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Appendix A: Absolute Versus Relative Differences in Eigenvalues

Lemma 3.2 shows that the bottom eigenvectors could not be well estimated because they are not

well separated (i.e., the absolute differences between their eigenvalues are small). This observation

might suggest that the corresponding eigenvectors are almost interchangeable and that these errors

have a limited effect on the performance of the aggressive noise-only portfolio. However, this intu-

ition is false, because the optimal portfolio depends on the relative differences between eigenvalues,

which can still be large. We demonstrate this understanding with some examples.

Example 1. Suppose the eigenvalues vary as a (heavy-tailed) power-law, with λi = ξ · βp−i−1 for

some ξ > 0 and β > 1. The absolute difference between consecutive eigenvalues is λi − λi+1 =

ξ ·βp−i−1 · (1−1/β), which decreases with increasing i and is at most ξ for the last two eigenvalues.

Thus, with a large enough β and a small enough ξ, every consecutive pair of eigenvectors is well

separated, except for the bottom two eigenvectors. Under these conditions, for some number of

samples n, we can expect the top p− 2 eigenvectors to be well estimated, and the last two to be

poorly estimated. Let us also assume for simplicity that v′p−11= v′p1= ρ 6= 0.

In general, the bottom eigenvalues are poorly estimated, as in Figure 1. However, let us consider

the best-case scenario for estimation: Suppose that the top p− 2 eigenvectors are estimated per-

fectly, as are all eigenvalues. Let us take Ŝ to be the span of the first p− 2 sample eigenvectors.

Because these eigenvectors are perfectly estimated, we have Ŝ = S. Let N̂ and N denote the spans

of the last two sample eigenvectors and true eigenvectors, respectively. Note that N̂ =N because

each is simply the space orthogonal to Ŝ = S. Thus, the only error is in the orientation of the

bottom two eigenvectors, v̂p−1 and v̂p.

1



2

In other words,

v̂p−1 = vp−1 · cosθ−vp · sinθ v̂p = vp−1 · sinθ+vp · cosθ

for some random angle θ. Because we can always reverse the direction of these four eigenvectors

without loss of generality, we confine θ to [0, π]. Then, we can show:

RV (w∗N) =
ξ

ρ2 · (β+ 1)
(1)

RV (ŵ∗N)≈EV (ŵ∗N) ·
(
1 + (β− 1) · (sinθ)2

)
for β� 1 (2)

RV (ŵ∗N)≈RV (w∗N) · β · (sinθ)2

(cosθ+ sinθ)2
for β� 1. (3)

The approximations hold when θ 6= 3π
4

, which is true with probability 1. Thus, the aggressive

noise-only portfolio is considered to be a far better portfolio than it actually is (EV (ŵ∗N) �

RV (ŵ∗N)) and performs poorer than the optimal portfolio from the noise space (RV (ŵ∗N) �

RV (w∗N)).

Recall that the individual bottom eigenvectors might be poorly estimated, but the span of these

eigenvectors is well estimated (i.e., space N̂ itself is well estimated). This reasoning is that N̂ is

the space that is orthogonal to Ŝ, which is well estimated. Thus, we can expect good performance

from a portfolio that depends only on space N̂ while being invariant to the precise configuration

of the eigenvectors in N̂ . The following example illustrates the case.

Example 2 (An extension of Example 1). From Equation (16), we know that the projected

equal-weighted portfolio on the noise space weights the bottom two eigenvectors as follows:

wEW
N =

∑p

j=p−1(v̂′j1)v̂j∑p

j=p−1(v̂′j1)2
.

Note that this definition does not refer to eigenvalues at all. One property of this portfolio is that

it is invariant to θ:

wEW
N =

v̂′p−11

(v̂′p−11)2 + (v̂′p1)2
v̂p−1 +

v̂′p1

(v̂′p−11)2 + (v̂′p1)2
v̂p

=
ρ(cosθ− sinθ)

ρ2(cosθ− sinθ)2 + ρ2(cosθ+ sinθ)2
(vp−1 · cosθ−vp · sinθ)

+
ρ(cosθ+ sinθ)

ρ2(cosθ− sinθ)2 + ρ2(cosθ+ sinθ)2
(vp−1 · sinθ+vp · cosθ)

=
1

2ρ

(
vp−1 · (cos2 θ+ sin2 θ) +vp · (sin2 θ+ cos2 θ)

)
=

1

2ρ
(vp−1 +vp)

=
v′p−11

(v′p−11)2 + (v′p1)2
vp−1 +

v′p1

(v′p−11)2 + (v′p1)2
vp.
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Using Equation (1), we find that:

RV (wEW
N ) =

1

4ρ2

(
ξ+

ξ

β

)
≈RV (w∗N) · β

4
for β� 1.

Again, the realized variance of wEW
N is invariant to θ. We find that wEW

N is comparable to the

aggressive noise-only portfolio (Equation 3) in terms of realized variance, and that it can, in fact,

be better than ŵ∗N when π
4
≤ θ≤ 3π

4
. This finding makes sense because π

4
≤ θ≤ 3π

4
means that v̂p−1

is closer to vp than vp−1.

Appendix B: Proofs

Proposition 3.1(Eigenvalue Concentration)

Proof. By Weyl’s inequality, |λi − λ̂i| ≤ ‖Σ − Σ̂‖op. Dividing both sides by λi proves the

proposition. �

Lemma 3.3 (Portfolio Decomposition)

Proof. Using the Lagrangian multiplier method, we can easily find:

w∗ =
Σ−11

1′Σ−11
=

∑
i

v′
i1

λi
vi∑

i

(v′
i1)2

λi

,

where we use Σ−1 =
∑

i(1/λi)viv
′
i. Similarly, we have:

w∗S =

∑k

j=1

v′
j1

λj
vj∑k

j=1

(v′
j1)2

λj

, RV (w∗S) =
1∑k

j=1

(v′
j1)2

λj

,
1

RV (w∗S)
w∗S =

k∑
j=1

v′j1

λj
. (4)

Repeat this process for w∗N , and some algebraic manipulations yield Equation (2). �

Proposition 4.1(Bounding Realized Variance of any Portfolio from the Noise Space)

Proof. Because the noise space N̂ is spanned by v̂k+1, . . . , v̂p, any vector w from N̂ can be

presented as a linear combination of this basis, namely,

w = (v̂k+1, . . . , v̂p)

a1

...
an

= N̂a.

From the orthonormality of eigenvectors, we have:

||w||22 =w′w = a′N̂ ′N̂a= a′a= ||a||22. (5)

Meanwhile, the definition of the noise bound, m, guarantees that the following inequality holds

for any vector b∈Rn such that ||b||2 = 1,

b′
(
N̂ ′(Σ− Σ̂)N̂

)
b≤m. (6)
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Plugging a/||a||2 into the previous inequality, we have(
a

||a||2

)′ (
N̂ ′(Σ− Σ̂)N̂

)( a

||a||2

)
≤m.

Rearranging, we get:

(N̂a)′Σ(N̂a)≤ (N̂a)′Σ̂(N̂a) +m||a||22.

Substituting w = N̂a and ||w||22 = ||a||22 into the preceding inequality proves the proposition. �

Lemma 6.1 (Projection Portfolios)

Proof. Clearly, wS and wN as defined in Equation (12) satisfy wS ∈ Ŝ, w′S1= 1 and wN ∈ N̂ ,

w′N1= 1. Combining ŜŜ′+ N̂N̂ ′ = I with w′1= 1, we have

1 =w′1=w′(ŜŜ′+ N̂N̂ ′)1= θ+w′N̂N̂ ′1,

which implies 1− θ=w′N̂N̂ ′1. Plugging this equation into the right-hand side of Equation (11),

RHS = ŜŜ′w+ N̂N̂ ′w =w =LHS.

In this way, we prove that Equation (12) gives one solution. Assume that there is another solution,

w = θ̃w̃S + (1− θ̃)w̃N .

Then, we have

θwS − θ̃w̃S =−(1− θ)wN + (1− θ̃)w̃N .

The left-hand side belongs to Ŝ while the right-hand side belongs to N̂ . Because Ŝ ∩ N̂ = 0, both

sides are 0. However, w′S1= w̃′S1= 1. Therefore, the following holds:

0 = 0′1= (θwS − θ̃w̃S)′1= θ− θ̃.

The equation implies that wS = w̃S and wN = w̃N . �

Lemma 6.2 (The Solution to the Robust Optimization)

Proof. Because w ∈ N̂ , we have w = N̂a. Thus,

max
Ψ∈U

w′Ψw = max
Ψ∈U

a′N̂ ′ΨN̂a= ba′In−k+1a.

The last equality holds because of the definition of the uncertainty set. Then Equation (14) becomes

min
a

ba′In−k+1a,

subject to a′(N̂ ′1) = 1.



5

Its solution is

a∗ =
N̂ ′1

1′N̂N̂ ′1
,

which implies that the solution to the robust optimization is

N̂a∗ =
N̂N̂ ′1

1′N̂N̂ ′1
.

From Equation (12), the projection portfolio of the equal-weighted portfolio on N̂ is:

wEW
N =

N̂N̂ ′(1/p)

(1/p)′N̂N̂ ′1
=

N̂N̂ ′1

1′N̂N̂ ′1
= N̂a∗. �


