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This paper focuses on the problem of poor portfolio performance when a minimum-variance portfolio is

constructed using the sample estimates. This issue is well documented in the literature and has remained in

the spotlight ever since Markowitz (1952). Estimation errors are mostly blamed for this problem. However,

we argue that even small unbiased estimation errors can lead to significantly bad performance because the

optimization step amplifies errors, that too in a non-symmetric way. Instead of trying to independently

improve the estimation step or fix the optimization step for robustness, we disentangle the well-estimated

aspects from the poorly-estimated aspects of the covariance matrix and handle them differently and appro-

priately. By using a single parameter held constant over all datasets and time periods, our method achieves

excellent performance both empirically and in simulation. Finally, we show how to use information from the

sample mean to construct mean-variance portfolios, which we demonstrate have higher out-of-sample Sharpe

ratios.
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1. Introduction

The celebrated mean-variance portfolio optimization approach proposed by Markowitz (1952)

lays out a clear methodology for constructing asset portfolios that minimize risk, for any perfor-

mance/reward target. His work is considered to be among the most fundamental works in the

finance literature helping to initiate an era of mathematical analysis of financial problems. How-

ever, the out-of-sample performance of these mean-variance portfolios in the real-world often has

been demonstrated to be unacceptable (Jobson and Korkie 1981, Frost and Savarino 1986, 1988,
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Jorion 1986, Michaud 1989). This poor performance stems largely from our inability to make pre-

cise parameter estimates. Even the simpler variance-minimizing portfolio has been shown to have

a similarly unacceptable performance (Jagannathan and Ma 2003, DeMiguel et al. 2009b).

The most direct solution to the minimum-variance portfolio problem involves two steps. First,

we find the best estimates of the covariance matrix using historical data. Next, we use these

estimates as inputs to the optimization problem and solve it to obtain the optimal portfolio. Both

steps are relatively straightforward. However, even the best covariance estimation in the first step,

though unbiased, has errors. When we use this estimate of the covariance matrix in place of the

true covariance, the hope is that the resulting portfolio still is close to the true optimal portfolio.

However, this is not the case. The large number of covariance estimates relative to the limited size

of historical data often is blamed for this poor result. But as we argue in this paper, the initial

error stemming from limited data is amplified by the structure of the optimization procedure itself.

Indeed, this amplification is in a sense non-symmetric; that is, different kinds of errors are

amplified in different ways. Hence, an unbiased initial error in estimation does not translate to

portfolios that are unbiased estimates of the optimal portfolio. The compounding effect of the

optimization-driven error amplification on the initial estimation errors is the primary cause of this

unacceptable performance.

A plethora of research papers suggests ways to address this poor out-of-sample performance.

Either these papers try to improve the first estimation step to yield better covariance estimates, or

modify the second optimization step to produce a better out-of-sample performance. (We discuss

several of these papers in section 1.3). However, DeMiguel et al. (2009b) consider 14 popular meth-

ods in the literature and show that none performs consistently better than the naive equal-weighted

portfolio. They examine the methods across seven monthly datasets, evaluating the Sharpe ratio,

the certainty-equivalent return, and turnover. Later, a few papers (Brodie et al. 2009, DeMiguel

et al. 2009a, Fan et al. 2012) demonstrate that the norm-constrained portfolios, which belong to

the second category that modifies the optimization, outperform several other competing methods

on many real-world financial datasets. Instead of just minimizing portfolio variance in the second

step, the norm-constrained portfolios seek to minimize a weighted sum of the portfolio variance and

a norm of the portfolio weights. Covariance estimation errors often manifest themselves as large

weights of some assets, and penalizing portfolio weights limits this problem. Norm-constrained

portfolios have been shown to be mathematically equivalent to several other methods (see section

1.3), indicating that this same basic idea underpins many seemingly disparate models.

However, the norm-constrained approach presents several problems, stemming primarily from

the ad-hoc nature of merely modifying the objective to keep the portfolio weights low. First,

Green and Hollifield (1992) argue that the true optimal portfolio can have sizeable asset weights.
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Hence, although norm constraints might help, they also might be wrong because they exclude

the true optimal solutions, which involve large portfolio weights. Second, the choice of the norm

is arbitrary. Third, the performance of the norm-constrained portfolios depends on the selection

of a parameter that captures the importance of keeping the portfolio weights low; that is, the

coefficient of the norm. The optimal choice of this parameter is often fine-tuned using out-of-sample

data to demonstrate performance. Moreover, the optimal value of this parameter varies based

on the particular financial dataset and the amount of historical data used, and it even changes

over the time horizon encompassed by a dataset. These problems motivate us to search for a

deeper understanding of the dynamics of error propagation in portfolio optimization and use this

understanding to construct well-understood portfolios that have good out-of-sample performance.

1.1. Our Main Ideas

In this paper, we first try to tease out the reason for the poor performance of the minimum-

variance portfolios in the real world. Limited data lead to estimation errors, which we argue are

amplified by the optimization procedure to cause the unacceptable performance. Instead of trying

to independently improve the estimation step or fix the optimization step for robustness, we try

to disentangle the well-estimated aspects from the poorly-estimated of the covariance matrix and

handle them differently and appropriately when constructing our portfolio.

Our approach has four steps. First, we begin by looking into the estimation of the covariance

matrix. It turns out that some eigenvectors of the covariance matrix are easier to estimate than

others.1 We show that the portfolio weights that result from solving the optimization problem

depend to a greater degree on the poorly-estimated eigenvectors, which suggests the need to split

the set of eigenvectors into two groups: the well-estimated and the poorly-estimated. However,

instead of splitting using an arbitrary threshold on estimation errors, we use the impact of the

estimation errors on the portfolio objective to dictate the split. We call the split groups signal and

noise.

Second, we directly construct a signal-only portfolio from the well-estimated signal eigenvectors.

This portfolio by itself performs significantly better than the classical minimum-variance portfolio.

Third, realizing that “poorly estimated” does not imply unimportant, we see how we can benefit

from the noise eigenvectors. Although each eigenvector in the noise space is poorly estimated, we

argue that, when taken together, the space spanned by them is well estimated. This phenomenon

is understandable because this space is orthogonal to the space spanned by the signal eigenvectors.

This observation is important because a portfolio from the noise space has the potential to improve

1 Note that eigenvectors of the covariance matrix are precisely the principal components of the data (whose mean has
been removed).
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performance when combined with the signal-only portfolio. We show this by devising an upper

bound on the true variance of any portfolio constructed from these noisy eigenvectors and use this

upper bound to build a conservative noise-only portfolio.

Finally, we show how to combine the signal-only portfolio with the conservative noise-only port-

folio to generate a single portfolio that outperforms the signal-only portfolio. Using simulated data

and twelve standard datasets (listed in Table 1) with different rebalance frequencies and training

lengths, we then show that our method yields portfolios that do well not only in simulation but

also on these real-world datasets. Moreover, unlike norm-constrained portfolios, we use the same

value of the scalar threshold parameter that defines the split for all datasets. In many ways, this

property is critical because it ensures that the out-of-sample performance does not rely on one’s

ability to fine-tune a very sensitive parameter.

In summary, we provide a mechanism to disentangle signal from noise; construct the signal-only

portfolio and the conservative noise-only portfolio; and combine the two to show that the resulting

portfolio significantly outperforms popular portfolios in the literature. This entire process requires

only one physically meaningful parameter whose value is invariant to the financial datasets and to

the length and time of the historical data.

As can be noted from the description of our contributions, we explore the performance of the

proposed methodology in multiple ways: testing on both the real-world and the simulated data and

providing mathematical justifications. Performance on the real-world financial data is, of course,

an important indicator, but it comes with two caveats. First, it does not allow us to understand

the effects of modeling and estimation errors separately. Second, we also risk being at the mercy of

a few sample paths, making it harder to establish that we are not being favored by certain datasets

only. It is entirely understandable that performance in the real world is the ultimate price and this

is the reason most methods in the literature use performance of the real-world datasets as their only

evaluation mechanism. However, (a) testing on simulated data and (b) providing mathematical

insights into why a specific method performs well, together with (c) testing on the real-world data,

would make a much stronger case. Testing on simulated data allows for exhaustive tests and keeps

the focus on estimation errors alone. From an academic perspective, understanding mathematically

why a method does well is reassuring and will enable us to understand the method’s limitations,

enabling further improvement. Hence in this paper, we do all three.

1.2. Other contributions

Mean-variance portfolios, as opposed to minimum-variance portfolios, also use the estimated

expected returns to construct portfolios with an expected return target. They are often considered

more challenging to construct especially because estimating the expected return is harder than
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estimating the covariance matrix (Merton 1980) and more essential (Black and Litterman 1992,

Chopra and Ziemba 1993). Hence prior literature (Jagannathan and Ma 2003, DeMiguel et al.

2009a, Brodie et al. 2009, Fan et al. 2012) has mostly focused on the minimum-variance problem to

bypass this issue. However, expected returns are important drivers of the Sharpe ratio. In section

4 and 6, we demonstrate how our method can be extended to use information of sample means

to construct a mean-variance portfolio with a significantly better out-of-sample Sharpe ratio than

the competing methods. It turns out that by bounding the out-of-sample variance, our method is

more tolerant to sample mean errors, allowing us to achieve a higher Sharpe ratio.

We also provide a detailed discussion on the connection between our method and the norm-

constrained methods. Our analysis shows that the best performing norm-constrained portfolio

corresponds to a wrong constraint, which in fact could render the true optimal portfolio infea-

sible. We show that a penalized norm avoids error amplification indirectly, which is why, rather

paradoxically, such a wrong constraint can work.

1.3. Literature Review

The minimum-variance portfolio is a portfolio w that minimizes variance w′Σw subject to the

budget constraint w′1 = 1. Solving this optimization problem with the estimated covariance matrix

Σ̂ in place of the unknown true covariance Σ gives us the estimated MinVar portfolio in place of the

true MinVar portfolio. The poor out-of-sample performance of the estimated MinVar portfolio is

well-known (Jobson and Korkie 1981, Frost and Savarino 1986, 1988, Jorion 1986, Michaud 1989).

Michaud (1989) was the first to describe the original portfolio-optimization framework as error

maximization. The author argues that the solver overweighs those securities that have large esti-

mated returns, negative correlations, and small variance, which are most likely to have estimation

errors. Even the naive equal-weighted portfolio that spreads the budget equally among all assets

performs better (DeMiguel et al. 2009b). We can group the papers trying to overcome this problem

into three categories. The first category tries to develop methods that provide better covariance

estimates than the sample covariance matrix. The second category combines the estimated Min-

Var portfolio with the equal-weighted portfolio to maximize a utility measure other than variance.

The third category tries to modify the optimization problem itself with the hope of improving

performance.

Improving covariance estimation: A plethora of research exists on the estimation of the covari-

ance matrix in the context of portfolio optimization.2 One common approach is to shrink the

2 For a more detailed discussion, please see Ledoit and Wolf (2012, 2017) and the references therein.
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sample covariance. Ledoit and Wolf (2003) shrink the sample covariance matrix toward the single-

index covariance matrix. One can also shrink the eigenvalues of the sample covariance matrix

linearly (Ledoit and Wolf 2004) or nonlinearly (Ledoit and Wolf 2012, 2017). The former is equiv-

alent to shrink the sample covariance matrix toward identity matrix. The shrinkage level is chosen

such that it is asymptotically optimal under the Frobenius norm. The shrinkage methods have

been shown to dominate the multi-factor models on the real-world data (Ledoit and Wolf 2003).

