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ABSTRACT

A classifier that is accurate on average may still underperform for
“sensitive” subsets of people. Such subsets could be based on race,
gender, age, etc. The goal of a fair classifier is to perform well for all
sensitive subsets. But often, the sensitive subsets are not known a
priori. So we may want the classifier to perform well on all subsets
that are likely to be sensitive. We propose an iterative algorithm
called Sure for this problem. In each iteration, Sure identifies high-
risk zones in feature space where the risk of unfair classification is
statistically significant. By changing the loss function’s weights for
points from these zones, Sure builds a fair classifier. The emphasis
on statistical significance makes Sure robust to noise. The high-
risk zones are intuitive and interpretable. Every step of our method
is explainable in terms of significance tests. Finally, Sure is fast
and parameter-free. Experiments on both simulated and real-world
datasets show that Sure is competitive with the state-of-the-art.
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1 INTRODUCTION

We train classifiers by optimizing a chosen loss function over the
training data. But, a lower overall loss may hide poor performance
over some “sensitive” subsets of the data. For instance, a classi-
fier trained to predict recidivism may underperform for African-
Americans as compared to Whites or Asians. In other words, this
classifier is unfair for subgroups based on race. More generally, we
may have several sensitive attributes such as race, gender, age, etc.
A classifier is unfair if it performs poorly for any attribute combi-
nation (say, African-American males with ages between 18
and 30). By minimizing the overall loss, we may inadvertently
create an unfair classifier.
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Recently, there has been a surge of interest in designing fair clas-
sifiers. One line of work looks at quantifying fairness via different
metrics. We can only achieve fairness for somemetrics. For instance,
it is impossible to have equal false positive and false negative rates
for all sensitive groups, except in special cases [10, 24]. Other works
propose algorithms to improve the fairness of classifiers. These im-
pose fairness via constraints or regularizers in the classifier’s loss
function. By optimizing such a modified loss function, we hope to
get a classifier that is both fair and accurate.

However, to apply the above algorithms, we must know the sen-
sitive features such as race, gender, and age. In practice, this may
not be possible for several reasons. People may refuse to provide
this information. The sensitive features could be censored for pri-
vacy reasons. The feature values may be noisy or untrustworthy
even when they are available. An example is self-reported sensitive
attributes, such as in social media profiles. Finally, predefined cate-
gories may not accurately reflect social reality. For example, the US
Census Bureau identifies aWhite person as a “person having origins
in any of the original peoples of Europe, the Middle East, or North
Africa” [5]. But society may make finer distinctions, which are lost
if we assumeWhites to be a homogeneous group. Hence, we cannot
eliminate unfairness by only considering predefined categories. We
need fair classifiers where the sensitive attributes are unknown.

1.1 Overview of Related Approaches

Several recent algorithms aim to solve this “fairness without demo-
graphics” problem. They optimize a weighted loss function with
adaptive weights. In each iteration, they select a subset of the train-
ing data where the classification might be unfair. For the next
iteration, they increase the weights of these data points in the loss
function. In this way, they reduce the chance of unfairness in the
resulting classifier.

Differentmethods consider different subsets andweighting schemes.
The subsets can, for example, be the set of currently misclassified
points [12, 19, 33]. But many misclassified points may be noisy
points. In such cases, increasing the weight of misclassified points
may hurt performance. Another approach is to use an adversary to
identify the unfair subset of points. For example, the adversary can
be another classifier. This classifier separates misclassified from
correctly classified points in the current iteration [27]. But the pat-
tern of unfairness may change between datasets and even between
iterations. Hence, adversarial classifiers can struggle to identify all
unfair subgroups, as we show empirically.

Once we identify the unfair subset, we must update their weights
for the next iteration. One approach is to optimize for worst-case
performance among a class of subsets [8, 33]. Such weight update
schemes guarantee that after enough iterations, no subset in the
class has high unfairness. However, such methods assume that we
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(a) Dataset (b) Intermediate stages with high-risk zones identified by Sure

Figure 1: Example of Sure: (a) The circles represent minority subgroups with special class patterns (red vs. blue), hidden within

a majority following a simple pattern. The classifier may underperform for the subgroups. (b) In each iteration, yellow (black)

points represent correctly (incorrectly) classified points. Sure finds a box where the misclassification rate is too high.

can approximately optimize any weighted loss. This assumption
may not hold for general neural networks [37].

1.2 Main Idea

We propose a new algorithm, called Sure (Significant Unfairness
Risk Elimination), for fair classification when the sensitive attributes
are unknown. Like prior work, Sureminimizes a loss function with
adaptive weights. Next, we outline the main ideas of Sure and how
it differs from existing methods.

In each iteration, Sure selects one high-risk box in feature

space. The box identifies a coherent region where the classifier’s
error rate is too high. By focusing on this box in the next iteration(s),
the optimizer can better identify local patterns. So, the resulting
classifier is no longer unfair in this region of the feature space. In
future iterations, Sure can select other boxes. Thus, over several
iterations, Sure can fix complex patterns of unfairness.

Sure only selects boxes when the risk of unfairness is

statistically significant. In other words, we are “sure” about un-
fairness in the box. Thus, Sure avoids the problem of seeing un-
fairness in randomness [7]. If no statistically significant high-risk
zones exist, Sure does not update weights. Hence, in the absence
of unfairness, it automatically reduces to a vanilla classifier.

Unlike existing methods, Sure does not try to cover all mis-
classified points in every iteration. Focusing on one box at a time
helps Sure avoid noise among the misclassified points. Also, Sure
increases the weights of all points within a box, not just the mis-
classified ones. The new weights act as a lens on one region of the
feature space, helping the optimizer identify local patterns.

Example 1. Figure 1a shows a simulated dataset of points in 2D

feature space. Each point represents a person and has a class label (red

or blue). Most points follow the baseline pattern, with a diagonal split

between the reds and blues. There are also four minority subgroups,

marked by circles, where the pattern differs from the baseline.

Figure 1b shows several intermediate iterations of Sure. Each plot

shows the correctly classified points in yellow and the misclassified

ones in black. Early on, the classifier learns the baseline pattern. The

onlymisclassified baseline points are randomnoise. However, this base-

line noise outnumbers the misclassified points within the subgroups.

So, the optimizer does not learn the patterns within the subgroups

(circles). Hence, the subgroups are at risk of unfair classification.

To get a fair classifier, Sure identifies high-risk boxes in each

iteration. The misclassification rate within the boxes is significantly

higher than the overall rate. Most points within a box come from one

(sometimes two) subgroups. The noisy baseline points do not affect

the box construction.

After each iteration, Sure increases the weights of the points in

that iteration’s box. This pushes the optimizer to learn the subgroup

patterns. So, misclassification within the subgroups is much reduced

in the later iterations. In this way, Sure achieves fair classification.

Our contributions: To summarize, Sure builds a fair classifier
without knowing the sensitive attributes. To do this, it iteratively
identifies boxes in feature space where the classifier’s loss is higher
than average, and the difference is statistically significant. Our
algorithm has several useful properties:
• Interpretability: Sure’s boxes can be easily communicated,
e.g., “African-American males between 15-25 years old”. In fact,
this is the usual way we identify subgroups facing unfairness.
• Explainability of each step: Sure finds boxes via repeated
tests of statistical significance. Thus, all of the choices made
by Sure in every step can be explained and audited. Note
that this is a stronger condition than the explainability of
the final classifier.
• Robustness to noise: Sure only selects boxes where the
misclassification rate is significantly higher than the overall
rate. Furthermore, it restricts the search space to boxes rather
than more complex patterns. Both of these steps provide
robustness against noise.
• Fast: The time complexity of each iteration of Sure is linear
in the number of data points.
• Parameter-free: Sure has only one interpretable parameter.
We fix it to a default value for all experiments. There is no
need for cross-validation and hyperparameter tuning.

The rest of the paper is organized as follows. We discuss the
details of Sure in Section 2. We empirically validate our approach
in Section 3. We survey related work in Section 4 and conclude in
Section 5. The Pytorch code for Sure is available at https://github.

com/deepayan12/ sure.

2 PROPOSEDWORK

Suppose we have a dataset where each data point represents one
person. Each person is associated with a race, gender, income
level, and so on (the “sensitive” attributes). If we know the sen-
sitive attributes, we can create the set of all sensitive subgroups
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𝑆𝑠𝑒𝑛 ⊂ 2𝑆 . In other words, 𝑆𝑠𝑒𝑛 contains all subsets of the form
“race=African-American and gender=female”. Given a classi-
fier, we can measure its performance on every subset. A fair classi-
fier is one where all subsets in 𝑆𝑠𝑒𝑛 have similar performance. We
want a fair classifier where the performance on the worst subset in
𝑆𝑠𝑒𝑛 is as high as possible.

Now, in our problem setting, the sensitive attributes are hidden.
So, we do not know 𝑆𝑠𝑒𝑛 . Hence, to ensure fairness, we consider a
broad set of subsets 𝑆𝑏𝑟𝑑 that plausibly covers 𝑆𝑠𝑒𝑛 , i.e., 𝑆𝑠𝑒𝑛 ⊆ 𝑆𝑏𝑟𝑑 .
We train the classifier to maximize the worst-case performance
over 𝑆𝑏𝑟𝑑 . This ensures that all sensitive subgroups also achieve
this performance threshold.

For this approach, we must answer two questions: (a) what is a
reasonable choice for 𝑆𝑏𝑟𝑑 , and (b) how can we optimize worst-case
performance over 𝑆𝑏𝑟𝑑?

2.1 Choice of 𝑆𝑏𝑟𝑑

The set 𝑆𝑏𝑟𝑑 should be large enough to plausibly contain 𝑆𝑠𝑒𝑛 . But
if it is too large, then optimizing for the worst-case over 𝑆𝑏𝑟𝑑 may
yield over-conservative classifiers. For example, suppose we chose
𝑆𝑏𝑟𝑑 to be the set of all subsets 𝑆𝑏𝑟𝑑 = 2𝑆 . Clearly, we have 𝑆𝑠𝑒𝑛 ⊂
𝑆𝑏𝑟𝑑 . But for any classifier, the worst-case subset from 𝑆𝑏𝑟𝑑 consists
of all misclassified points. So we can get a positive worst-case
accuracy over 𝑆𝑏𝑟𝑑 only if all points are correctly classified, which
is unlikely.

Hence, our chosen 𝑆𝑏𝑟𝑑 should have certain characteristics:

• Breadth/conservativeness tradeoff: Although we opti-
mize for the worst subset in 𝑆𝑏𝑟𝑑 , we also care about the
average performance over the entire dataset. Hence, 𝑆𝑏𝑟𝑑
should be broad enough without leading to too-conservative
classifiers.
• Tractable: 𝑆𝑏𝑟𝑑 should allow for the tractable optimization
of worst-case performance.
• Interpretable: The subsets in 𝑆𝑏𝑟𝑑 should be easily inter-
pretable to a disinterested observer. In other words, these
subsets should match our intuition about groups of people
at risk of unfair classification results.

These conditions ensure that the fair classifier is easy to compute
and also easy to explain.

We choose 𝑆𝑏𝑟𝑑 to be the cross-product of all values/intervals for
all features. We first convert all categorical features into numeric
features via one-hot encoding. Now, for a numeric feature 𝑖 , let
G𝑖 be the set of all intervals over the support of 𝑖 . Then, we have
𝑆𝑏𝑟𝑑 = {(𝑠1, 𝑠2, . . . , 𝑠𝑑 ) | 𝑠𝑖 ∈ G𝑖 }, where𝑑 is the number of features.

Visually, each element of 𝑆𝑏𝑟𝑑 represents a box in feature space,
and includes all data points within that box. Using boxes, we can
select people of a particular race, or (race, gender), or (gender, age
range), if we know these attributes. But since the sensitive features
are hidden, we use all features in 𝑆𝑏𝑟𝑑 . For instance, some features in
the dataset could be correlated with sensitive attributes. By building
boxes from all features, we cover the correlated features, and hence
𝑆𝑏𝑟𝑑 plausibly covers 𝑆𝑠𝑒𝑛 . Figure 1 shows examples of boxes picked
by Sure.

2.2 Optimizing the worst-case performance

Sure builds a fair classifier iteratively. In each iteration, it runs an
optimizer to minimize a weighted loss for several epochs. Sure
then inspects the results, resets the weights, and repeats this pro-
cess. The new weights should be such that in the next iteration,
the optimizer focuses on the high-risk zone. This is the set of
points where the risk of unfair classification is the greatest. For
example, the box “race=African-American” could be a high-risk
zone if the classifier’s accuracy for African-Americans is much
worse than for Whites or Asians. More generally, the current clas-
sifier could be unfair for a combination of sensitive features (e.g.,
race=African-America and gender=male and age in [15, 25]).
Since we do not know the sensitive features, we must consider all
subsets in 𝑆𝑏𝑟𝑑 . Hence, in each iteration, the key question is:

Which subset of 𝑆𝑏𝑟𝑑 is the high-risk zone?
Since 𝑆𝑏𝑟𝑑 represents the set of boxes in feature space, we seek

a high-risk box. We have two desiderata for the algorithm:
• Explainability for every step: We seek a box where the
classifier’s performance is significantly worse than average.
Otherwise, the algorithm would be “fooled by randomness”
and see unfairness in random variation [7]. The algorithm
should be able to justify each step of its box choice via sig-
nificance tests.
• Speed: Since we search for high-risk zones every iteration,
the algorithm needs to be fast. Hence, an approximate but
quick method is preferable to an exact computation of the
worst-case box in 𝑆𝑏𝑟𝑑 . Any approximation errors can be
repaired in future iterations.

To ease the exposition of Sure, we first consider the case where
we have only one feature. Then we generalize to the case with
multiple features. Also, we focus on the worst-case misclassification
rate over 𝑆𝑏𝑟𝑑 as our performance measure. Our framework can be
generalized to other measures via the appropriate modifications.
Special case (only one feature): A box in one dimension is just an
interval. Algorithm 1 identifies a high-risk interval for one feature.
It takes as input the set of points currently classified correctly (𝑋✓)
and incorrectly (𝑋×). It splits all the points 𝑋✓ ∪ 𝑋× into bins. We
choose the number of bins so that each bin has ≥ 𝑛𝑚𝑖𝑛 points
from both sets. The bin boundaries are such that all bins have an
equal number of points from a balanced subset of 𝑋✓ ∪ 𝑋× . These
conditions ensure that all bins are comparable and contain enough
points to detect statistically significant deviations.

Then, we find the fractions of points from 𝑋✓ and 𝑋× in each
bin 𝑣 ; call these 𝑝✓ (𝑣) and 𝑝× (𝑣). The classifier’s performance on
a bin is measured by Δ(𝑣) := 𝑝× (𝑣) − 𝑝✓ (𝑣). If the classifier is
entirely fair across all feature values, then Δ(𝑣) = 0.‘ A value of
Δ(𝑣) > 0 may indicate underperformance in bin 𝑣 , with larger
values implying greater risk. However, Δ(𝑣) > 0 can also occur due
to random chance. Hence, for robustness, we only consider bins
where Δ(𝑣) is statistically significantly greater than 0:

Δ(𝑣) ≥ 𝛼 ·

√︄
𝑝× (𝑣) (1 − 𝑝× (𝑣))

|𝑋× |
+ 𝑝✓ (𝑣) (1 − 𝑝✓ (𝑣))

|𝑋✓ |
, (1)

where 𝛼 reflects the desired significance level for this standard
hypothesis test. We set 𝛼 = 2 in all our experiments.
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Figure 2: Overview of Sure

Using Eq. 1, we can identify the set𝑇 of bins where the classifier’s
performance is too poor to be explained by randomness. We find the
bin 𝑣★ ∈ 𝑇 with the largest Δ(𝑣). This bin represents an interval
where the classifier’s performance is most unfair. But the bins
surrounding 𝑣★ could also belong to 𝑇 . In such cases, we merge 𝑣★
with other contiguous bins in𝑇 to form a larger interval𝑉 , and use
𝑉 as Sure’s high-risk zone.

Note that the interval 𝑉 represents a tradeoff between the size
and unfairness. The bin 𝑣★ is the most unfair, but it represents a
small interval. At the other extreme, we could use the union of
all bins in 𝑇 . But this might give us disconnected intervals, which
are not allowable subsets under 𝑆𝑏𝑟𝑑 . The interval 𝑉 is both large
enough and faces significant risk of unfairness. Hence, we choose
𝑉 as the high-risk zone.
General case (multiple features): Here, we run Algorithm 1
over each feature and pick the feature 𝑓 ★ with the greatest total
unfairness

∑
𝑣∈𝑉 Δ(𝑣). Now, we restrict our training points to those

within the interval 𝑉 of feature 𝑓 ★. Then, we iterate the process.
This results in a sequence of intervals over several features. The
cross-product of those intervals is the high-risk box. Algorithm 2
shows the details.

Sure (Algorithm 3) iterates over Algorithm 2 to identify high-
risk boxes. Each time, it increases the weights of points within the
box and then normalizes all weights. The new weights force the
weighted-loss minimizer to focus on potentially unfair zones. Note
that misclassifications due to noise are unlikely to form high-risk
boxes. So, the weight normalization step effectively down-weights
noisy points. Thus, the classifier focuses on statistically significant
errors while avoiding noisy misclassifications.
Computational complexity: Algorithm 1 only scans the 𝑛 data
points along one feature dimension and requires 𝑂 (𝑛) time. Al-
gorithm 2 iteratively calls Algorithm 1 for each of the 𝑑 available
features. There can be at most 𝑑 iterations, so it needs at most
𝑂 (𝑛𝑑2) time. However, we usually need ≤ 3 iterations in practice.

Remark 1. Sure uses a simple reweighting scheme (step 8 of Algo-
rithm 3). Alternative reweighting schemes can also yield optimality

guarantees [8]. But they are more complex and make strong assump-

tions. For instance, they assume that the optimizer can approximately

minimize any weighted loss. But large enough weights may lead a

neural network to memorize the data, which may be undesirable [37].

Algorithm 1 Find best interval in one dimension

1: function Scan(𝑋✓, 𝑋×, 𝑛𝑚𝑖𝑛) ⊲ 𝑋✓ and 𝑋× are 1D arrays
2: 𝑏 ← min( |𝑋✓ |, |𝑋× |)/𝑛𝑚𝑖𝑛 ⊲ Number of bins
3: 𝑋𝑏𝑎𝑙 ← balanced subset of 𝑋✓ ∪ 𝑋×
4: 𝐵 ← 𝑏 equal-height bins from 𝑋𝑏𝑎𝑙
5: 𝑝✓ (𝑣), 𝑝× (𝑣) ← normalized histogram of 𝑋✓ and 𝑋× for 𝑣 ∈ 𝐵
6: Δ(𝑣) ← 𝑝× (𝑣) − 𝑝✓ (𝑣)
7: 𝑣★← argmax𝑣∈𝐵 Δ(𝑣) ⊲ Most significant bin
8: 𝑇 ← {𝑣 ∈ 𝐵 | 𝑣 is high-risk } ⊲ using Eq. 1
9: if 𝑣★ ∉ 𝑇 then

10: return (𝜙, 0, 0)
11: else

12: 𝑉 ← merge bins in 𝑇 surrounding bin 𝑣★

13: ⊲ 𝑉 represents the high-risk interval
14: return (𝑉 ,∑𝑣∈𝑉 Δ(𝑣),∑𝑣∈𝑇 Δ(𝑣))
15: end if

16: end function

Algorithm 2 Find high-risk box in multiple dimensions

1: function FindBox(𝑆✓, 𝑆×, 𝑛𝑚𝑖𝑛)
2: ⊲ 𝑆✓ and 𝑆× are correctly/incorrectly classified points
3: 𝑍 ← 𝜙

4: repeat

5: for all features 𝑓 ∉ 𝑍 do

6: 𝑋✓, 𝑋× ← projection of 𝑆✓, 𝑆× on 𝑓

7: 𝑉 (𝑓 ),Δ𝑔𝑟𝑝 (𝑓 ),Δ𝑡𝑜𝑡 (𝑓 ) ← Scan(𝑋✓, 𝑋×, 𝑛𝑚𝑖𝑛)
8: end for

9: 𝑓 ★← argmax𝑓 Δ𝑔𝑟𝑝 (𝑓 )
10: 𝑍 ← 𝑍 ∪ {𝑓 ★}
11: Remove points in 𝑆✓, 𝑆× where the feature value for

𝑓 ★ falls outside the interval 𝑉 (𝑓 ★)
12: until 𝑓 ★ = 𝜙 or Δ𝑡𝑜𝑡 (𝑓 ★) decreases from previous iteration
13: return

⊗
𝑓 ★∈𝑍 𝑉 (𝑓 ★) ⊲ box as cross-product of intervals

14: end function

Algorithm 3 Overall algorithm of Sure

1: function Sure(𝑆, 𝑛𝑚𝑖𝑛) ⊲ 𝑆=training data
2: 𝑤𝑖 ← 1/|𝑆 | for all 𝑖 ∈ 𝑆
3: Define loss(𝒘) = ∑

𝑖∈𝑆 𝑤𝑖 · loss(𝑆𝑖 )
4: repeat

5: Minimize loss(𝒘) via gradient steps for a few epochs
6: 𝑆✓, 𝑆× ← correctly/incorrectly classified points in 𝑆

7: 𝑍 ← FindBox(𝑆✓, 𝑆×, 𝑛𝑚𝑖𝑛)
8: 𝑤𝑖 ← (𝑤𝑖 + 1𝑖∈𝑍 )/2 for all 𝑖 ∈ 𝑆 ⊲ Re-weight points
9: 𝑤𝑖 ← 𝑤𝑖/

∑
𝑗 𝑤 𝑗 ⊲ Normalize weights

10: until convergence
11: end function

Hence, we chose a more straightforward and interpretable reweighting

method for Sure.

Remark 2. We can interpret the significance tests of Sure as re-

peated hypothesis tests. The appendix presents an analysis of a sim-

plified version of Sure. We note that one can increase 𝛼 as the number
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of features grows to compensate for repeated tests. But we keep 𝛼 = 2
for its simplicity.

3 EXPERIMENTS

We compared the performance of Sure against competing meth-
ods on simulated and real-world datasets. We also analyzed the
sensitivity of Sure to its single parameter 𝑛𝑚𝑖𝑛 .

3.1 Simulated Datasets

We constructed several datasets, shown in the top panel of Figure 3.
In each dataset, the main pattern (the “baseline”) consists of 2, 500
points drawn from a Gaussian with a large variance (the large
circle). These points belong to two classes (red and blue), with a
diagonal separator between them. We added noise by flipping 20%
of the class labels. We also added two or more subgroups of 200
points each (the small circles) following a different class pattern.
These represent individuals fromminority groups who are at risk of
unfair classification. Finally, we included more features (not shown
in the figure) where both the baseline and the subgroups follow the
same distribution.

Performance measure: The baseline contains most of the points.
So a classifier minimizing an overall loss will focus on the baseline
pattern. Hence, it may fail to model the subgroup class patterns,
leading to higher misclassification rates. So, we used the worst
accuracy among all subgroups to measure the classifier’s fairness.

Competing methods:We compared Sure against ARL [27] and
BPF [33]. DRO [19] gave worse results than the other methods, pos-
sibly due to noise in our datasets; [27] make a similar observation.
We also note that BPF is similar to [12], so we did not compare
against the latter. For Sure, we set its sole parameter 𝑛𝑚𝑖𝑛 = 30
and did not try to optimize it. For the other methods, we report
results with the best parameter settings. Finally, we note that Sure
always outperformed the baseline neural network. We do not show
those results for clarity of exposition.

Experimental setup: All methods were run within a neural net-
work with two hidden layers with 64 and 32 nodes each. We set
the dropout rate to 0.5 in all experiments. We did not optimize
the structure or parameters of the networks since our goal is an
algorithm that reduces unfairness for any classifier. We repeated
every experiment 30 times. All reported metrics are averaged over
these repetitions.

Results comparing all methods: Figure 3 shows the worst-case
accuracy over all subgroups for 2000 epochs. Sure outperformed

other methods in most settings over all epochs. Sure did par-
ticularly well in the initial epochs (epochs≤ 500), where it was
always the best or close to the best.
Comparison against ARL: Among all the settings, ARL does best
when we have two subgroups separated by 90 degrees (top-left
panel of Figure 3). The reason is as follows. Recall that neural
networks can quickly learn the simple baseline pattern. But the
subgroup patterns are more difficult to learn. So the subgroups
have higher misclassification rates, which makes them high-risk
zones. Now, ARL finds high-risk zones using linear separators.
For two subgroups 90 degrees apart, we can draw a line with both

subgroups on one side and most baseline points on the other. Hence,
ARL does well in this setting. But in other settings, such as with
four subgroups, a linear separator between the subgroups and the
baseline is not possible (see Figure 7 in Appendix A). So ARL often
does worse in such cases.

We note that it is often easy to isolate any single subgroup with
a linear separator. But ARL tries to separate all misclassified points

from the correctly classified points. This is more challenging than
isolating one subgroup. In contrast, Sure only selects one high-risk
box in each iteration. In other words, it can pick one subgroup in
one iteration, another subgroup in the next iteration, and so on.
By focusing only on one high-risk box at a time and iterat-

ing over such boxes, Sure can ensure fairness over complex

subgroup layouts.

Comparison against BPF:We observe that the performance of BPF
sometimes dips before increasing again. This also occurs in real-
world datasets, as discussed in Section 3.2. One possible reason is
that BPF increases the weight for all misclassified points. Many of
those misclassified points are noisy points in the baseline. Hence,
the neural network has to work harder to learn the subgroup pat-
terns. In contrast, Sure’s emphasis on statistical significance

makes it robust to noise.

Analysis of Sure’s high-risk boxes: The above results showed
that Sure achieves good performance over all subgroups. In Fig-
ure 4, we analyze the high-risk boxes found by Sure. For ease of
exposition, we focus on the four-subgroup setting (Figure 4a). All
results are over 10 repetitions of the experiment.

First, we checked if Sure’s high-risk boxes consistently selected
the subgroups rather than the baseline. We tagged every high-risk
box found by Sure as top/bottom/left/right/baseline, depending on
the dominant group among the misclassified points within that box.
The baseline has the most misclassified points (due to noise). So if
Sure’s boxes were random, most high-risk boxes would be tagged
as baseline. But if Sure works well, boxes from the baseline should
be rare.

Figure 4b shows that this is indeed the case. Very few high-risk
boxes are tagged as baseline. However, among the four smaller
subgroups, there are significant differences in frequencies. This is
due to the neural network learning some subgroup patterns more
quickly than others.

Next, we checked if Sure’s high-risk boxes were “pure.” Ideally,
a high-risk box would only contain points from a single subgroup.
Figure 4c shows that in Sure’s boxes, around 76% of the points be-
long to a single subgroup. If we only consider misclassified points
in the box, 91% belong to this subgroup. Thus, Sure’s boxes pri-
marily select a single subgroup. Also, the ratio of misclassified to
correctly classified points is greater than 2 : 1. Hence, the cho-
sen subgroups are at significant risk of unfair classification. By
upweighting these points in the next iteration, Sure focuses the
neural network on a single cohesive subgroup. The optimizer is
not distracted by noisy misclassified points. This is what leads to
Sure’s strong performance.
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Figure 3: Performance on simulated datasets.
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Figure 4: Analysis of the high-risk boxes found by Sure.
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Figure 5: Performance on real-world datasets.

3.2 Real-world Datasets

We also compared all competing methods on three real-world
datasets frequently used in fairness research. The goal for the COM-

PAS dataset is to predict recidivism [2]. The sensitive features are
the person’s age (binned into categories), race, and gender. For the
LSAC dataset, the goal is to predict law school admissions [39].
The sensitive features are race and gender. For the Adult dataset,
the goal is to distinguish between low-income and high-income
earners [25]. The sensitive features are race and gender. All datasets
were balanced by subsampling the majority class.

Experimental setup: In our experiments, we provided the sensi-
tive features alongside other features to all algorithms. However,

the sensitive features were not identified. As with the simulation
experiments, we used a neural network with two hidden layers
with 64 and 32 nodes as the classifier. The dropout rate was set to
0, the learning rate to 0.01, and the batch size to 200 points. We
repeated each experiment 30 times with different subsets of the
datasets. All reported metrics are averaged over these repetitions.

Competing methods: We again compared Sure against ARL and
BPF. Note that our goal is to reduce unfairness despite not know-
ing the subsets of people belonging to each race, gender, or age
category. Hence, we cannot expect to use cross-validation to pick
the parameters that give the best performance on these subsets.
So, for ARL and BPF, we used the best settings found with the
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Figure 6: Sensitivity of Sure to the minimum number of

points per bin (𝑛𝑚𝑖𝑛).

simulated data. For Sure, we used the default setting of 𝑛𝑚𝑖𝑛 = 30
everywhere, as in the simulation experiments.

Results:We find that Sure outperforms competing methods

across all settings. The standard deviation of worst-group ac-
curacy, averaged over all epochs, is around 0.02 for Compas, and
0.01 for LSAC and Adult datasets. We typically outperform the
other methods by a wider margin. We also observe that BPF’s per-
formance dips for LSAC before starting to increase again. Both
observations mirror our results on the simulated datasets. BPF’s
dip may be because it upweights all misclassified points, many of
which may be just noisy points. ARL does not show a similar pat-
tern because it finds a hyperplane with high-risk points on one side.
However, it still does not check for statistical significance. Sure
finds high-risk boxes, and achieves robustness against noise by
checking for statistical significance. This enables Sure to perform
well even without knowing the sensitive attributes.

The features picked by Sure’s boxes are easily explainable. For
example, on the Compas dataset, Sure picked several sensitive age-
and gender-related features. Examples include “age<25,” “age be-
tween 25-45,” “sex is Female,” “charge degree for Males,” and “charge
degree for Females.” However, other features are also sometimes
used, such as “arrest but no charge.”

3.3 Sensitivity Analysis

Sure has a single parameter 𝑛𝑚𝑖𝑛 , which is the minimum number
of correctly/incorrectly classified points in each bin. We use 𝑛𝑚𝑖𝑛

to determine the number of bins and their boundaries. These bins,
in turn, are the building blocks for the high-risk boxes. Thus, the
choice of 𝑛𝑚𝑖𝑛 affects how Sure searches for the high-risk zones.

Higher values of 𝑛𝑚𝑖𝑛 mean more data in each bin. So, we can
reliably estimate the difference between the proportions of correctly
and incorrectly classified points. Hence, identifying risky boxes
becomes easier. But higher values of 𝑛𝑚𝑖𝑛 also lead to larger bins.
So Sure may miss narrow boxes with high misclassification rates.
In other words, Sure becomes too inflexible. Hence, the choice of
𝑛𝑚𝑖𝑛 must be neither too small nor too large.

Figure 6 shows the variation in Sure’s performance when we
vary 𝑛𝑚𝑖𝑛 for the simulated dataset of Figure 4a. The results con-
firm the tradeoff between robustness and flexibility. When 𝑛𝑚𝑖𝑛

increases from 5 to 50, the performance steadily increases. But
increasing 𝑛𝑚𝑖𝑛 further hurts performance. Our default choice of
𝑛𝑚𝑖𝑛 = 30 thus performs well while still allowing us to find narrow
high-risk boxes.

3.4 Running Time

The running time of Sure depends on the number of data points and
features. It varies from 0.01 seconds per 1, 000 points for LSAC (14
features) to 0.8 seconds per 1, 000 points for Compas (452 features).
This is a small fraction of the time spent training the neural network
in all cases.

4 RELATEDWORK

There is significant work on both the definitions of fairness that
should be used and the algorithms to achieve them. We discuss
these questions below, and point the reader to surveys for more
details [4, 35].

4.1 Definitions of Fairness

Suppose we have a dataset where each data point represents a
person. For each person, we have some features representing special
attributes of that person, such as race, gender, ethnicity, and so on.
These attributes are often called sensitive or protected attributes.
Our goal is a machine learning system whose output is fair with
respect to these attributes.

There are several extant definitions of fairness. The simplest is
fairness through unawareness. This posits that to achieve fairness,
algorithms should simply not use any of the sensitive attributes as
features. While intuitive, it has severe deficiencies. For example, the
algorithm could end up relying on feature combinations that are
highly correlated with the sensitive attributes. Hence, this definition
is rarely used.

One common choice is group fairness, where minority groups
receive equal treatment as other groups [4, 18]. Thus, for instance,
group fairness requires that the performance of a classifier on a
minority group (say, Hispanics) be comparable to the performance
over other groups. However, “equal treatment” may be defined in a
variety of ways. Let 𝑌 and 𝑌 denote the actual and predicted binary
class labels, and let 𝑆 ∈ {0, 1} be the sensitive feature. Demographic

parity requires that the probability of belonging to the positive class
be same for sensitive group members and non-members: 𝑃 (𝑌 | 𝑆 =

1) = 𝑃 (𝑌 | 𝑆 = 0). Equalized odds requires that the fraction of
true positives and false positive be the same for members and non-
members: 𝑃 (𝑌 = 1 | 𝑆 = 0, 𝑌 = 𝑦) = 𝑃 (𝑌 = 1 | 𝑆 = 1, 𝑌 = 𝑦)
for 𝑦 ∈ {0, 1}. Equality of opportunity only requires equality of
the fraction of true positives:𝑃 (𝑌 = 1 | 𝑆 = 0, 𝑌 = 1) = 𝑃 (𝑌 =

1 | 𝑆 = 1, 𝑌 = 1). Separation requires the predicted score to be
independent of the sensitive attribute given the class label [29].
Multicalibration requires that for each predicted score and every
subgroup from a given class, the expectation of the true class labels
over that subgroup is close to the score [20].

However, there are tradeoffs between different group-based fair-
ness measures. For instance, we cannot have equality of both the
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false positive rate and the false negative rate for all sensitive groups,
except in special cases [10, 24]. The need for fairness may also
compete against the algorithm’s utility [17] or robustness [28].
Furthermore, when applied to defendants awaiting trial, fairness
constraints may worsen public safety [11].

There are several definitions of fairness apart from group fairness.
In individual fairness, any two individuals with similar attributes
should have similar outcomes/predictions [14]. Formally, the goal
is to maximize some utility (say, the overall performance of the
classifier) subject to a Lipschitz constraint on the maximum allow-
able difference in performance for similar individuals. However,
the similarity measure is exogenous, and must be chosen for each
application (however, see [3]). Simple similarity measures such
as Euclidean distance may be problematic in high-dimensional
datasets where each individual has many attributes.

In counterfactual fairness, the outcome for any individual remains
the same if her sensitive attributes are changed [26]. This notion
of fairness closely follow intuitive notions of causality. However,
strong assumptions may be needed regarding how the sensitive
attributes are connected to other features and to the class labels.

Finally, the above definitions can be weakened to notions of ap-
proximate fairness. These have been shown to be related to financial
risk measures [40].

4.2 Algorithms for Fair Machine Learning

There have been many algorithms developed to do fair machine
learning. Examples include fair algorithms for clustering [9], influ-
ence maximization [16], graph neural networks [13], graph min-
ing [23], and community detection [34], among others.

Many approaches consider fairness as constraints placed on
utility-maximizing algorithms. For example, for classifiers, the
utility is the negative of the loss. Fair solutions can be encour-
aged via regularization [22] or by using randomized classifiers [1].
Other work uses standard classifiers but achieves fairness by post-
processing their results [36]. Madras et al. [32] infer causal rela-
tionships between variables, and use these to encourage fairness.
Another popular approach is to use an adversarial system, where
the adversary exploits failures in fairness. Adversarial ideas have
been used for algorithms for fair representation learning [15, 31]
and autoencoders [30].

The aforementioned algorithms either assume that the groups
are known or apply individual fairness considerations. In our work,
the groups are unknown. In such cases, existing methods typically
try to identify unfair regions of the feature space and re-optimize
the classifier to improve its fairness. Lahoti et al. [27] use a linear
classifier to identify such regions. Another approach is to increase
the weights for all points where the fairness-related loss is too
high [12, 33]. This is also the intuition behind distributionally robust
optimization methods [19]. We show in our experiments that Sure
outperforms [27] and [33], which in turn have been shown to be
better than distributionally robust optimization.

There is also related work on problem settings where the sensi-
tive attributes are noisy or uncertain. Jalal et al. [21] consider fair
image reconstruction, and show that reconstruction via sampling
from the posterior distribution is the only method that achieves a
notion of fairness called Conditional Proportional Representation.

Celis et al. [6] consider fairness under noisy sensitive attributes,
but the form of the noise must be known a priori or estimated
from a validation set containing both the clean and noisy labels.
There is also work on robust optimization for noisy sensitive at-
tributes [38]. However, our problem setting is different in that the
sensitive attributes are not provided at all.

5 CONCLUSIONS

Fair machine learning requires all sensitive subgroups to be treated
equally. But the sensitive subgroups are often unknown. This may
happen because the sensitive attributes are missing, are noisy, or
are present but not identified as being the sensitive attributes. Even
when the sensitive attributes are reported correctly, they may not
accurately reflect how society treats people. Sure is aimed at fair
classification without knowing the sensitive attributes.

The heart of Sure lies in identifying high-risk boxes in feature
space. These are regions where the risk of unfairness is signif-
icantly higher than the rest of the data. By finding such boxes,
Sure achieves several objectives. The boxes are intuitive and inter-
pretable. The algorithm is robust to noise. Each step of the algorithm
can be explained and audited. Sure is fast; its time complexity is
linear in the number of data points. Finally, Sure is practically
parameter-free, with the sole parameter being set to an intuitive
default value.

We showed that Sure is comparable to or better than existing re-
cent methods via experiments on simulated and real-world datasets.
For our simulations, we varied the number and the locations of
the subgroups, which are “planted” within a large, noisy baseline
group. Sure can identify and correct errors within the subgroups in
all settings. We observed similar results for the real-world datasets
too.
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A EXAMPLE HIGH-RISK ZONES BY ARL

Figure 7 shows examples of high-risk zones found by ARL. The
figures show correctly classified points in yellow and incorrectly
classified ones in black. ARL uses a linear separator to isolate high-
risk zones. We find that these zones isolate the bottom subgroup but
also include many other points outside this subgroup. Many points
in the isolated zone are noisy points from the baseline. Hence, the
optimizer of the weighted loss receives a weaker signal than Sure.

B ANALYSIS

Consider a problem setting with 𝑑 features, 𝑏 intervals per feature,
for 𝑏𝑑 bins total. We denote each bin by an index from the set
𝐼 = [𝑏]𝑑 . Each bin 𝑖 ∈ 𝐼 has a baseline misclassification rate of𝑞× (𝑖).
We assume that in one bin, the misclassification rate is increased
by 𝛿 . Thus, this bin has higher misclassifications than the baseline
rate. Without loss of generality, let this special bin have index
1 ∈ 𝐼 (i.e., the first interval for each feature). Now, we split 𝑛 data
points equally among the 𝑏𝑑 bins. For each point in bin 𝑖 ∈ 𝐼 , we
independently draw a 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑞× (𝑖)) (or 𝑞× (1) + 𝛿 for bin 1) to
label the point as “misclassified” or “correctly classified”. Let the
observed fraction of misclassified points in bin 𝑖 be 𝑞× (𝑖). We want
to find conditions under which bin 1 will be identified by Sure.

For any two indices 𝑎 ∈ 𝐼 and 𝑏 ∈ 𝐼 , we say that 𝑎 ∼𝑘 𝑏 if
𝑎(1) = 𝑏 (1), 𝑎(2) = 𝑏 (2), . . . , 𝑎(𝑘) = 𝑏 (𝑘), where 𝑎(𝑖) is the 𝑖𝑡ℎ
component of index 𝑎 (i.e., the interval for the 𝑖𝑡ℎ feature). Thus,
the subset of indices that are pairwise related via ∼𝑘 forms an
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Figure 7: Examples of linear separators found by ARL in

intermediate steps for the four-subgroup setting of Figure 4a.

for the second feature within this slice, and so on. Let 𝑆𝑘−1 be
the slice corresponding to features chosen in the first 𝑘 − 1 steps
(𝑆0 = 𝐼 ). Then, in step 𝑘 , we consider all slices 𝑇𝑘 = 𝑆𝑘−1/∼𝑘 of
𝑆𝑘−1 based on different values of the 𝑘𝑡ℎ feature. For each 𝑆 ∈ 𝑇𝑘 ,
we compute 𝑝× (𝑆) = 𝑞× (𝑆)/(

∑
𝑆 ′∈𝑇𝑘 𝑞× (𝑆

′)) and 𝑝✓ (𝑆) = (1 −
𝑞× (𝑆))/(

∑
𝑆 ′∈𝑇𝑘 1 − 𝑞× (𝑆

′)). We compute the difference Δ(𝑆) :=
𝑝× (𝑆)−𝑝✓ (𝑆), and pick the 𝑆 with the highest value. The algorithm

succeeds if, for each 𝑘 ∈ [𝑑], the slice 𝑆𝑘 equals 𝐼 𝑖𝑛
𝑘

:= { 𝑗 ∈ 𝐼 ; 𝑗 (1) =
1, 𝑗 (2) = 1, . . . , 𝑗 (𝑘) = 1} (corresponding to the special index 1).

Theorem B.1. Suppose 𝑑 is fixed and 𝑏 → ∞ such that 𝑀 :=
max𝑘∈[𝑑 ] max𝑆,𝑇 ∈𝐼/∼𝑘 (𝑞× (𝑆)−𝑞× (𝑇 )) is a constant and 𝛿 >= 𝑀+𝜖
for some constant 𝜖 > 0. If 𝑛 = 𝜔 (𝑏𝑑 log(𝑏)) then for any 𝑘 and

any slice 𝑆 ∈ 𝑇𝑘 such that 𝑆 ≠ 𝐼 𝑖𝑛
𝑘
, we have Δ(𝐼 𝑖𝑛

𝑘
) > Δ(𝑆) with

probability 1 − 𝑜 (1).

Proof. Since there are 𝑏𝑑 bins, each gets 𝑛/𝑏𝑑 datapoints. Let

𝑡 = 𝑐 ·
√︂

log𝑏
𝑛/𝑏𝑑 for some constant 𝑐 > 0. Note that 𝑡 = 𝑜 (1) when 𝑛 =

𝜔 (𝑏𝑑 log(𝑏)). By a Chernoff bound, 𝑞× (𝑖) = (𝑞× (𝑖) +𝛿 ·1𝑖=1) (1+𝑡)
for all 𝑖 ∈ 𝐼 , with failure probability upper-bounded by 𝑂 (𝑏𝑑 ·
exp(− 𝑛

𝑏𝑑
· 𝑡2)) = 𝑂 (1/𝑏) = 𝑜 (1) for 𝑐 large enough. Under this

condition, for slice 𝐼 𝑖𝑛
𝑘

and any 𝑆 ∈ 𝑇𝑘 , 𝑆 ≠ 𝐼 𝑖𝑛
𝑘
, we have

𝑝× (𝐼 𝑖𝑛𝑘 ) − 𝑝× (𝑆)

=
𝑞× (𝐼 𝑖𝑛𝑘 ) − 𝑞× (𝑆)∑

𝑆∈𝑇𝑘 𝑞× (𝑆)

=
(𝛿 + 𝑞× (𝐼 𝑖𝑛𝑘 )) (1 +𝑂 (𝑡)) − 𝑞× (𝑆) · (1 +𝑂 (𝑡))

(𝛿 + 𝑞× (𝐼 𝑖𝑛𝑘 )) (1 +𝑂 (𝑡)) +
∑
𝑆∈𝑇𝑘 ,𝑆≠𝐼 𝑖𝑛𝑘

𝑞× (𝑆) · (1 +𝑂 (𝑡))

=
𝛿 + 𝑞× (𝐼 𝑖𝑛𝑘 ) − 𝑞× (𝑆)
𝛿 +∑𝑆∈𝑇𝑘 𝑞× (𝑆)

· (1 +𝑂 (𝑡))

≤ 𝑀

𝑏𝑑
· (1 +𝑂 (𝑡)) .

where in the last step, we used the condition on 𝛿 for the numerator,
and the fact that the denominator is at most the sum of misclassifi-
cation rates (≤ 1) over at most 𝑏𝑑 indices. Similarly,

𝑝✓ (𝐼 𝑖𝑛𝑘 ) − 𝑝✓ (𝑆) = −
𝑞× (𝐼 𝑖𝑛𝑘 ) − 𝑞× (𝑆)∑
𝑆∈𝑇𝑘 1 − 𝑞× (𝑆)

≥ −𝑀
𝑏𝑑
· (1 +𝑂 (𝑡)).

Hence, Δ(𝐼 𝑖𝑛
𝑘
) − Δ(𝑆) ≥ 2𝑀

𝑏𝑑
(1 + 𝑂 (𝑡)). So we always choose the

first interval among all available intervals when scanning over a
feature. □

Thus, under the conditions of Theorem B.1, Sure selects the
bin 1 whose misclassification rate is higher than all others (due to
the addition of 𝛿).
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