(a) Γ(t) = I and Σi(t) =Σ for all t∈ [T ], (b) for all i, j ∈ [n], Mij(t) varies independently according

to a Brownian motion with the same parameters for all (i, j), and (c) trΣ= 1.

The first assumption is motivated by the observations in portfolio theory that errors in mean

estimation are far more significant than covariance estimation errors (Chopra and Ziemba 2013).

So, accounting for variations in Σ may be less important than variations in M (but see Remark 2

below). The homogeneity of risk aversion was noted in Section 2, and this justifies setting Γ = I.

The second assumption is common in the literature on pricing models (Geman et al. 2001, Bianchi

et al. 2013). The third assumption fixes the scale, as discussed above.

Proposition 1. Finding the maximum likelihood estimator of Σ under Assumption 1 is equivalent

to the following Semidefinite Program (SDP):

min
Σ

T−1∑

t=1

∥∥Σ(W (t+1)−W (t))

+ (W (t+1)−W (t))Σ
∥∥2

F

s. t. Σ⪰ 0, tr(Σ) = 1.
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Remark 2 (Generalization to time-varying Σ). Instead of a constant covariance Σ, the

time range may be split into intervals, with covariance Σ(j) in interval j. Then, we can add a

regularizer ν ·∑j ∥Σ(j+1)−Σ(j)∥ for some ν > 0 to the objective of the SDP to penalize differences

between successive covariances. This allows the covariance to evolve while keeping the objective

convex. The time intervals can be tuned based on heuristics or prior information.

3. Insights for Regulators

A financial regulator can observe the network but does not know the firms’ beliefs. The regulator

may ask: what changes in beliefs caused recently observed changes in the network? What are the

side effects of different regulatory interventions? To answer these questions, we need to know how

changes in firms’ beliefs or utility functions affect the network. That is the subject of this section.

3.1. Effect of Friction in Contract Formation

Our model imposes no costs for contract formation. This is reasonable for large firms where the fixed

costs associated with contract negotiations may be small relative to the contract sizes. However, in

an overheating market, a regulator may impose frictions by penalizing large contracts, for example

by increasing margin requirements.

We model contract costs via an adding a penalty term Fi(wi) to the utility of agent i in Eq. (1):

agent i’s utility

gi(W,P ) :=wT
i (µi−Pei)− γi ·wT

i Σiwi−Fi(wi).

(2)

Theorem 6. Consider a network setting where Σi =Σ and all edges are allowed. Suppose that for

each firm i∈ [n], the function Fi :Rn→R is twice differentiable, and there exist strictly increasing

functions fji :R→R such that for all x ∈Rn, ∇Fi(x) = [f1i(x1), . . . , fni(xn)]
T . Then, there exists

a unique stable point.

Example 6. By imposing frictions, the regulator may increase the sizes of certain contracts. For

example, let Fi(wi) = ϵ ·w2
i;i + λ ·∑j ̸=iw

2
i;j for some λ > ϵ > 0. Thus, the cost of inter-firm trades

scales with the square of the contract size (we assume ϵ≈ 0). Consider a network setting with 3

firms, with γi = 1, Σi =Σ=
[
0.1 0.1 0.1
0.1 1 0.5
0.1 0.5 1

]
, and M =

[
0 1000 111.233

1000 1 0.1
1000 0.1 1

]
. Then, W23 =W32 ≈ 0 without

frictions (when Fi(wi) = 0) but |W23|> 0 for λ> 0.
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3.2. Effect of Changes in Firms’ Beliefs

Regulatory actions can change the risk and expected return perceptions of firms. The next theorem

shows the effect of such belief changes on the stable point.

Theorem 7. Suppose Σi =Σ for all firms, and let M be the matrix of expected returns.

1. Change in beliefs about expected returns: Let Σ have the eigendecomposition Σ =

V ΛV T . Then for i, j, k, ℓ∈ [n],

∂Wij

∂Mkℓ

=
1

2
√
γiγjγkγℓ

·
∑

s,t∈[n]

VisVksVjtVℓt +VisVℓsVjtVkt

λs +λt

.

(3)

In particular, Wij is monotonically increasing with respect to Mij.

2. Risk scaling: If the covariance Σ changes to cΣ (c > 0), then W changes to (1/c)W .

3. Increase in perceived risk: Suppose γi = γ for all i, and the covariance Σ increases to

Σ′ ≻Σ. Let W and W ′ be the stable points under Σ and Σ′ respectively. Then, tr(MT (W ′−W ))< 0.

This shows that, in general, an increase in risk leads to a decrease in the weighted average of

the contract sizes. The weights are given by the expected return beliefs of the firms. However,

individual contracts between firms can increase, as can the norm ∥W∥F . This is because increases

in the covariance Σ may also increase correlations, which can offer better hedging opportunities.

By hedging some risks, larger contract sizes can be supported.

Theorem 7 also shows that a change in the perceived expected return Mkℓ affects all contracts

Wij. Can we trace the changes in W back to the underlying changes in M? For instance, consider

the following problem.

Definition 7 (Source Detection Problem). Suppose that a financial regulator observes two

networks W and W ′, with the only difference being a small change in a single entry of M (say,

Mij). Can the regulator identify the pair (i, j)?

One approach is to try to infer all beliefs of all firms, and then identify the changed belief. But,

as discussed in Section 2.4, the beliefs are only identifiable under extra assumptions and more data.
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(a) Predict most shifted contract as source
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(b) Predict top-10 most shifted contracts

Figure 3 Source Detection Problem in a noisy scaled equi-correlation model of Σ: We rank the entries of W by

the magnitude of change induced by a change in one entry of M (Mij). Plot (a) shows the fraction of

times Wij is most-changed entry of W . Plot (b) shows the fraction of times Wij is among the top-10

most changed entries of W . The success rate goes to zero as α and ϵ increase.

An alternative approach for the source detection problem is to find the entry (i, j) with the largest

change |Wij −W ′
ij|. The intuition is that a change in Mij has a direct effect on Wij and (hopefully

weaker) indirect effects on other contracts. Thus, the source detection problem is closely tied to

the following:

Definition 8 (Targeted Intervention Problem). Can a regulator induce a small change in

a single entry of M (say, Mij) such that the change in Wij is significantly larger than changes in

other entries of W?

When all eigenvalues of Σ are equal (that is, Σ∝ In), a change in Mkℓ only affects Wkℓ(=Wℓk),

as can be seen from Corollary 2. But when the eigenvalues are skewed, the terms in Eq. (3)

corresponding to the smallest eigenvalues have greater weight. In such circumstances, the indirect

effect of a change in Mkℓ on other Wij can be significant. The following empirical results show that

this is indeed the case.

Empirical Results for the Source Detection Problem (Simulated Data). Here, we set the

covariance Σ =D1/2(R+ E)D1/2, where D is a diagonal matrix, R a correlation matrix, and E a
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noise matrix. If E = 0, then Dii would be the variance of firm i. We set Dii according to a power

law: Dii = i−α for an α > 0. Larger values of α correspond to greater skew in the variances. We

choose R to be an equi-correlation matrix with 1 along the diagonal and ρ∈ (0,1) everywhere else.

We draw the error matrix E from a scaled Wishart distribution: E = ∥R∥2 ·W(
√
ϵ ·In, n)/n for some

chosen the noise level ϵ. As ϵ increases, the noise E dominates R.

Figure 3 shows the success rate of source detection over 1000 experiments for various values of

(ϵ,α) for ρ = 0.1 and n = 50. As α increases, the variances become more skewed and the source

detection can fail even with ϵ= 0 noise. When ϵ grows, the success rate for the source detection

problem goes to zero. This suggests that skew combined with noise makes source detection difficult.

These trends occur even if we only test whether the source belongs to the 10 most changed contracts

(Figure 3b), as opposed to single largest change (Figure 3a). We observe similar results for real-

world choices of Σ, as we show next.

Empirical Results for the Source Detection Problem (Real-World Data). We consider

two datasets: (a) a trade network between 46 large economies (OECD 2022), and (b) a simulated

network between 96 portfolio managers following various Fama-French strategies Fama and French

(2015). For each dataset, we construct a “ground-truth” covariance Σ using all available data (the

details are in Section B of the supplementary materials). Then, using m independent samples

xi ∼N (0,Σ), we build a “data-driven” covariance Σ̂ = (1/(m− 1))
∑m

i=1(xi− µ̂)(xi− µ̂)T , where

µ̂= (1/m)
∑m

i=1xi is the sample mean. We use this Σ̂ to construct the financial network.

Figure 4 shows the success rate over 500 experiments for various choices of the sample size m.

The success rate increases monotonically with m. The reason for this behavior lies in the spectra

of Σ and Σ̂. We find that in both datasets, the largest and smallest eigenvalues of Σ are separated

by several orders of magnitude. This gap becomes even more extreme in the data-driven Σ̂; the

fewer the samples m, the greater the gap (see Figure 5). In fact, we observe that the smallest

eigenvalue of Σ̂ is much smaller than the second-smallest eigenvalue: λn≪ λn−1. Zhao et al. (2019)

make similar observations.
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(a) Simulated network of 96 portfolio managers.
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(b) 46-country (OECD) trade network.

Figure 4 Source Detection Problem on real-world data: The success rate scales monotonically with the number

of samples used to construct the data-driven covariance matrix Σ̂.
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Figure 5 The eigenvalues of estimated covariance matrices are skewed, and the degree of skew depends on the

number of samples m. As m decreases, so does the smallest eigenvalue λn and the ratio λn/λn−1.

In summary, the experiments on both simulated and real-world datasets highlight the difficulty

of source detection and targeted intervention in realistic networks. The reason is the skew in the

eigenvalues coupled with noise, which affects the eigenvectors. Skewed eigenvalues correspond to

trade combinations (eigenvectors) that are seemingly low-risk. Hence, firms use such trades to

diversify. This implies that these eigenvectors have an outsized effect on the network, and how it

responds to local changes. Intuitively, if these eigenvectors are “random,” the effect of a changed
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beliefMkℓ affects the rest of the network randomly. Hence, the direct effects onWkℓ may be less than

the indirect effects on other Wij. We explore this theoretically in Section A.12 of the supplementary

material.

4. Insights for Firms

Until now, we have treated the beliefs of firms as fixed and exogenous. In this section, we consider

how a firm can use its contracts to gain insights into other firms and update its beliefs.

For instance, suppose a firm j faces a crisis, e.g., a looming debt payment that may make it

insolvent. The firm may then become risk-seeking (i.e., lower its γj), hoping that the risks pay off.

Another firm i may be unaware of the crisis, so i’s risk perceptions (perhaps based on historical

data) would be outdated. Can firm i infer the lower γj, solely from i’s contracts wi with all firms?

What if a group of firms become risk-seeking, and not just one firm?

4.1. Detecting Outlier Firms

Intuitively, firm i will try to answer these questions by comparing the behavior of firm j against

other similar firms. We formalize this by assuming that each firm j belongs to a community θj, e.g.,

banking, or real-estate, or insurance, etc. The community of each firm is publicly known. Firms in

the same community are perceived to have similar return distributions:

Mij = f(θi, θj)+ ϵ′θi,j, Σij = g(θi, θj),

γi = h(θi)+ ϵi

(4)

for some unknown deterministic functions f(.), g(.), and h(.) and random error terms ϵi and ϵ′θi,j.

We also assume that all firms use the same covariance Σ.

Now, suppose one firm j is an outlier, with very different beliefs from other firms in its community.

For firm i to detect the outlier firm j, the contract size Wij should deviate from a cluster of

contracts {Wij′ | θj′ = θj} of other firms from the same community as firm j. Now, outlier detection

methods often assume independent datapoints. In our model, all contracts are dependent. But we

can still do outlier detection if the contracts are appropriately exchangeable. We prove below this

is the case.
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Definition 9. An intra-community permutation is a permutation π : [n]→ [n] such that π(i) = j

implies that θi = θj.

Proposition 2. Suppose M,Σ,Γ exhibit community structure (Eq. (4)), and all the error terms

(ϵi)i∈[n] and (ϵ′θi,j)i,j∈[n] are independent and identically distributed. Let π : [n]→ [n] be any intra-

community permutation, and let Π : Rn → Rn be the corresponding column-permutation matrix:

Π(ei) = eπ(i). Then, W and ΠTWΠ are identically distributed.

Corollary 1. Let j1, . . . , jm ∈ [n] belong to the same community: θj1 = · · · = θjm. Suppose the

conditions of Proposition 2 hold. Then, for any i ∈ [n], the joint distribution of (Wi,j1 , . . . ,Wi,jm)

is exchangeable.

Empirical Results for Outlier Detection. We generate community-based networks (Eq. (4))

such that γi ∼N(1, σ2) truncated to [0.5,1.5]. The smaller the σ, the more closely the γi values

cluster around 1. For the outlier risk-seeking firm, we set γoutlier = 0.5. For clarity of exposition, we

set ϵ′ = 0 everywhere.

To detect outliers under exchangeability (Corollary 1), we can use methods based on conformal

prediction (Guan and Tibshirani 2022). Here, we use a simpler approach: pick the firm j with the

largest contract size as the outlier; ĵ := arg max
j∈{j1,...,jm}

|Wi,j|. To test sensitivity to false negatives,

we also test whether the outlier is among the 5 largest contracts in {|Wi,j| : j = j1, . . . , jm}. We

run 500 experiments for each choice of σ, and count the frequency with which the outlier firm is

detected via its contract size. Further details are presented in Section B.3 of the supplementary

material.

Figure 6 shows the results. We characterize the degree of outlierness by how many standard

deviations away γoutlier is from the baseline of 1. The smaller the σ, the more the outlierness. The

success rate increases with increasing outlierness, as expected. It also increases when the number

of firms n is reduced. This is because contract sizes depend on the γ values of all firms; fewer firms

reduces the chances of any one firm attaining large contract sizes due to randomness.
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Figure 6 Success rate for detecting outlier risk-seeking firms: Detection is easier when there are fewer firms and

when the risk-seeking firm’s γoutlier is more standard deviations away from the γ of the normal firms.

4.2. Risk-Aversion versus Expected Returns

The discussion above shows that a firm can detect outlier counterparties. However, the firm cannot

determine why the counterparty is an outlier, as the following theorem shows.

Theorem 8 (Non-identifiability of risk-aversion versus expected returns). Consider

two network settings S = (µi,Σ, γi)i∈[n] and S′ = (µi,Σ, γ
′
i)i∈[n] which differ only in the risk-

aversions of firms J = {j | γj ̸= γ′
j} ⊆ [n]. Then, there exists a setting S† = (µ†

i ,Σ, γi)i∈[n] such that

µi =µ†
i for all i /∈ J and the stable networks under S† and S′ are identical.

Thus, one cannot determine if an outlier is more risk-seeking than its community or expects

higher profits. But risk-seeking behavior may be indicative of stress, while higher profits than

similar firms are unlikely. Hence, in either case, the firm detecting the outlier may choose to reduce

its exposure to the outlier. However, this approach fails if an entire community shifts its behavior.

The following example illustrates the problem.
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Example 7. Consider two communities numbered 1 and 2, with n1 and n2 firms respectively. Let

the setting S of Theorem 8 correspond to

Mij =





a if θi = θj = 1

b if θi = θj = 2

c/2 otherwise

Σij =





1 if θi = θj = 1

1 if θi = θj = 2

0 otherwise

γi = 1.

Now, suppose that under setting S′, γi 7→ γi + δ for some small δ for all nodes i in community 1.

The change in the network would be the same if we had updated the columns corresponding to

community 1 in the M matrix instead (setting S†):

M †
ij =Mij +∆(θi, θj)

∆(θi, θj)+O(δ2)

=





−δa/2 if θi = θj = 1

−δb ·n2/(n1 +n2) if θi = 2, θj = 1

0 if θj = 2

Thus, a firm from community 2 cannot determine if the network change was due to a change in

(γi)θi=1 or (µi)θi=1. For instance, when b > 0, an increase in risk-seeking (δ < 0) looks the same

as an increase in trading benefits (∆(1,2)> 0). In the former case, firms in community 2 should

reduce their exposure to community 1 firms. But in the latter case, they should increase exposure.

Since the data cannot be used to choose the appropriate action, the behaviors of firms may be

guided by their prior beliefs or inertia. When such beliefs change due to external events (e.g., due

to news about one firm in community 1), the resulting change in the network may be drastic. □

5. Conclusions

We have proposed a model of a weighted undirected financial network of contracts. The network

emerges from the beliefs of the participant firms. The link between the two is utility maximization
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coupled with pricing. For almost all belief settings, our approach yields a unique network. This net-

work satisfies a strong Higher-Order Nash Stability property. Furthermore, the firms can converge

to this stable network via iterative pairwise negotiations.

The model yields two insights. First, a regulator is unable to reliably identify the causes of a

change in network structure, or engage in targeted interventions. The reason is that firms seek

to diversify risk by exploiting correlations. We find that in realistic settings, there are often com-

binations of trades that offer seemingly low risk. Hence, all firms aim to use such trades. The

over-dependence on a few such combinations leads to a pattern of connections between firms that

thwarts targeted regulatory interventions.

The second insight is that firms can use the network to update their beliefs. For instance, they

can identify counterparties that behave very differently from their peers. However, the cause of

the outlierness remains hidden. If all firms in one line of business become more risk-seeking, the

result is indistinguishable from that business becoming more profitable. Innocuous events (such as

a news story) may cause beliefs to change suddenly, leading to drastic changes in the network. In

addition to identifying risky counterparties, firms may use the network to update their mean and

covariance beliefs. For example, a firm that suffers significant losses on its current trades may be

judged by others to be a riskier counterparty for future trades. We leave this for future work.

Our work focuses on mean-variance utility, but some of our results are applicable in other settings

too. A second-order Taylor approximation of a twice-differentiable concave utility matches the

form of a mean-variance utility. Hence, results based on mean-variance utility can be useful guides

for small perturbations around a stable point. Some of our results for pairwise negotiations and

targeted interventions are based on such perturbation arguments.

Finally, contract formation under budget constraints is an important direction for future work.

In Theorem 6, we only consider contract frictions that depend on a firm’s contract sizes. To model

budget constraints, we must also consider the contract prices. These require different techniques

than our approach, which is based on results from Sandberg and Willson (1972) (see Section A.15

in the supplementary material).
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6. Appendix

6.1. Proof of Theorem 1

Recall that Qi =ΨT
i (2γiΨiΣiΨ

T
i )

−1Ψi, F = {(i, j) : 1≤ i < j ≤ n,Ψiej ̸= 0}, and uvec(X)F ∈R|F | is

a vector whose entries are the ordered set {Xij | (i, j)∈ F}. Note that ΨiΣiΨ
T
i is positive definite,

since it is a principal submatrix of the positive definite matrix Σi.

Proof of Theorem 1. For clarity of exposition, we first prove the result when all edges are

allowed, and then consider the case of disallowed edges.

(1) All edges allowed. Here, E = {i, j | 1 ≤ i < j ≤ n}, and we use uvec(.) and Z to refer to

uvec(.)E and ZE in the theorem statement. For any price matrix P with P =−P T , consider the

matrix W whose jth column has the utility-maximizing contract sizes for agent j:

Wij = eT
i Ψ

T
j (2γjΨjΣjΨ

T
j )

−1Ψj(M −P )ej

= eT
i Qj(M −P )ej.

The tuple (W,P ) is stable if W =W T . So, for all i < j, we require

Wij =Wji (5)

⇔ eT
i Qj(M −P )ej = eT

j Qi(M −P )ei

⇔ eT
i QjMej −eT

j QiMei = eT
i QjPej −eT

j QiPei

⇔ eT
i (A−AT )ej = eT

i (QjP − (QiP )T )ej. (6)

Since P =−P T , we must have P =R−RT , where R is upper-triangular with zero on the diagonal.

Hence, using Qi =QT
i , we have

eT
i (QjP − (QiP )T )ej = eT

i (QjP +PQi)ej

= trP (eje
T
i Qj +Qieje

T
i )

= tr(R−RT )(B(j,i) +BT
(i,j))

= trRTC(i,j)

=uvec(R)Tuvec(C(i,j)),
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where we used the upper-triangular nature of R in the last step. Plugging into Eq. (6), a stable

point exists if and only if there is an appropriate vector p := uvec(R) ∈Rn(n−1)/2 such that for all

1≤ i < j ≤ n, eT
i (A−AT )ej = uvec(C(i,j))

Tp. This is equivalent to uvec(A−AT ) = Zp. If such a

solution vector p exists, then by definition it corresponds to a matrix P =−P T via P =R−RT

and p=uvec(R).

(2) Disallowed edges. If {i, j} is a prohibited edge then Ψiej =Ψjei = 0, so B(i,j) =B(j,i) = 0,

so eT
ijZ = 0T . Also, Aij =Aji = 0 so uvec(A−AT )ij = 0. Therefore, the equality eT

i (A−AT )ej =

uvec(C(i,j))
Tx is achieved for any solution vector x if {i, j} is a prohibited edge. We can therefore

reduce the linear system Zp=uvec(A−AT ) from part (1) by deleting rows of Z corresponding to

prohibited edges.

Similarly, since the system is constrained by pij = 0 for prohibited edges {i, j}, the columns of

Z corresponding to such edges have no effect on the solution set.

We conclude that the linear system in (1) is equivalent to the (unconstrained) reduced system

ZFpF = uvec(A− AT )F . Each solution pF corresponds to a skew-symmetric P by construction.

Finally, if ZF has full rank then the unique reduced solution is pF =Z−1
F uvec(A−AT )F . □

6.2. Stable Network for the Shared Covariance Case

In the case of a shared covariance matrix for all agents, we can give a closed form expression for

the stable network.

Corollary 2 (Shared Σ, all edges allowed). Suppose Σi =Σ and Ψi = In for all i ∈ [n]. Let

(λi,vi) denote the ith eigenvalue and eigenvector of Γ−1/2ΣΓ−1/2. Then, the network W can be

written in two equivalent ways:

vec(W ) =
1

2
(Γ⊗Σ+Σ⊗Γ)−1vec(M +MT ),

W =Γ−1/2

( n∑

i=1

n∑

j=1

vT
i Γ

−1/2

2(λi +λj)

(M +MT )Γ−1/2vjviv
T
j

)
Γ−1/2.
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The prices can be written as:

vec(P ) = (Γ−1⊗Σ−1 +Σ−1⊗Γ−1)−1

vec(Σ−1MΓ−1−Γ−1MTΣ−1)

P =Γ1/2

( n∑

i=1

n∑

j=1

vT
i Γ

1/2

λ−1
i +λ−1

j

(Σ−1MΓ−1−Γ−1MTΣ−1)Γ1/2vjviv
T
j

)
Γ1/2.

Proof. We first prove the identity with vec(W ).

For each agent i the optimal set of contracts is given as wi = (2γiΣi)
−1(M −P )ei. Since Σi =Σ

for all i, we obtain W = 1
2
Σ−1(M −P )Γ−1. Hence M −P = 2ΣWΓ. Using W =W T and P T =−P

for a stable feasible point (W,P ), we obtain ΣWΓ+ΓWΣ= 1
2
(M +MT ).

Vectorization implies (Γ⊗Σ+Σ⊗Γ)vec(W ) = 1
2
vec(M +MT ). It remains to show that (Γ⊗Σ+

Σ⊗Γ) is invertible.

LetK := (Γ⊗Σ+Σ⊗Γ) for shorthand. NoticeK = (Γ1/2⊗Γ1/2)(I⊗Γ−1/2ΣΓ−1/2+Γ−1/2ΣΓ−1/2⊗

I)(Γ1/2 ⊗ Γ1/2). Let K ′ = (I ⊗ Γ−1/2ΣΓ−1/2 +Γ−1/2ΣΓ−1/2 ⊗ I). Since (Γ1/2 ⊗ Γ1/2) is invertible it

suffices to show K ′ is invertible.

Properties of Kronecker products imply that if a matrix A∈Rn×n has strictly positive eigenvalues

then σ(I ⊗ A + A ⊗ I) = {λ + µ : λ,µ ∈ σ(A)} counting mutiplicities (Horn and Johnson 1994).

Let v ̸= 0. Then, since Σ≻ 0 and Γ−1/2 ≻ 0 we obtain vTΓ−1/2ΣΓ−1/2v= (Γ−1/2v)TΣ(Γ−1/2v)> 0.

Hence Γ−1/2ΣΓ−1/2 ≻ 0, so K ′ is invertible and hence K is invertible. This proves the first identity.

Next, we prove the second identity. Properties of Kronecker products imply that (K ′)−1 has

eigendecomposition (K ′)−1 =
∑n

i=1

∑n

j=1
1

λi+λj
(vi⊗vj)(vi⊗vj)

T .

Therefore, since (Γ1/2⊗Γ1/2)−1 = (Γ−1/2⊗Γ−1/2) we obtain:

vec(W ) = (Γ−1/2⊗Γ−1/2)
n∑

i=1

n∑

j=1

1

λi +λj

(vi⊗vj)

(vi⊗vj)
T (Γ−1/2⊗Γ−1/2)vec

(M +MT

2

)
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= (Γ−1/2⊗Γ−1/2)
n∑

i=1

n∑

j=1

1

2(λi +λj)

vec
(
Γ−1/2(M +MT )Γ−1/2

)

= (Γ−1/2⊗Γ−1/2)vec

( n∑

i=1

n∑

j=1

vT
i Γ

−1/2

2(λi +λj)

(M +MT )Γ−1/2vjviv
T
j

)

W =Γ−1/2

( n∑

i=1

n∑

j=1

vT
i Γ

−1/2

2(λi +λj)

(M +MT )Γ−1/2vjviv
T
j

)
Γ−1/2

Finally, the formulas for vec(P ) and P follow from similar reasoning, using W =W T and W =

1
2
Σ−1(M −P )Γ−1. □
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Calvó-Armengol A, Ilkılıç R (2009) Pairwise-stability and nash equilibria in network formation. International

Journal of Game Theory 38(1):51–79.

Carmona R, Cooney DB, Graves CV, Lauriere M (2022) Stochastic graphon games: I. The static case.

Mathematics of Operations Research 47(1):750–778.



34

Chakrabarti D, Zhan Y, Faloutsos C (2004) R-MAT: A recursive model for graph mining. Proceedings of the

4th SIAM International Conference on Data Mining (SDM ’04), 442–446.

Chopra VK, Ziemba WT (2013) The effect of errors in means, variances, and covariances on optimal portfolio

choice. Handbook of the fundamentals of financial decision making: Part I, 365–373.

Cont R, Minca A (2016) Credit default swaps and systemic risk. Annals of Operations Research 247(7):523–

547.

Eisenberg L, Noe TH (2001) Systemic risk in financial systems. Management Science 47(2):236–249.

Eisfeldt AL, Herskovic B, Rajan S, Siriwardane E (2021) OTC intermediaries. Research Paper 18-05, Office

of Financial Research.

Elliott M, Golub B (2022) Networks and economic fragility. Annual Review of Economics 14:665–696.

Elliott M, Golub B, Jackson MO (2014) Financial networks and contagion. American Economic Review

104(10):3115–53.

Elliott M, Golub B, Leduc MV (2022) Supply network formation and fragility. American Economic Review

112(8):2701–47.
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