A second approach is to use robust statistics to counteract sudden movements in the stock price.

DeMiguel and Nogales (2009) provide a careful evaluation on both the simulated and the real-world

datasets and show that the robust statistics can indeed improve performance. A third approach is

to use the information from the option price documented in DeMiguel et al. (2013b). They indicate

that using option-implied volatility can reduce the out-of-sample standard deviation by more than

10% for various modified minimum-variance portfolios on two real-world datasets.

Combining with the equal-weighted portfolio: The second category is inspired by the good

performance of the equal-weighted portfolio documented in the literature (Jobson and Korkie 1980,

DeMiguel et al. 2009b, Duchin and Levy 2009). With five reasonable assumptions, Frahm and

Memmel (2010) prove that the portfolio constructed by carefully combining the estimated MinVar

portfolio with any reference portfolio dominates the former. They use a loss function that is closely

related to out-of-sample variance. In the extensive simulation test and a small real-world dataset

evaluation, they take the equal-weighted portfolio as the reference portfolio and demonstrate the

benefit of combination. By minimizing the expected utility loss, Tu and Zhou (2011) estimate the

combination level of each of four different portfolios and the equal-weighted portfolio. Using an

exhaustive assessment of both the simulated and the real-world datasets, they show that the new

portfolios perform better than the equal-weighted portfolio. DeMiguel et al. (2013a) use different

criteria and calibration methods to decide the combination level and show that the combined

portfolios can achieve good performance across several real-world datasets.

Modifying the optimization: The third category modifies the portfolio optimization by penal-

izing portfolios with some predefined characteristics (or, equivalently, by adding extra constraints

based on these characteristics). The most common modification is to avoid aggressive short posi-

tions. An extreme case is the no-shorting portfolio, which avoids shorting altogether. This approach

is insightfully analyzed in Jagannathan and Ma (2003), who argue that the “wrong” no-shorting

constraint helps because it reduces the effects of the estimation error. They give evidence for better

performance using both the simulated and the real-world data. A weaker version of the no-shorting

constraint involves penalizing a norm of the portfolio weights,

min
w
w′Σw+ η‖w‖pp subject to w′1 = 1. (1)
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Two common norms are the L1 norm (Welsch and Zhou 2007, Brodie et al. 2009, Fan et al. 2012)

and the L2 norm (Lauprête 2001, DeMiguel et al. 2009a). Among these studies, Fan et al. (2012)

is the only one that uses both the simulated and the real-world data to show better performance

and that also provides a mathematical justification. Lauprête (2001) takes the view that norm-

constrained portfolios are regularizations that counteract the deviations from the normality of the

distribution of returns. Empirical evidence is provided via simulations, but only one real-world

dataset is used. DeMiguel et al. (2009a) provide more comprehensive empirical results, and they

show that the norm-constrained portfolios dominate the equal-weighted portfolio and the estimated

MinVar portfolio in terms of both the out-of-sample variance and Sharpe ratio. They also build

the connection between norm-constrained portfolios and Bayesian priors on the sample covariance

matrix. Gotoh and Takeda (2011) find that the norm constraints are equivalent to robust constraints

associated with the return vector, and Olivares-Nadal and DeMiguel (2018) point out that the

norm constraints can be interpreted as the transaction costs.

Our approach is complementary to each of the three categories discussed. Estimation error

might be reduced by the first set of methods, but it cannot be eliminated, and we show that

this error is amplified by the solver of the portfolio optimization. Our discussion of the causes

of this amplification and the way to mitigate it are relevant here. The second category is based

on the good performance of the equal-weighted portfolio. We provide theoretical reasons for its

good performance and indeed show that a new way of combining portfolios can yield even better

performance. The third category penalizes the norm of the portfolio weights, but the penalty factor

and the norm must be chosen for each dataset. This parameter is typically chosen repeatedly

via cross-validation and is quite sensitive. Even for the same dataset, different training subsets

usually give different parameter choices. We show that the norm penalty avoids error amplification

indirectly, and also show how the right penalty can be chosen using a single constant parameter

value that applies to every period of every dataset. We explain the mathematical justification for

our method and demonstrate its efficacy on both the simulated and twelve real-world datasets of

varying sizes and characteristics.

There is another stream of related literature that does not fit into the three categories above.

Laloux et al. (1999, 2000) and Plerou et al. (2002) use results from random matrix theory to help

estimate better correlation matrices. They also use the signal vs. noise terminology but define these

differently. They begin by assuming that the correlation matrix is a random matrix generated by

independent asset returns. Then any deviation of the eigenvalue distributions from that dictated

by random matrix theory is considered information or signal. By this definition, for example, the

lowest eigenvalues and corresponding eigenvectors are likely to be considered a part of the signal in

their case (Plerou et al. 2002), but noise in our case. Laloux et al. (2000) modify their correlation
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matrix (not covariance) by replacing all the noise eigenvalues with their average and show that it

performs better than the sample correlation matrix.

1.4. Outline

The rest of the paper is organized as follows. In section 2, by adopting an in-depth understanding

of the estimation errors in the sample covariance estimation, we discuss how certain errors are

amplified via the optimization solver, which results in poor portfolio performance. In section 3, by

mitigating the error amplification, we construct the bound-noise portfolio. Section 4 demonstrates

how to extend the bound-noise idea from minimizing the variance to maximizing the Sharpe ratio.

In section 5, we provide the connection with several existing portfolio optimization methods. Section

6 provides exhaustive comparisons of our portfolios with eight other different portfolio construction

methods, using twelve datasets with two different rebalancing frequencies and training lengths.

Concluding remarks and future research directions are offered in section 7.

2. Estimation Error and Its Amplification

The basis of our approach stems from the fact that some eigenvalues and corresponding eigenvectors

of the true covariance matrix are better estimated than others. This section describes the estimation

errors and how they get amplified in the optimization step. While doing this, we also represent our

signal and noise space and how portfolio in each space can be combined.

2.1. Estimation Error

Let’s begin with Proposition 2.1 which shows that the relative errors in estimating the large eigen-

values of the true covariance matrix are small while the relative errors in estimating the small

eigenvalues are large. We use Σ to represent the true covariance matrix and Σ̂ to represent the

sample covariance matrix. || · ||op stands for the operator norm. The sample size is n, and the

number of assets is p.

Proposition 2.1 (Eigenvalue Concentration) Let λi and λ̂i represent the ith largest eigenval-

ues of Σ and Σ̂, respectively. Then we have:

|λi− λ̂i|
λi

≤ ‖Σ− Σ̂‖op
λi

.

Estimation errors for the eigenvectors are a bit more complicated to characterize. Lemma 2.2

show that the estimation error not only depends on ‖Σ− Σ̂‖op, but also how separated the eigen-

values are.
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Figure 1 Distribution of True and Estimated Eigenvalues

Lemma 2.2 (Concentration of Eigenvectors (Yu et al. 2015)) Let Σ, Σ̂∈Rp×p be symmet-

ric, with eigenvalues λ1 ≥ . . . ≥ λp and λ̂1 ≥ . . . ≥ λ̂p, respectively. Fix 1 ≤ r ≤ s ≤ p, and assume

that min(λr−1−λr, λs−λs+1)> 0, where we define λ0 =∞ and λp+1 =−∞. Let d= s− r+ 1. Let

V = (vr,vr+1, . . . ,vs) ∈Rp×d and V̂ = (v̂r, v̂r+1, . . . , v̂s) ∈Rp×d have orthogonal columns satisfying

Σvj = λjvj and Σ̂v̂j = λ̂jv̂j; then there exists an orthogonal matrix Ô ∈Rd×d such that

‖V̂ Ô−V ‖F ≤
23/2d1/2‖Σ̂−Σ‖op

min(λr−1−λr, λs−λs+1)
.

Vershynin (2011) gives a nice description of ||Σ−Σ̂||op in terms of n and p: under mild conditions,

a high-probability upper bound of ||Σ− Σ̂||op is roughly of order
√
p/n. Thus, for a given number

of assets p, the difference decays when more observations are available, as expected.

Previous work on financial datasets shows that a few factors can explain a significant portion of

the variance of asset returns (Fama and French 2015). This finding suggests that Σ has only a few

large eigenvalues (whose corresponding eigenvectors mirror the relevant factors) while the bulk of

the eigenvalues are small (so their eigenvectors just have a small contribution to the variance of

asset returns).

This intuition is supported by the observations from a historical covariance matrix constructed

from the monthly returns of the Fama-French value-weighted dataset with 96 instruments, aggre-

gated over 625 months. Figure 1 shows the eigenvalues of this “true” covariance matrix, as well

as those of a sample covariance matrix simulated from the covariance matrix (both of which are

ordered from largest to smallest eigenvalue). Observe that the largest eigenvalues are well sepa-

rated, but the smallest ones are densely packed (note that we scale the y-axis logarithmically).
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Note also that the relative difference between the estimated and the true eigenvalues is small for

the largest eigenvalues, implying that these are relatively well estimated.

In addition to these simulation results and the arguments from the finance literature, we see

widespread evidence of similar phenomena in the eigenvalue spectra of many real-world net-

works (Mihail and Papadimitriou 2002, Chakrabarti and Faloutsos 2006).

In summary, we can separate the eigenvalues and the corresponding eigenvectors into two parts.

The largest eigenvalues and related eigenvectors in the sample covariance Σ̂ can relatively well

approximate the corresponding eigenvalues and eigenvectors of the true covariance matrix Σ. We

call these pairs the signal. The smaller eigenvalues and the corresponding eigenvectors are poor

estimations. We call these pairs the noise.

2.2. Error Amplification in Portfolio Optimization

The previous discussion showed that the estimation errors affect the smaller eigenvalues and eigen-

vectors more than the larger ones. To understand how these differences influence portfolio opti-

mization, we first give a new characterization of the true MinVar portfolio.

Separate the true eigenvectors (v1, . . . ,vp) into two sets: from index 1 to k, and from k+ 1 to

p. Intuitively, we expect the first set to contain better-estimated eigenvectors than the second set.

Denote the space spanned by v1, . . . ,vk as S and the space spanned by the other eigenvectors as

N .

Lemma 2.3 (Portfolio Decomposition) For any separation (S, N ), the optimal portfolio w∗

can be expressed as

w∗ = αw∗S + (1−α)w∗N (2)

α=
1/RV (w∗S)

1/RV (w∗S) + 1/RV (w∗N)
. (3)

Here w∗S and w∗N are defined as the solution to the following optimization problems,

w∗S = arg min
w

w′Σw,

subject to w′1 = 1

w ∈ S,

∣∣∣∣∣∣∣∣
w∗N = arg min

w
w′Σw,

subject to w′1 = 1

w ∈N .

Namely, w∗S and w∗N are the solution of the minimum-variance problem restricted being a linear

combination of the first k eigenvectors (the vectors that span S) and other eigenvectors, respectively.
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Figure 2 The ratio between RV and EV

In the above, RV (w) is the expected out-of-sample variance (henceforth, the realized variance3) of

w, namely,

RV (w) =w′Σw.

Thus, the true MinVar portfolio can be seen as a convex combination of two portfolios: one

restricted to space S and the other confined to space N . The weight of each portfolio is proportional

to the inverse of its realized variance.

Now consider the estimated MinVar portfolio. It can be expressed in the same form as in

Lemma 2.3, but now the true parameters are replaced with their estimated counterparts. In partic-

ular, the eigenspace S is replaced by Ŝ = span(v̂1, . . . , v̂k); N is replaced by N̂ = span(v̂k+1, . . . , v̂p);

the portfolios w∗S and w∗N are replaced by ŵ∗S and ŵ∗N . We use ŵ∗S instead of ŵ∗Ŝ solely to simplify

notation. Also, crucially, the realized variance RV (w) =w′Σw is replaced by the estimated variance

EV (w) =w′Σ̂w. Thus, the relative weight of ŵ∗S to ŵ∗N in the overall portfolio ŵ∗ (Eq. 3) is now

driven by estimated variance instead of realized variance.

To further illustrate the difference between the realized variance and the estimated variance, we

perform simulations on the previously mentioned Fama-French value-weighted dataset comprising

96 stocks. In the simulation, we assume that the true covariance matrix Σ and the true expected

return µ are the sample covariance matrix and the sample mean using all monthly data from July

3 Our definition of realized variance is slightly different from some of the literature. For example, Hansen and Lunde
(2006) directly use the square of returns without subtracting the sample mean. This definition is reasonable when
the sample mean is close to 0 and much smaller than the sample variance. This argument is validated in papers that
use daily data. However, we use monthly data, and the sample mean is not negligible.
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1963 to July 2015 (625 observations). We also assume that the returns follow a multivariate normal

distribution with mean µ and covariance Σ, and we draw 120 observations (10-year monthly data)

from this distribution.

We calculate the realized variance and the estimated variance for various signal-noise splits. We

obtain Figure 2 by repeating this experiment 100 times and calculating related averages. It shows

the ratio of realized variance to estimated variance for ŵ∗S and ŵ∗N . As discussed in the previous

subsection, we expect the realized variance of ŵ∗S to be similar to its estimated variance when k is

small. Figure 2a supports this intuition. However, Figure 2b shows that for ŵ∗N , its realized variance

is much larger than its estimated variance. Indeed, it is at least 20 times larger for any k. This

underestimation means that ŵ∗N , which uses the poorly-estimated parameters, gets overweighted

significantly. We call ŵ∗N the aggressive noise-only portfolio and the ratio between the realized

variance and the estimated variance the amplification ratio.

3. The Bounded-Noise Portfolio

The previous discussion shows the utility of separating a “signal” space Ŝ (and the signal-only

portfolio ŵ∗S) from a “noise” space N̂ (and the aggressive noise-only portfolio ŵ∗N) using a sig-

nal/noise split index k on the eigenvectors of the covariance matrix Σ̂. In this section, we begin by

formally defining the signal/noise split. Rather than splitting by the estimation errors, we show

in Section 3.1 how we can use the effect of the estimation errors on the optimization objective to

dictate the split. Given this split, we then construct the signal-only portfolio by minimizing its

estimated variance in Section 3.2. To take advantage of the information contained in the noise

space, in Section 3.3, we use the idea of minimizing the upper bound of the realized variance to

construct the conservative noise-only portfolio. This bound also provides a way to combine the

conservative noise-only portfolio cautiously with the signal-only portfolio. We describe the combi-

nation procedure in Section 3.4. We call the combined portfolio the bounded-noise portfolio (the

BN portfolio). We discuss the entire algorithm including the procedure to estimate the parameters

needed in the algorithm, in Section 3.5.

3.1. Splitting into Signal and Noise

Our intuition for a signal is that (λ̂i, v̂i) ≈ (λi,vi). However, this intuition can be refined based

on the specifics of the portfolio optimization problem. The simulation in Section 2.2 shows the

under-estimation of the realized variance by the estimated variance. This under-estimation leads

to the aggressive noise-only portfolio being overweighted in the estimated Min-Var portfolio. Hence

we characterize the signal space as all eigen pairs (λ̂i, v̂i) that are such that

amplification ratio φi ,
RV (v̂i)

EV (v̂i)
=
RV (v̂i)

λ̂i
≤ 1 + γ, (4)
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where the parameter γ > 0 allows for some flexibility. We set γ = 0.25 for all experiments and

provide sensitivity analysis on γ in Section 6.5. Because the realized variance is unknown, φi needs

to be estimated and we provide the procedure in Section 3.5. The first advantage of Equation (4)

is that accurate estimation of eigenvalues and eigenvectors (i.e., (λ̂i, v̂i)≈ (λi,vi)) is sufficient to

ensure φi ≤ 1 + γ, but is not necessary.4 Another advantage is that it does not impose separate

conditions on eigenvalues and eigenvectors; instead, it captures, via a single formula, the way in

which these quantities affect portfolio optimization.

Definition 1 (Signal and Noise) Let the eigenvalues of the estimated covariance matrix Σ̂ be

set in decreasing order: λ̂1 ≥ λ̂2 ≥ . . .≥ λ̂p. Let the corresponding eigenvectors be denoted by v̂i. Let

the eigenvalues λi and the corresponding eigenvectors vi of the true covariance matrix Σ also be

ordered as λ1 ≥ λ2 ≥ . . .≥ λp > 0. For a given γ, the signal/noise split point k∗ is defined as follows:

k∗ = max{k |φi ≤ 1 + γ, ∀i≤ k} .

The space spanned by {v̂i | i ≤ k∗} is defined as the signal space while the space spanned by

{v̂i | i > k∗} is defined as the noise space. It is possible for one of these spaces to be empty. The

corresponding sets of eigenvalue and eigenvector pairs, namely {(λ̂i, v̂i) | i≤ k∗} and {(λ̂i, v̂i) | i >

k∗}, are referred to as signal and noise, respectively.

In Definition 1, we assume the true covariance matrix is strictly positive definite. With such an

assumption, given p, as n→∞, all (λ̂i, v̂i) pairs are considered to be signal:

|φi− 1|=
∣∣∣∣ v̂′iΣv̂i

λ̂i
− 1

∣∣∣∣= |v̂′i
(

Σ− Σ̂
)

v̂i|

λ̂i
≤ ‖Σ− Σ̂‖op

max(0, λp−‖Σ− Σ̂‖op)
→ 0,

where the last inequality follows from Proposition 2.1 and the definition of the operator norm.

3.2. The Signal-Only Portfolio

By construction, the signal space consists of sample eigenvectors whose estimated variance is a

reliable indicator of their realized variance. Thus, the signal-only portfolio, ŵ∗S, constructed from

these sample eigenvectors should also be reliable. Mathematically speaking, this portfolio is equiv-

alent to a PCA-based portfolio that ignores a certain number of the low eigenvalues of Σ̂ and

corresponding eigenvectors.

4 If λi = λi+1, it is impossible to estimate vi or vi+1 accurately. However, their amplification ratios can be close to 1.
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3.3. The Conservative Noise-Only Portfolio

Eigenvectors in the noise space are poorly estimated. Hence, although the estimated variance of a

portfolio from the noise space might be low, its realized variance might be much higher. Our idea

is simple: Because estimates of variance are too unreliable in the noise space, we instead develop

an upper bound for the realized variance of any portfolio in the noise space. Then, we choose the

portfolio that minimizes this upper bound.

Proposition 3.1 (Bounding Realized Variance of any Portfolio from the Noise Space)

Let the noise space eigenvectors of Σ̂ be v̂k+1, . . . , v̂p, the space spanned by them be N̂ , and the

matrix whose columns are (v̂k+1, . . . , v̂p) be N̂ . For any w ∈ N̂ ,

RV (w)≤EV (w) +m||w||22, (5)

where m is the largest eigenvalue of the matrix N̂ ′(Σ− Σ̂)N̂ .

We call m the noise bound. Because the true covariance matrix, Σ, is unknown, we need to

estimate the noise bound and the procedure is provided in Section 3.5. The realized variance of any

portfolio w from the noise space can be upper-bounded by a function BRV (w), which is defined

as BRV (w) =EV (w)+m||w||22. Here, BRV stands for the bounded realized variance. It is natural

now to choose a portfolio from the noise space that minimizes this upper bound:

min
w

BRV (w),

subject to w′1 = 1,

w ∈ N̂ .

(6)

This portfolio is not necessarily close to the optimal noise portfolio w∗N . However, it is conservative

because it is the bound that is minimized. Thus, we call this portfolio the conservative noise-only

portfolio and denote it as ŵBN
N .

3.4. Combining the Two Portfolios

Finally, we must combine the signal-only portfolio, ŵ∗S, with the conservative noise-only portfolio,

ŵBN
N , into a single portfolio. Equation (3) shows that the combination weights each portfolio by the

inverse of its realized variance. For the signal-only portfolio, the estimated variance is a good proxy

for the realized variance. However, the same is not true for the conservative noise-only portfolio.
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Hence, instead of using its erroneous estimated variance, we use the upper bound.5 Thus, the BN

portfolio is given by:

ŵBN = αBNŵ∗S +
(
1−αBN

)
ŵBN
N ,

αBN =
1/EV (ŵ∗S)

1/EV (ŵ∗S) + 1/BRV (ŵBN
N )

.
(7)

Given the split, k∗, and the noise bound, m, we can obtain the analytical form of both the signal

and the conservative noise portfolio, which can be plugged into Equation (7) to express ŵBN as:

ŵBN =

∑k∗

i=1

v̂′i1

λ̂i
v̂i +

∑p

i=k∗+1

v̂′i1

λ̂i+m
v̂i∑k∗

i=1

(v̂′i1)2

λ̂i
+
∑p

i=k∗+1

(v̂′i1)2

λ̂i+m

. (8)

In other words, the BN portfolio adds the noise bound, m, to the eigenvalues whose corresponding

eigenvectors belong to the noise space while adding 0 to the other eigenvalues. Thus, Equation (8)

is equivalent to saying that the BN portfolio, ŵBN , is the solution to the following optimization

problem:

min
w

w′(Σ̂ +M)w,

subject to w′1 = 1,

where M =mN̂N̂ ′.

(9)

3.5. Estimating k∗ and m

Both k∗ and m are functions of Σ and Σ̂. Since Σ is unknown, they need to be estimated. Instead of

assuming a particular distribution of returns (say, Gaussian), we estimate them using the bootstrap

method. In particular, we draw bootstrap samples from the observed returns and construct the

bootstrap covariance matrix Σ̂B. Then, we estimate k∗ and m by using (Σ̂, Σ̂B) in place of (Σ, Σ̂)

in Definition 1 and Proposition 3.1. Plugging in these estimates in Equation (8) gives us the BN

portfolio weights. The algorithm is summarized below.

1. Estimation of the split, k∗, and the noise bound, m.

(a) Draw L = 1,000 bootstrap samples from the observed sample returns. Construct the

corresponding bootstrap covariance matrices Σ̂Bj, j = 1,2, . . . ,L.

(b) Calculate the bootstrap analogs φ̃ji of φi for each i= 1,2, . . . , p and j = 1,2, . . . ,L:

φ̃ji =
ṽ′jiΣ̂ṽji

λ̃ji
,

where λ̃ji and ṽji are the ith eigenvalue and eigenvector of Σ̂Bj, respectively.

5 If one is extremely concerned about the portfolio from the noise space, one can assign infinity as the upper bound
for all these portfolios. This leads to the signal-only portfolio.
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(c) Estimate the split, k∗, as follows:

k̂= max
{
k |median{φ̃ji | j ∈ [1,L]})≤ 1 + γ = 1 + 0.25 = 1.25, ∀i≤ k

}
.

(d) Estimate the noise bound, m, using the following estimator

m̂= median
{
λmax

(
N̂ ′Bj(Σ̂− Σ̂Bj)N̂Bj

)∣∣∣ j = 1,2, . . . ,L
}
,

where λmax denotes the largest eigenvalue of a matrix, and N̂Bj is the matrix of eigenvectors of

Σ̂Bj in the noise space: N̂Bj = (ṽjk̂+1, . . . , ṽjp).

2. Replace the split, k∗, and the noise bound, m, with their estimation k̂ and m̂ in Equation (8)

to get the BN portfolio.

Note that the median is used instead of the mean in steps (c) and (d) to ensure robustness of

the estimates. Figure 3 contrasts the classical approach with the bounded-noise procedure.

Data

Σ̂: sample covariance

Data

Σ̂: sample covariance
v̂i: eigenvectors of Σ̂
k̂: estimation of dimension that defines signal
m̂: estimation of noise bound

min
w

w′Σ̂w,

s.t. w′1 = 1.

min
w

w′Σ̂w,

s.t. w′1 = 1,

w ∈ Ŝ.

min
w

w′Σ̂w+ m̂||w||22,

s.t. w′1 = 1,

w ∈ N̂ .

estimated Min-Var, ŵ∗ signal-only, ŵ∗S conservative noise-only, ŵBN
N

combine to give bounded-noise, ŵBN

Ŝ = span(v̂1, . . . , v̂k̂) N̂ = span(v̂k̂+1, . . . , v̂p)

Figure 3 Diagram of the Estimated Min-Var Portfolio Compared to the Bounded-Noise Portfolio
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4. Bounded-Noise Portfolios for Mean-Variance Optimization

Our entire discussion up to this point and much of the related literature(Jagannathan and Ma

2003, DeMiguel et al. 2009a, Brodie et al. 2009, Fan et al. 2012) focus on the minimum-variance

portfolio to avoid the problem of estimating the expected returns. However, this focus restricts our

ability to optimize for other measures such as the Sharpe ratio. In this section, we show how to

adapt the bounded-noise idea to the problem of maximizing the Sharpe ratio.

One difficulty in achieving a high realized Sharpe ratio is that stretching for higher estimated

expected returns often requires aggressive positions which can cause unexpected increases in the

realized standard deviation (RSD(w) =
√
RV (w)) if the errors in the covariance estimation are

not adequately accounted for. That is to say, any gains in expected returns can be swamped by the

increases in the realized standard deviation, leading to a Sharpe ratio lower than even the estimated

MinVar portfolio. However, our upper bound on the realized variance allows us to overcome this

issue.

We propose the following formulation for the mean-variance portfolio problem:

max
w

µ̂′w

subject to w′(Σ̂ +M)w≤ cσ2
min

w′1 = 1,

where M =mN̂N̂ ′.

(10)

Here c≥ 1 is a constant and σ2
min is the optimal objective value of the BN optimization problem

(Eq. 9). Clearly, if c = 1, we recover the BN portfolio. If c > 1, Eq. 10 yields a portfolio (the

BNvar portfolio) that maximizes the estimated expected return by tolerating the chance of a

higher realized variance than the BN portfolio has. Crucially, the inequality in Eq. 10 is based

not on the estimated variance but on our upper bound for the realized variance. Because the

Sharpe ratio has the realized standard deviation as its denominator, this inequality ensures that

the denominator cannot become too large and overshadow the gains in the expected returns.

We choose the value of c via validation over all previous periods. In the experiments, we set c= 1

for the first two years (i.e., we use the BN portfolio). Then, each time we generate a new portfolio,

we choose c∈ [1,1.5] such that the previous overall out-of-sample Sharpe ratio is maximized.6 For

example, at the end of the third year, we calculate the Sharpe ratio of the previous three years’

monthly returns for various c ∈ [1,1.5]. Then we use the c that gives the highest Sharpe ratio to

get the BNvar portfolio weights to hold for the next period.

6 The performance suffers when the upper bound is less than 1.5 because we haven’t taken advantage of enough
information. The result is almost the same for values both at and larger than 1.5.
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5. Connections to Existing Portfolio Optimization Methods

Empirical studies have shown that the norm-constrained portfolios work very well in prac-

tice (DeMiguel et al. 2009a). The preferred reasoning for its good performance is that the norm

penalties on portfolio weights prevent large weights, which are often the result of estimation errors.

Apart from the obvious issue of disallowing large portfolio weights even when the true MinVar

portfolio might have them (Green and Hollifield 1992), this approach only fixes one particular effect

of estimation error. Moreover, the choice of the norm and the magnitude of the penalty term are

unclear. Because the BN portfolio deals with the underlying estimation problems directly, we now

seek to understand its connections with the norm-constrained portfolio.

We first show that the norm-constrained portfolios impose the “wrong” constraints. Coupled

with the idea of signal and noise split, we show that the norm-constrained portfolios avoid error

amplification indirectly. We also discuss the relationship between the BN portfolio and the equal-

weighted portfolio. Finally, we provide an interpretation that allows the BN portfolio to be con-

sidered as an innovative way to combine the estimated MinVar portfolio and the equal-weighted

portfolio. This understanding offers a connection with those methods that alleviate the estimation

and performance issue by combining with the equal-weighted portfolio, as discussed in section 1.3.

5.1. Imposing the Wrong Constraints to Combat Estimation Error

A penalty on the p-norm of portfolio weights, ‖w‖p, is equivalent to a constraint of the form

‖w‖p ≤ δ for some δ > 0. The imposition of such a constraint can be justified if it renders infeasible

a large set of poorly performing portfolios that might otherwise be selected as optimal because of

estimation errors. However, the constraint must not be so restrictive that even the true optimal

portfolio w∗ becomes infeasible.

Figure 4 shows how the realized standard deviation varies with different constraint levels δ, for

the L1 and L2 constrained portfolios under the simulations using the Fama-French value weighted

dataset with 96 assets. In both cases, as expected, the realized standard deviation is too high at

the extremes, because the constraints become either too strict or too weak. However, the optimum

realized standard deviation is achieved for a constraint level at which the true optimal is infeasible;

indeed, the optimum δ is about half of the norm of the optimal portfolio ‖w∗‖p. This agrees with

Green and Hollifield (1992), who showed that the optimal portfolio could have large weights. Thus,

the norm-constrained methods can achieve a low realized standard deviation only by imposing

the wrong constraints, and they cannot be justified simply as a means of capping the effects of

estimation error.
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Figure 4 Realized standard deviation (RSD) with respect to different norm-constraint levels

5.2. Norm-Contrained Portfolios Avoid Error Amplification Indirectly

Recall that the BN portfolio is the solution to the minimum-variance problem using a modified

covariance matrix, where we add the matrix M = mN̂N̂ ′ to the estimated covariance matrix Σ̂

(Eq. 9). If all eigenvectors are noise, we have M = mI, which is precisely the norm-constrained

portfolio optimization, using an L2-norm penalty and with the regularization parameter set to

the noise bound, m. Thus, L2 norm-constrained portfolio is a special case of our solution. To get

further insights, let’s use simulation and project the norm-constrained portfolio into signal and

noise space. Given the estimated signal vs. noise split, k̂, we can compute the signal-portfolio and

the noise-portfolio corresponding to any portfolio as shown in the following lemma.

Lemma 5.1 (Projection Portfolios) Denote the eigenvectors of Σ̂ by v̂1, . . . , v̂p. Let Ŝ =

span (v̂1, . . . , v̂k̂), and N̂ = span
(
v̂k̂+1, . . . , v̂p

)
. Also introduce matrix Ŝ = (v̂1, . . . , v̂k̂), and matrix

N̂ = (v̂k̂+1, . . . , v̂p). For any weight w that satisfies w′1 = 1, there is a unique decomposition,

w= θwS + (1− θ)wN , (11)

such that wS ∈ Ŝ, w′S1 = 1, and wN ∈ N̂ , w′N1 = 1. These “projection portfolios” wS and wN ,

and the inferred mixing proportion θ, are given by

θ=w′ŜŜ′1, wS =
ŜŜ′w

w′ŜŜ′1
, wN =

N̂N̂ ′w

w′N̂N̂ ′1
. (12)

This lemma informs that any portfolio corresponds not only to a particular choice for the signal

and noise portfolios but also to a specific mixing proportion θ by which they are combined and
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where the error amplification happens. Thus, to investigate the actions against error amplification,

we can compare one portfolio against another portfolio that combines these same signal and noise

portfolio, but with the mixing proportion set using their estimated variances, as in the estimated

MinVar portfolio. Specifically, if we choose the L1 (L2) norm-constrained portfolio with cross-

validated7 regularization parameter, denoted as L1CV (L2CV ), as the original portfolio, we can

define the corresponding portfolio L1Mix (L2Mix) as

wL1Mix = θ̂L1CVwL1CV
S +

(
1− θ̂L1CV

)
wL1CV
N θ̂L1CV =

1/EV (wL1CV
S )

1/EV (wL1CV
S ) + 1/EV (wL1CV

N )
(13)

wL2Mix = θ̂L2CVwL2CV
S +

(
1− θ̂L2CV

)
wL2CV
N θ̂L2CV =

1/EV (wL2CV
S )

1/EV (wL2CV
S ) + 1/EV (wL2CV

N )
. (14)

We also define LiftWRTopt as the percentage improvement of the BN portfolio over an alterna-

tive portfolio using the true MinVar portfolio, w∗, as the baseline:

LiftWRTopt(w) =
Avg. RSD(w)−Avg. RSD(ŵBN)

Avg. RSD(w)−RSD(w∗)
.

Table 1 compares L1CV and L2CV with L1Mix and L2Mix, as well as with the BN portfolio

and the true MinVar portfolio, Opt, using the true covariance matrix. Also, we consider the

signal-only portfolio, identified as SignalOnly, which ignores the noise space. We see that L1Mix

(L2Mix) is much worse than L1CV (L2CV), showing that the norm-constrained portfolios avoid

error amplification indirectly. Indeed, both L1Mix and L2Mix are worse than the signal-only

portfolio, indicating that using the correct mixing proportion between signal and noise is essential.

The inferred mixing proportion θ (from Lemma 5.1) is, on average, 1.65 times larger for L1CV

compared to the mixing proportion θ̂L1 of L1Mix (Eq. 13). The corresponding ratio is 2.09 for

L2CV versus L2Mix. Thus, both the L1CV portfolio and the L2CV portfolio reduce the importance

of the noise portfolios when combining it with their signal portfolios, thus avoiding the problem of

overweighting the noise portfolios.

Table 1 Average RSD of Portfolios

Opt BN L1CV L1Mix L2CV L2Mix SignalOnly

Avg. RSD 3.014 3.488 3.700 4.215 3.531 3.979 3.696
LiftWRTopt NA 0 30.89% 60.50% 8.26% 50.82% 30.391%

We also see that the BN portfolio outperforms all norm-constrained portfolios. The dominance

of BN is shown in Table 1 by an improvement of 8.26% over L2CV and larger improvements over

all the others.

7 Following DeMiguel et al. (2009a), we use the leave-one-out cross-validation approach through this paper. We do
a bisection search within the interval [10−4,104] to find the parameter with the lowest cross-validated standard
deviation. This “best” parameter is then used to build a portfolio using the entire 120 monthly returns.
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5.3. Connection to the Equal-Weighted Portfolio

The estimated MinVar portfolio fails because it takes the eigenvectors and eigenvalues from the

noise space at face value. The BN portfolio rectified this problem by picking the conservative noise-

only portfolio, ŵBN
N , which minimized an upper bound of the realized variance (Proposition 3.1).

An alternative approach to robustness would be to pick a portfolio from the noise space that has

the best “worst-case” realized variance (i.e., the portfolio that is robust against all possible config-

urations of eigenvectors that span the noise space N̂ and is also robust against their eigenvalues).

This solution is completely independent of Σ̂, apart from the estimated signal/noise split, k̂. We

could achieve this solution by solving the following optimization problem:

min
w

max
Ψ∈U

w′Ψw,

subject to w′1 = 1

w ∈ N̂ ,

(15)

where U is the uncertainty set of all possible covariance matrices Ψ that have the same signal

eigenvectors and eigenvalues as Σ̂. Since Eq. 15 considers only w ∈ N̂ , we can use the following

uncertainty set:

U = {Ψ |N̂ ′ΨN̂ � bIn−k̂+1}, (16)

where b is a constant and In−k̂+1 is a (n− k̂+ 1)× (n− k̂+ 1) identity matrix.

The idea of a robust portfolio has been expressed previously in the literature in the form of the

equal-weighted portfolio that invests 1/p in each of the p available stocks. This strategy is the right

one in the extreme case where no sample is available. However, given sample, applying this idea

just to the noise space is reasonable. Indeed, the projection of the equal-weighted portfolio on the

noise space yields precisely the portfolio of Eq. 15, as we show next.

Lemma 5.2 The solution to the robust optimization problem Eq. 15 with uncertainty set defined

in Eq. 16 is the projection portfolio of the equal-weighted portfolio on N̂ .

Lemma 5.2 provides an alternative to the conservative noise-only portfolio, but we still need a

way to combine it with the signal-only portfolio. To avoid overweighting the noise portfolio, we

would have to use the bound on its realized variance in computing the mixing proportion between

the signal and noise portfolios. Thus, we need to use Proposition 3.1 anyway. Therefore, we prefer

using the conservative noise-only portfolio (Eq. 6), which also provides the bound, instead of the

projection of the equal-weighted portfolio (Lemma 5.2) as the portfolio constructed from the noise

space.
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Though we have a preference of the conservative noise-only portfolio, ŵBN
N , over the projection

of the equal-weighted portfolio on the noise portfolio, wPEW
N , those two portfolios might be almost

identical in some cases. For example, in simulation, the average inner product between their weight

vectors is 0.991. This happens when m̂� λ̂i, ∀i≥ k̂+ 1, because

wPEW
N =

∑p

i=k̂+1
(v̂′i1)v̂i∑p

i=k̂+1
(v̂′i1)2

, ŵBN
N =

∑p

i=k̂+1

v̂′i1

λ̂i+m̂
v̂i∑p

i=k̂+1

(v̂′i1)2

λ̂i+m̂

. (17)

5.4. A New Way to Combine the Estimated MinVar and the Equal-Weighted Portfolio

Because the signal-only portfolio is the projection of the estimated MinVar portfolio on the signal

space and the conservative noise-only portfolio is similar to the projection of the equal-weighted

portfolio on the noise space, the BN portfolio provides an innovative way of combining the estimated

MinVar portfolio and the equal-weighted portfolio. It takes the better one in both the signal and

noise spaces separately and combines them efficiently. Thus, the BN portfolio has a close connection

with the second category mentioned in the literature review (section 1.3) which tries to combine

the estimated MinVar portfolio and the equal-weighted portfolio. Let’s again use simulation to

illustrate this insight.

Table 2 RSD of Projection Portfolios

ŵ∗S wPEW
S ŵ∗N ŵBN

N wPEW
N

Avg. RSD 3.696 5.168 7.687 4.917 4.948

Using Lemma 5.1, we compare the RSD of the projection portfolios of three portfolios via

simulations: the BN portfolio, ŵBN; the equal-weighted portfolio wEW ; and the estimated MinVar

portfolio, ŵ∗. The results are shown in Table 2. Note that the signal projection portfolio of the

estimated BN portfolio, ŵBN, and the estimated MinVar portfolio, ŵ∗, are the same. It is the

signal-only portfolio, ŵ∗S. This portfolio dominates the projection of the equal-weighted portfolio

on the signal space, wPEW
S . The opposite is true for the aggressive noise-only portfolio, ŵ∗N , and

the equal-weighted portfolio’s projection portfolio in the noise space, ŵPEW
N . We also see that

the RSD of the conservative noise-only portfolio, ŵBN
N , is very close to the RSD of ŵPEW

N , which

supports the previous argument on their similarity. This simulation indicates that the BN portfolio

approximately picks the better projection portfolio of the estimated MinVar portfolio and the

equal-weighted portfolio on the signal and noise space, separately.
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Table 3 List of Portfolios Considered in Empirical Experiments

Model Abbreviation

The Bounded-noise portfolios
Minimum-variance portfolio BN
Mean-variance portfolio BNvar

Equal-weighted portfolio EW
Value-weighted portfolio VW
Minimum-variance portfolio with sample covariance EstMinVar
Minimum-variance portfolio with sample covariance and shortsale constrained NoShorting
L1-norm-constrained minimum-variance portfolio L1CV
L2-norm-constrained minimum-variance portfolio L2CV
Partial minimum-variance portfolio with parameter calibrated by maximizing port-
folio return in previous period

PARR

Minimum-variance portfolio with nonlinear shrunk covariance NonLin

The penalty parameter of norm-constrained portfolios is chosen by cross-validation over standard deviation.

Table 4 List of Datasets Considered

Dataset Abbreviation p

Six Fama and French (1992) portfolios of firms sorted by size and book-to-market 6FFEW, 6FFVW 6
Ten industry portfolios representing U.S. stock market 10IndEW, 10IndVW 10
Twenty-five Fama and French (1992) portfolios of firms sorted by size and book-to-market 25FFEW, 25FFVW 25
Forty-eight industry portfolios representing U.S. stock market 48IndEW, 48IndVW 48
One hundred Fama and French (1992) portfolios of firms sorted by size and book-to-market 96FFEW, 96FFVW 96
Top 100 market-value individual stocks with annual updates 100 100
Top 500 market-value individual stocks with annual updates 500 500

We use EW (equal-weigthed) and VW (value-weighted) to indicate the corresponding weighting type in the abbreviation.

6. Empirical Results

In this section, we compare the out-of-sample performance of the BN portfolio and the BNvar

portfolio to eight other portfolios from the existing literature (Table 3) across twelve different

datasets (Table 4). All datasets except individual stocks dataset come from K.French’s website8.

The individual stocks datasets come from CRSP. The time period for all datasets is 07/1963 to

07/2015 which shares the same starting point as DeMiguel et al. (2009a). When sorting the market

value of firms, we only include the stocks whose returns are available for the past ten years and

the future one year. For one hundred Fama and French (1992) dataset, because there are missing

values for four risky assets for an extended period, we deleted them, leaving 96 of the original 100

portfolios. The BN portfolio uses one parameter γ, which we set to 0.25 for all datasets and provide

its sensitivity analysis in section 6.5. We use 1000 bootstrap samples in the estimation procedure.

Competing methods. We consider two naive portfolios, the equal-weighted (EW) and the value-

weighted (VW) portfolio, as our benchmarks. Every asset of the EW portfolio is given equal weight

when it is rebalanced. The VW portfolio, on the other hand, assigns the fraction of the market

8 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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capitalization to each asset as its portfolio weight. DeMiguel et al. (2009b) provide a thorough

analysis for both portfolios. The EstMinVar portfolio, which is defined at the beginning of section

1.3, is the classical minimum-variance portfolio formulated in Markowitz (1952).

In addition to these standard benchmarks, we consider three others that add additional con-

straints or penalties to the minimum-variance portfolio optimization problem. The first one is the

shortsale-constrained portfolio (Jagannathan and Ma 2003, section 1), which has a non-negativity

constraint on the portfolio weights. We call it the NoShorting portfolio. The remaining two are

norm-constrained portfolios with parameters set via cross-validation over standard deviation. These

portfolios are detailed in DeMiguel et al. (2009a, section 3.1 and 3.2). The L1-norm constrained

portfolio is labeled as L1CV, and the L2-norm constrained is labeled as L2CV.

Finally, we also include two relatively recent and well-performing benchmarks. The partial

minimum-variance portfolio whose parameter is calibrated by maximizing the portfolio return in

the previous period is labeled as PARR and is detailed in DeMiguel et al. (2009a, section 3.3).

Ledoit and Wolf (2017, section 3.4) introduce the nonlinear shrinkage method which provides an

excellent estimation of the covariance matrix. We call the corresponding portfolio the NonLin

portfolio.

Evaluation method. We report two performance measures, the out-of-sample standard deviation,

and out-of-sample Sharpe ratio. The turnover discussion can be seen in section 6.3. Following the

convention of Brodie et al. (2009), DeMiguel et al. (2009a), and Fan et al. (2012), we use the

“rolling-horizon” procedure, which uses a fixed-length training period to estimate. We denote the

length of training period as n< T , where T is the total number of observations in the dataset. As

in DeMiguel et al. (2009a), we use n= 120 (10-year monthly return data). We construct various

portfolios using the same training data. Then, we roll over to the next month, dropping the earliest

month from the previous training window. This procedure yields T −n portfolio-weight vectors for

each strategy. We denote the weight vector as wi
t for t= n, . . . , T − 1 and for each strategy i.

Following DeMiguel et al. (2009a), we hold the portfolio weight wi
t for one month. This approach

generates the out-of-sample return for time t+ 1: rit+1 = (wi
t)
′rt+1, where rt+1 denotes the asset

returns at time t+ 1. We use the time series of returns and weights to calculate the out-of-sample

standard deviation and the out-of-sample Sharpe ratio:

(σ̂i)2 =
1

T −n− 1

T−1∑
t=n

(
(wi

t)
′rt+1− µ̂i

)2
,

where µ̂i =
1

T −n

T−1∑
t=n

(wi
t)
′rt+1,

ŜR
i
=
µ̂i

σ̂i
.
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We use the bootstrapping methodology proposed in Ledoit and Wolf (2008) to calculate the

statistical significance of the difference in the Sharpe ratio. For the standard deviation, we use

Levene’s test (Levene 1960). This test, with the sample median as an estimation of the location

parameter, has been favored in the literature because of its power and robustness against non-

normality (Brown and Forsythe 1974, Conover et al. 1981, Lim and Loh 1996).

6.1. Comparison of Out-of-Sample Standard Deviation

Table 5 Out-of-Sample Standard Deviation in Percentage

Strategy 6FFEW 6FFVW 10IndEW 10IndVW 25FFEW 25FFVW 48IndEW 48IndVW 96FFEW 96FFVW 100 500

BN 4.473 4.062 3.571 3.604 3.651 3.686 3.640 3.522 3.675 3.607 3.477 3.302
BNvar 5.105 4.423 3.984 3.604 3.956 4.067 3.964 3.540 3.885 3.976 NA NA

EW 5.418 4.916 5.732 4.308 5.348 5.107 5.712 4.900 5.414 5.204 4.624 4.795

VW 5.133 4.453 5.817 4.031 4.814 4.409 5.321 4.347 4.746 4.424 4.388 4.386

EstMinVar 4.474 4.059 3.559 3.609 3.858 3.878 5.984 9.978 7.172 7.077 6.499 NA

NoShorting 4.870 4.377 3.605 3.615 4.614 4.293 3.597 3.694 4.506 4.267 3.482 3.332

L1CV 4.415 4.058 3.720 3.680 3.758 3.790 3.754 3.605 3.902 3.757 3.602 3.487
L2CV 4.468 4.066 3.514 3.574 3.703 3.697 3.697 3.588 3.723 3.651 3.410 3.133
PARR 4.652 4.154 4.518 3.792 4.101 3.981 4.783 4.291 5.244 5.186 5.157 3.546

NonLin 4.469 4.044 3.545 3.583 3.690 3.717 3.662 3.651 3.732 3.666 3.435 3.047

Notes. This table reports the monthly out-of-sample standard deviation as a percentage. The number in bold is the smallest standard deviation

for one dataset. The p-value is calculated between the BN portfolio and other portfolios.

One underline, two underlines, and three underlines indicate that the related p-value is smaller than 0.1, 0.05, and 0.01, respectively.

The NAs of the BNvar portfolio occur because the universe of stocks is changing and there are not enough data to learn the parameter c.

Because the sample covariance is degenerate, there is an NA of the estimated MinVar portfolio portfolio.

Table 5 shows that the BN portfolio achieves the best out-of-sample standard deviation on

five out of the six large9 portfolio datasets and is second-best on the 48IndEW dataset. For all

datasets, the BN portfolio is always significantly10 better than the EW portfolio. Note that the

BNvar portfolio has a higher out-of-sample standard deviation than the BN portfolio precisely

because it is expected to maximize the Sharpe ratio, and not to minimize the standard deviation.

There is a challenge in creating and comparing stock portfolios, due to market issues like mergers,

acquisitions, delistings, IPOs, etc. Ledoit and Wolf (2017) use a procedure that provides a more

stable collection of stocks than random selections (Jagannathan and Ma 2003, DeMiguel et al.

2009a). We use this procedure annually and update our list by choosing the largest 100 or 500

stocks, as measured by their market value11. Updating the stock list selection annually facilitates

our turnover investigations as well (section 6.3). The results for these stock portfolios have to

be interpreted with caution since it can be argued that these are aggregates over not perfectly

9 We use the phrase large datasets when the number of assets, p, is larger than ten.

10 p-value is less than 0.05.

11 The number of asset changes for each update is 2.5 and 50 on average for the 100 and 500 stock dataset, respectively
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comparable stock datasets. The BNvar portfolio doesn’t exist for these two stocks datasets because

of the changing universe of stocks.

On the small datasets, the out-of-sample standard deviation of the EstMinVar portfolio is only

about 1% larger than the best portfolio. This relationship indicates 120 observations are enough

for the small datasets to have the whole eigenspace as the signal space. Thus, the BN portfolio

shouldn’t differ much from the EstMinVar portfolio, and indeed the correlation between their

returns turns out to be more than 0.99. For the same reason, we expect cross-validation to choose

very loose norm constraints for all the norm-constrained methods. Thus, their corresponding portfo-

lios should be essentially the same as EstMinVar. This result is again supported by the extremely

high correlation (about 0.99) between the returns of the norm-constrained portfolios and the Est-

MinVar portfolio. Meanwhile, the NoShorting portfolio’s constraint cannot be relaxed, and as

expected its performance suffers because its constraint interferes with portfolio selection using a

well-estimated covariance matrix. But it does better on some big datasets, where its constraint

helps to avoid the effects of covariance estimation errors.

6.2. Discussion of Out-of-Sample Sharpe Ratio

Table 6 Out-of-Sample Sharpe Ratio

Strategy 6FFEW 6FFVW 10IndEW 10IndVW 25FFEW 25FFVW 48IndEW 48IndVW 96FFEW 96FFVW 100 500

BN 0.398 0.327 0.268 0.291 0.433 0.353 0.284 0.280 0.391 0.351 0.271 0.289

BNvar 0.444 0.345 0.309 0.291 0.485 0.411 0.325 0.274 0.428 0.389 NA NA
EW 0.239 0.236 0.226 0.242 0.240 0.238 0.225 0.222 0.237 0.239 0.202 0.230

VW 0.226 0.226 0.231 0.249 0.234 0.235 0.269 0.249 0.230 0.236 0.195 0.210

EstMinVar 0.398 0.328 0.258 0.298 0.436 0.361 0.108 0.120 0.167 0.169 0.142 NA

NoShorting 0.264 0.247 0.304 0.284 0.261 0.242 0.310 0.257 0.266 0.260 0.250 0.292

L1CV 0.395 0.329 0.290 0.278 0.427 0.345 0.272 0.244 0.399 0.364 0.242 0.259

L2CV 0.398 0.324 0.269 0.295 0.422 0.350 0.271 0.256 0.391 0.359 0.238 0.276

PARR 0.405 0.335 0.369 0.343 0.408 0.360 0.343 0.271 0.248 0.282 0.166 0.345

NonLin 0.393 0.324 0.269 0.295 0.434 0.358 0.267 0.239 0.400 0.362 0.234 0.284

Notes. This table reports the monthly out-of-sample Sharpe ratio. The number in bold is the largest Sharpe ratio for one dataset. If the BNvar

portfolio is available, the p-value is calculated between it and other portfolios. If not, it is between the BN portfolio and others.

One underline, two underlines, and three underlines indicate that the related p-value is smaller than 0.1, 0.05, and 0.01, respectively.

The NAs of the BNvar portfolio occur because the universe of stocks is changing and there are not enough data to learn the parameter c.

Because the sample covariance is degenerate, there is an NA of the estimated MinVar portfolio portfolio.

Table 6 shows that except for dataset 48IndVW, the portfolio that has the highest Sharpe ratio

is not the portfolio that has the lowest standard deviation. The BNvar portfolio has the best out-

of-sample Sharpe ratio for six of ten portfolio datasets, and the dominance on these six datasets

is both statistically and economically significant. These results show that we are indeed able to

increase the out-of-sample Sharpe ratio for most datasets by allowing a higher variance level.
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The upper bound on the out-of-sample variance was critical in achieving this result; without it, a

small change in the estimated variance can translate into substantial increases in the out-of-sample

variance resulting in a drastic decrease of the out-of-sample Sharpe ratio. The PARR portfolio

achieves the best performance for four datasets which is consistent with DeMiguel et al. (2009a).

However, the result here doesn’t consider the transaction costs and taxation which are crucial when

the turnover is high. Thus, in the next subsection, we will address the issue of turnover.

6.3. Robustness of Holding Length: a Discussion of Turnover

The comparison of results with transactions costs mostly serves the purpose of evaluating turnovers

since portfolios with large turnovers get significantly penalized for high transaction costs. To get

a sense of the sensitivities of portfolios’ performance to turnover, we compare the performance

of the earlier monthly-rebalanced portfolios with the annually-rebalanced portfolios (Brodie et al.

2009) which we construct in this subsection. This would allow us to evaluate the effects of turnover

without making the results sensitive to the type and the magnitude of transaction costs. The

primary benefit here is that the performance measure now coincides with the objective, making it

a fair comparison. The secondary benefit is that, from a taxation perspective, holding one year also

reduces the taxation rate from short term to long term. Olivares-Nadal and DeMiguel (2018) show

that by penalizing the turnover in the portfolio construction procedure, it is possible to reduce the

turnover sharply without sacrificing much in performance.

Table 7 Hold for 1 year, Out-of-Sample Standard Deviation in Percentage

Strategy 6FFEW 6FFVW 10IndEW 10IndVW 25FFEW 25FFVW 48IndEW 48IndVW 96FFEW 96FFVW 100 500

BN 4.835 4.549 4.437 3.571 3.930 3.816 4.922 3.553 3.942 3.771 3.536 3.430
BNvar 6.094 5.629 4.127 3.571 4.775 4.834 4.289 3.557 4.550 4.327 NA NA

EW 5.388 4.911 5.695 4.276 5.320 5.109 5.661 4.843 5.372 5.203 4.501 4.633

VW 5.128 4.450 5.788 4.040 4.796 4.404 5.300 4.340 4.740 4.443 4.380 4.379

EstMinVar 4.835 4.606 4.513 3.577 4.130 3.950 27.439 11.896 7.397 7.417 7.232 NA

NoShorting 4.908 4.469 3.628 3.630 4.653 4.353 3.634 3.761 4.597 4.364 3.522 3.382

L1CV 4.860 4.607 3.746 3.642 4.034 3.935 4.372 3.682 4.126 4.006 3.789 3.357
L2CV 4.835 4.613 4.198 3.540 3.922 3.824 4.835 3.664 4.027 3.864 3.523 3.243
PARR 4.985 4.821 4.427 3.738 4.291 4.473 4.833 4.255 5.505 6.292 5.463 3.511

NonLin 4.796 4.561 4.411 3.560 3.970 3.839 4.847 3.705 4.034 3.825 3.573 3.228

Notes. This table reports the monthly out-of-sample standard deviation as a percentage. The number in bold is the smallest standard deviation

for one dataset. The p-value is calculated between the BN portfolio and other portfolios.

One underline, two underlines, and three underlines indicate that the related p-value is smaller than 0.1, 0.05, and 0.01, respectively.

The NAs of the BNvar portfolio occur because the universe of stocks is changing and there are not enough data to learn the parameter c.

Because the sample covariance is degenerate, there is an NA of the estimated MinVar portfolio portfolio.

Compared to Table 5 and 6, Table 7 and 8 show that the performance of the low turnover

portfolios (EW, VW, and NoShorting) remains similar. The previous winners in terms of Sharpe

ratio, namely the BNvar portfolio and the PARR portfolio, see a huge decrease in Sharpe ratio



28

and are no longer the best. This happens because both have high turnovers. The BNvar portfolio,

the NoShorting portfolio, and the L1CV portfolio are the only ones that have a larger Sharpe

ratio than the equal-weighted portfolio across all the portfolio datasets. Right now, there is no

clear winner in terms of Sharpe ratio.

Table 8 Hold for 1 year, Out-of-Sample Sharpe Ratio

Strategy 6FFEW 6FFVW 10IndEW 10IndVW 25FFEW 25FFVW 48IndEW 48IndVW 96FFEW 96FFVW 100 500

BN 0.369 0.302 0.210 0.289 0.415 0.344 0.216 0.299 0.385 0.349 0.269 0.287

BNvar 0.362 0.279 0.247 0.289 0.405 0.344 0.271 0.291 0.370 0.346 NA NA
EW 0.242 0.238 0.235 0.245 0.242 0.239 0.234 0.228 0.239 0.240 0.202 0.231

VW 0.227 0.226 0.234 0.250 0.236 0.237 0.272 0.255 0.233 0.238 0.196 0.211

EstMinVar 0.369 0.300 0.201 0.295 0.412 0.359 −0.027 0.119 0.192 0.177 0.141 NA

NoShorting 0.265 0.243 0.304 0.280 0.261 0.244 0.314 0.256 0.262 0.259 0.251 0.287

L1CV 0.362 0.302 0.260 0.285 0.402 0.345 0.245 0.258 0.395 0.356 0.249 0.271

L2CV 0.367 0.294 0.222 0.296 0.409 0.343 0.214 0.260 0.389 0.357 0.248 0.292

PARR 0.351 0.271 0.223 0.270 0.391 0.318 0.224 0.210 0.272 0.250 0.184 0.273

NonLin 0.368 0.297 0.212 0.292 0.410 0.351 0.206 0.253 0.399 0.364 0.243 0.293

Notes. This table reports the monthly out-of-sample Sharpe ratio. The number in bold is the largest Sharpe ratio for one dataset. If the BNvar

portfolio is available, the p-value is calculated between it and other portfolios. If not, it is between the BN portfolio and others.

One underline, two underlines, and three underlines indicate that the related p-value is smaller than 0.1, 0.05, and 0.01, respectively.

The NAs of the BNvar portfolio occur because the universe of stocks is changing and there are not enough data to learn the parameter c.

Because the sample covariance is degenerate, there are NAs of the estimated MinVar portfolio portfolio.

6.4. Robustness of Training Length

In this subsection, following Brodie et al. (2009), we show the results using the earlier datasets

but with only 60 (5-year monthly data) observations as training data. When the length of rolling

window n is not larger than the number of assets p, the sample covariance matrix is singular12. Even

when n> p, the estimated covariance might be close to singular (i.e., its smallest eigenvalue could

be nearly zero). Especially since the portfolio construction problem assumes stationarity over n

periods, small values of n are common. Hence, assessing the performance of portfolio optimization

in the degenerate case (i.e., n≤ p) is important. By using 60 observations, the problems for datasets

96FFEW, 96FFVW, 100, and 500 necessarily are singular.

From Table 9, the BN portfolio is the best on eight out of ten portfolio datasets, including five

(of six) large portfolio datasets and the second-best for the sixth. Considering Table 5 and Table

9 together, we find that the out-of-sample standard deviation of the BN portfolio is quite robust

to the choice of training length. We can make the same observation regarding Sharpe ratios. In

fact, BNvar has the best Sharpe ratio for eight (of ten) portfolio datasets (Table 10). The natural

12 In the calculation of the sample covariance matrix, the sample mean is subtracted. Thus, when n≤ p, the rank of
the sample covariance matrix is at most n− 1 which is smaller than p.
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Table 9 Out-of-Sample Standard Deviation in Percentage Using 60 Observations

Strategy 6FFEW 6FFVW 10IndEW 10IndVW 25FFEW 25FFVW 48IndEW 48IndVW 96FFEW 96FFVW 100 500

BN 4.268 3.972 3.463 3.563 3.740 3.708 3.741 3.504 3.796 3.707 3.582 3.384
BNvar 4.869 4.470 4.170 3.563 3.938 4.060 4.284 3.698 3.861 3.896 NA NA

EW 5.418 4.916 5.732 4.308 5.348 5.107 5.712 4.900 5.414 5.204 4.624 4.795

VW 5.133 4.453 5.817 4.031 4.814 4.409 5.321 4.347 4.746 4.424 4.388 4.386

EstMinVar 4.292 3.992 3.611 3.719 4.447 4.381 7.489 11.168 NA NA NA NA

NoShorting 4.741 4.296 3.565 3.610 4.518 4.262 3.665 3.615 4.453 4.202 3.553 3.341

L1CV 4.399 4.121 3.800 3.723 3.912 3.942 3.900 4.031 4.286 4.418 3.928 3.462

L2CV 4.278 3.973 3.505 3.635 3.775 3.726 3.836 3.742 4.047 3.955 3.669 3.119
PARR 4.572 4.129 4.286 3.773 4.345 4.167 5.213 5.209 4.549 4.722 4.177 3.538

NonLin 4.278 3.947 3.518 3.616 3.742 3.770 3.607 3.590 3.822 3.782 3.485 3.078

Notes. This table reports the monthly out-of-sample standard deviation as a percentage. The number in bold is the smallest standard deviation

for one dataset. The p-value is calculated between the BN portfolio and other portfolios.

One underline, two underlines, and three underlines indicate that the related p-value is smaller than 0.1, 0.05, and 0.01, respectively.

To allow for a fair comparison with the 120-observation case, we truncate the return to the same period.

The NAs of the BNvar portfolio occur because the universe of stocks is changing and there are not enough data to learn the parameter c.

Because the sample covariance is degenerate, there are NAs of the estimated MinVar portfolio portfolio.

reason for such robust performance is that the BN portfolio and the BNvar portfolio become

more cautious when training length becomes smaller. It turns out that the signal space becomes

smaller and the noise bound, m, becomes larger as fewer observations are available. This happens

because, for any chosen γ, the signal to noise split dictated by definition 1 makes the signal space

smaller leaving us with a larger noise space and a larger noise bound m.

The out-of-sample standard deviations of the L1CV portfolio and L2CV portfolio (Table 9)

increase significantly compared to Table 5. This change increases the margin between the standard

deviations of the BN portfolio and other portfolios. For example, on the dataset 96FFVW, the

standard deviation of the BN portfolio is 6% better than that of the L2CV portfolio and 11% better

than that of the L1CV portfolio. The intuitive reason is that, unlike the bound-noise procedure,

cross-validation is unable to force a more conservative portfolio when there are fewer data. In fact,

in about 36% of the time periods, the penalty parameter (Eq. 1) with 60 observations η60 is smaller

than η120.

6.5. Robustness of Model Parameters

There are two model parameters in the BN portfolio: the number of bootstraps, L, and the cutoff

of amplification ratio, γ. We find that L= 100 generates almost identical result as L= 1000 whose

result is reported in the previous subsections.

Table 11 reports the sensitivity analysis of γ with γ = 0.25 as benchmark case. For the BN

portfolio, the differences between γ = 0.15 or γ = 0.4 with the benchmark case are around 1%. For

the BNvar portfolio, the differences are slightly larger, but most of them are smaller than 2%.
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Table 10 Out-of-Sample Sharpe Ratio Using 60 Observations

Strategy 6FFEW 6FFVW 10IndEW 10IndVW 25FFEW 25FFVW 48IndEW 48IndVW 96FFEW 96FFVW 100 500

BN 0.396 0.309 0.266 0.286 0.390 0.324 0.280 0.256 0.360 0.335 0.266 0.298

BNvar 0.447 0.346 0.338 0.286 0.460 0.397 0.353 0.262 0.396 0.364 NA NA
EW 0.239 0.236 0.226 0.242 0.240 0.238 0.225 0.222 0.237 0.239 0.202 0.230

VW 0.226 0.226 0.231 0.249 0.234 0.235 0.269 0.249 0.230 0.236 0.195 0.210

EstMinVar 0.421 0.324 0.236 0.277 0.406 0.314 0.121 0.081 NA NA NA NA

NoShorting 0.274 0.259 0.304 0.276 0.259 0.244 0.319 0.260 0.268 0.257 0.239 0.281

L1CV 0.422 0.327 0.314 0.264 0.402 0.310 0.299 0.236 0.295 0.295 0.185 0.263

L2CV 0.423 0.315 0.257 0.282 0.394 0.324 0.277 0.225 0.327 0.312 0.208 0.268

PARR 0.399 0.328 0.421 0.347 0.389 0.329 0.308 0.205 0.325 0.321 0.236 0.314

NonLin 0.410 0.320 0.242 0.284 0.416 0.330 0.277 0.225 0.361 0.330 0.224 0.275

Notes. This table reports the monthly out-of-sample Sharpe ratio. The number in bold is the largest Sharpe ratio for one dataset. If the BNvar

portfolio is available, the p-value is calculated between it and other portfolios. If not, it is between the BN portfolio and others.

One underline, two underlines, and three underlines indicate that the related p-value is smaller than 0.1, 0.05, and 0.01, respectively.

To allow for a fair comparison with the 120-observation case, we truncate the return to the same period.

The NAs of the BNvar portfolio occur because the universe of stocks is changing and there are not enough data to learn the parameter c.

Because the sample covariance is degenerate, there is an NA of the estimated MinVar portfolio portfolio.

Table 11 Sensitivity Analysis of γ: γ = 0.25 as the Benchmark

Strategy 6FFEW 6FFVW 10IndEW 10IndVW 25FFEW 25FFVW 48IndEW 48IndVW 96FFEW 96FFVW 100 500

Out-of-Sample Standard Deviation, Using 120 Observations

BN γ = 0.15 -1.08% -0.08% 0.28% -1.20% 0.87% 0.47% 1.00% 2.16% -0.18% -0.57% -1.09% 0.41%
BN γ = 0.40 0.01% -0.07% -0.44% 0.15% -0.36% 0.18% -0.70% 1.26% 1.04% 0.60% 1.01% -1.03%

Out-of-Sample Standard Deviation, Using 60 Observations

BN γ = 0.15 1.63% -0.12% 0.33% -0.03% 3.26% -0.07% 0.26% 0.63% -0.19% -0.25% 0.06% 1.68%
BN γ = 0.40 0.65% 0.58% 0.96% 1.19% 0.33% 0.09% -0.36% 1.52% -0.65% 0.03% 0.12% -0.41%

Out-of-Sample Sharpe Ratio, Using 120 Observations

BNvar γ = 0.15 2.19% -0.35% -0.63% 0.13% -1.54% -0.86% -2.92% 0.68% 0.13% 0.57% NA NA
BNvar γ = 0.40 -0.21% 0.42% -0.83% 2.67% -0.48% 1.34% 0.61% 2.39% -2.49% 0.87% NA NA

Out-of-Sample Sharpe Ratio, Using 60 Observations

BNvar γ = 0.15 -1.03% -2.29% -0.80% 0.80% -1.63% -3.29% 1.35% -1.71% -0.09% -1.44% NA NA
BNvar γ = 0.40 0.37% -0.92% 1.10% -0.25% -2.46% 0.09% 1.08% 0.37% -3.31% -6.16% NA NA

The NAs of the BNvar portfolio occur because the universe of stocks is changing and there are not enough data to learn the parameter c.

7. Concluding Remarks

The essence of the paper lies in recognizing that the primary problem in constructing well-

performing portfolios does not come from estimation alone. Errors in the estimation are amplified

by the optimization step, resulting in even unbiased small errors causing biased and unacceptable

errors in portfolio weights. The usual route to fix this is by either trying to improve estimation

or fixing the optimization step in an arbitrary manner that happens to reduce the impact of esti-

mation errors. Instead of either of these, we disentangle the covariance matrix into two parts. The

part that behaves well in the optimization step, we call the signal part and the part that does not,

we call the noise part. We detailed and discussed the way to split, how we can construct portfolios

from each of these, why the noise is useful, how to combine the two portfolios, relevant mathemat-

ical justifications, connections to other methods, extension that allow constructing mean-variance
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portfolios and finally, evidence of superior performance using both the simulated and the real-world

data.

Regarding next steps, there are several aspects that could benefit from further investigation.

The signal/noise split and the related optimal portfolios rely heavily on the investor having no

additional constraint. Extending the splitting idea in the context of optimal portfolios with addi-

tional constraints is very valuable, though challenging. Pushing the ideas in the paper, more along

the mean-variance direction would be another good direction for future work. The method we

have described in this paper for constructing mean-variance portfolio does not directly deal with

uncertainty in estimates of the mean returns. Another useful extension would be to allow the user

to specify shocks or black swan events, and construct a portfolio that could be robust against such

events. Finally, regarding extending the core idea, though we consider a hard split between signal

and noise eigenvectors, there is a continuum. A careful characterization of every eigenvector along

this continuum may lead to better performance. However, we believe that this would only have a

second-order improvement. Similarly, we computed the upper-bound parameter M via a median of

bootstrap samples. A more careful analysis could use the full distribution of M derived from these

samples.

References

Black F, Litterman R (1992) Global portfolio optimization. Financial Analysts Journal 48(5):28–43.

Brodie J, Daubechies I, De Mol C, Giannone D, Loris I (2009) Sparse and stable Markowitz portfolios.

Proceedings of the National Academy of Sciences 106(30):12267–12272.

Brown MB, Forsythe AB (1974) The ANOVA and multiple comparisons for data with heterogeneous vari-

ances. Biometrics 719–724.

Chakrabarti D, Faloutsos C (2006) Graph mining: Laws, generators, and algorithms. ACM Computing Sur-

veys (CSUR) 38(1):2.

Chopra VK, Ziemba WT (1993) The effect of errors in means, variances, and covariances on optimal portfolio

choice. The Journal of Portfolio Management 19(2):249–257.

Conover WJ, Johnson ME, Johnson MM (1981) A comparative study of tests for homogeneity of variances,

with applications to the outer continental shelf bidding data. Technometrics 23(4):351–361.

DeMiguel V, Garlappi L, Nogales FJ, Uppal R (2009a) A generalized approach to portfolio optimization:

Improving performance by constraining portfolio norms. Management Science 55(5):798–812.

DeMiguel V, Garlappi L, Uppal R (2009b) Optimal versus näıve diversification: How inefficient is the 1/n
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Appendix A: Absolute Versus Relative Differences in Eigenvalues

Lemma 2.2 showed that the bottom eigenvectors could not be well estimated because they are not

well separated (i.e., the absolute differences between their eigenvalues are small). This observation

might seem to suggest that the corresponding eigenvectors are almost interchangeable and that

these errors have a limited effect on the performance of the aggressive noise-only portfolio. However,

this intuition is false, because the optimal portfolio depends on the relative differences between

eigenvalues, which can still be large. We demonstrate this understanding with some examples.

Example 1. Suppose the eigenvalues vary as a (heavy-tailed) power-law, with λi = ξ · βp−i−1 for

some ξ > 0 and β > 1. The absolute difference between consecutive eigenvalues is λi − λi+1 =

ξ ·βp−i−1 · (1−1/β), which decreases with increasing i and is at most ξ for the last two eigenvalues.

Thus, with a large enough β and a small enough ξ, every consecutive pair of eigenvectors is well

separated, except for the bottom two eigenvectors. Under these conditions, for some number of

samples n, we can expect the top p− 2 eigenvectors to be well estimated, and the last two to be

poorly estimated. Let us also assume for simplicity that v′p−11 = v′p1 = ρ 6= 0.

In general, the bottom eigenvalues are poorly estimated, as in Figure 1. However, let us consider

the best-case scenario for estimation: Suppose that the top p− 2 eigenvectors are estimated per-

fectly, as are all eigenvalues. Let us take Ŝ to be the span of the first p− 2 sample eigenvectors.

Because these eigenvectors are perfectly estimated, we have Ŝ = S. Let N̂ and N denote the spans

of the last two sample eigenvectors and true eigenvectors, respectively. Note that N̂ =N because

each is simply the space orthogonal to Ŝ = S. Thus, the only error is in the orientation of the

bottom two eigenvectors v̂p−1 and v̂p.

In other words,

v̂p−1 = vp−1 · cosθ−vp · sinθ v̂p = vp−1 · sinθ+vp · cosθ

for some random angle θ. Because we can always reverse the direction of these four eigenvectors

without loss of generality, we confine θ to [0, π]. Then, we can show

RV (w∗N) =
ξ

ρ2 · (β+ 1)
(18)

RV (ŵ∗N)≈EV (ŵ∗N) ·
(
1 + (β− 1) · (sinθ)2

)
for β� 1 (19)

RV (ŵ∗N)≈RV (w∗N) · β · (sinθ)2

(cosθ+ sinθ)2
for β� 1. (20)
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The approximations hold when θ 6= 3π
4

, which is true with probability 1. Thus, the aggressive

noise-only portfolio is considered to be a far better portfolio than it is actually is (EV (ŵ∗N)�

RV (ŵ∗N)) and performs poorer than the optimal portfolio from the noise space (RV (ŵ∗N) �

RV (w∗N)). �

Recall that the individual bottom eigenvectors might be poorly estimated, but the span of these

eigenvectors is well estimated (i.e., space N̂ itself is well estimated). This reasoning is simply

that N̂ is the space that is orthogonal to Ŝ, which is well estimated. Thus, we can expect good

performance from a portfolio that depends only on space N̂ while being invariant to the precise

configuration of the eigenvectors in N̂ . The following example illustrates the case.

Example 2 (An extension of Example 1). From Eq. 17, we know that the projected equal-

weighted portfolio on the noise space weights the bottom two eigenvectors as follows

wPEW
N =

∑p

j=p−1(v̂′j1)v̂j∑p

j=p−1(v̂′j1)2
.

Note that this definition does not refer to eigenvalues at all. One property of this portfolio is that

it is invariant to θ:

wPEW
N =

v̂′p−11

(v̂′p−11)2 + (v̂′p1)2
v̂p−1 +

v̂′p1

(v̂′p−11)2 + (v̂′p1)2
v̂p

=
ρ(cosθ− sinθ)

ρ2(cosθ− sinθ)2 + ρ2(cosθ+ sinθ)2
(vp−1 · cosθ−vp · sinθ)

+
ρ(cosθ+ sinθ)

ρ2(cosθ− sinθ)2 + ρ2(cosθ+ sinθ)2
(vp−1 · sinθ+vp · cosθ)

=
1

2ρ

(
vp−1 · (cos2 θ+ sin2 θ) +vp · (sin2 θ+ cos2 θ)

)
=

1

2ρ
(vp−1 +vp)

=
v′p−11

(v′p−11)2 + (v′p1)2
vp−1 +

v′p1

(v′p−11)2 + (v′p1)2
vp

Using Eq. 18, we find that

RV (wPEW
N ) =

1

4ρ2

(
ξ+

ξ

β

)
≈RV (w∗N) · β

4
for β� 1.

Again, the realized variance of wPEW
N is invariant to θ. We find that wPEW

N is comparable to the

aggressive noise-only portfolio (Eq. 20) in terms of realized variance, and that it can, in fact, be

better than ŵ∗N when π
4
≤ θ≤ 3π

4
. This finding makes sense because π

4
≤ θ≤ 3π

4
means that v̂p−1 is

closer to vp than vp−1. �
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Appendix B: Proofs

Proposition 2.1(Eigenvalue Concentration)

Proof. By Weyl’s inequality, |λi − λ̂i| ≤ ‖Σ − Σ̂n‖op. Dividing both sides by λi proves the

proposition. �

Lemma 5.1 (Portfolio Decomposition)

Proof. Using the Lagrangian multiplier method, we can easily find:

w∗ =
Σ−11

1′Σ−11
=

∑
i

v′i1
λi
vi∑

i

(v′i1)2

λi

,

where we use Σ−1 =
∑

i(1/λi)viv
′
i. Similarly, we have

w∗S =

∑k

j=1

v′j1

λj
vj∑k

j=1

(v′j1)2

λj

, RV (w∗S) =
1∑k

j=1

(v′j1)2

λj

,
1

RV (w∗S)
w∗S =

k∑
j=1

v′j1

λj
. (21)

Repeat this process for w∗N , and some algebraic manipulations yield Eq. 2. �

Proposition 3.1(Bounding Realized Variance of Any Portfolio From the Noise Space)

Proof. Because the noise space N̂ is spanned by v̂k+1, . . . , v̂p, any vector w from N̂ can be

presented as a linear combination of this basis, namely,

w= (v̂k+1, . . . , v̂p)

a1

...
an

= N̂a.

From the orthonormality of eigenvectors, we have

||w||22 =w′w= a′N̂ ′N̂a= a′a= ||a||22. (22)

Meanwhile, the definition of the noise bound, m, guarantees that the following inequality holds

for any vector b∈Rn such that ||b||2 = 1,

b′
(
N̂ ′(Σ− Σ̂)N̂

)
b≤m. (23)

Plugging a/||a||2 into the previous inequality, we have(
a

||a||2

)′ (
N̂ ′(Σ− Σ̂)N̂

)( a

||a||2

)
≤m.

Rearranging, we get

(N̂a)′Σ(N̂a)≤ (N̂a)′Σ̂(N̂a) +m||a||22.

Substituting w= N̂a and ||w||22 = ||a||22 into the preceding inequality proves the proposition. �
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Lemma 5.1 (Projection Portfolios)

Proof. Because w ∈ N̂ , we have w= N̂a. Thus,

max
Ψ∈U

w′Ψw= max
Ψ∈U

a′N̂ ′ΨN̂a= ba′In−k+1a.

The last equality holds because of the definition of the uncertainty set. Then Eq. 15 becomes

min
a

ba′In−k+1a,

subject to a′(N̂ ′1) = 1.

Its solution is

a∗ =
N̂ ′1

1′N̂N̂ ′1
,

which implies that the solution to the robust optimization is

N̂a∗ =
N̂N̂ ′1

1′N̂N̂ ′1
.

From Eq. 12, then, the projection portfolio of the equal-weighted portfolio on N̂ is

wPEW
N =

N̂N̂ ′(1/p)

(1/p)′N̂N̂ ′1
=

N̂N̂ ′1

1′N̂N̂ ′1
= N̂a∗. �


