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ABSTRACT

Node embeddings are vectors, one per node, that capture a graph’s
structure. The basic structure is the adjacency matrix of the graph.
Recent methods also make assumptions about the similarity of un-
linked nodes. However, such assumptions can lead to unintentional
but systematic biases against groups of nodes. Calculating similari-
ties between far-off nodes is also difficult under privacy constraints
and in dynamic graphs. Our proposed embedding, called NEWS,
makes no similarity assumptions, avoiding potential risks to privacy
and fairness. NEWS is parameter-free, enables fast link prediction,
and has linear complexity. These gains from avoiding assumptions
do not significantly affect accuracy, as we show via comparisons
against several existing methods on 21 real-world networks. Code
is available at https://github.com/deepayan12/news.
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1 INTRODUCTION

A node embedding is a low-dimensional vector representation of
each node in a graph, that captures the graph’s link structure. The
embeddings can be used as feature vectors in other tasks. Thus,
any method designed for vector inputs can be applied to graph
structured data.

Recent work on node embeddings has focused on “second-order”
and “higher-order” proximity. These methods choose a similarity
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measure between nodes, and then find vectors to mimic (or, “em-
bed”) the similarity measure. The graph already provides a “first-
order” similarity: two nodes are linked, or not. Second-order meth-
ods add similarity relations between nodes that are not linked but
share friends. Higher-order methods also consider nodes that are
farther apart. The use of such similarity measures is justified on the
grounds that real-world networks are too sparse, with too few links.
Higher-order methods can provide more fine-grained data for the
embedding. A variety of such similarity measures have been stud-
ied, based on common neighbors, random walks, and personalized
pagerank, among others [17, 43, 44, 51, 52, 60].

While second-order and higher-order proximity methods are
widely popular, they also haveweaknesses. One is that it is difficult

to ensure fairness. Every similarity measure encodes assumptions:
it says that node 𝑖 is closer to node 𝑗 than node 𝑘 even though
neither 𝑗 nor 𝑘 is linked to 𝑖 . Such assumptions can lead to hidden
biases. For example, the hitting-time similarity between two nodes
𝑖 and 𝑗 is the expected time for a random walk from 𝑖 to reach
𝑗 . But, it turns out that asymptotically, this only depends on the
degree of 𝑗 ; the higher the degree, the higher the similarity [35].
Similar results also hold for commute-time similarity. Suppose we
use such a similarity to build node embeddings in a social network.
If we use these embeddings in a friend recommendation system, it
would only recommend celebrities. It would unintentionally bias
against people with few friends, such as introverts or non-native
language speakers. Such effects have been observed in community
detection too [40]. It is difficult to rule out such biases for any
chosen similarity measure.

Furthermore, different graphs may need different assump-

tions. For instance, in social networks, two people with many
shared friends are often assumed to be close, even if they are not
linked. But in an airport network, if there are many two-hop flights
connecting two airports, there is less economic reason to add a di-
rect flight. Similarly, in a peer-to-peer lending network, two people
who borrow from the same set of lenders are unlikely to borrow
from each other. Thus, an assumption that helps link prediction on
one network may hurt it on other networks.

In some networks, privacy constraints may prohibit higher-

order similarity computations. For example, companies may
prohibit crawls of their internal knowledge networks. In private
networks, everyone knows their neighbors, but no one sees the
entire network. So, to build a node’s embedding, we can only use
the embeddings of its neighbors and a sample of non-neighbors.
This rules out higher-order similarity methods.

Finally, higher-order similarity matrices can be expensive

to compute and maintain. A matrix storing pairwise similari-
ties requires 𝑂 (𝑛2) space for 𝑛 nodes. Approximations via random
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walks [17, 52] need access to the entire network, which may be
difficult under privacy restrictions. Furthermore, we must keep
recomputing the matrix in dynamic networks such as computer
networks, location-based social networks, and financial networks.
The disruption of even a few links can affect higher-order similarity
metrics for a large subset of nodes.

Our goal in this paper is an embedding method for plain graphs,
without node or edge features or any side information.We want to
minimize the risk of unfairness, without knowing the sensitive
attributes for the nodes. The above discussion suggests two con-
straints on the desired method. First, the algorithm should make

no assumptions beyondwhat the data says, that is, whether two
nodes are linked or not. In other words, it can only use first-order
proximity. Second, each node’s embedding should be personal-

ized. That is, the embedding for node 𝑖 should be the best possible
from 𝑖’s point of view, given everyone else’s embeddings. No node
is sacrificed to optimize an overall quality metric. Note that this
disallows hyper-parameter tuning via an overall loss measure. Thus,
a first-order personalized method reduces the chances of system-
atic biases against any node or group of nodes. Such a method is
also amenable to privacy restrictions, and can be easily updated in
dynamic networks. Note that our problem setting has no node fea-
tures; the use of sensitive features in embedding or post-processing
is an orthogonal problem [1, 6, 12, 20, 47].

Now, the popularity of higher-order proximity methods stems
from their accuracy. By avoiding their assumptions, we reduce
the risk of biases and gain in terms of privacy and computational
efficiency. But the gains are appealing only if the loss in accuracy is
minor. So, the question is: Can we still achieve accurate embeddings
under the no-similarity-assumptions constraint?
Our contributions. On 21 different networks, including social,
communication, citation, product co-purchase, and transportation
networks, we show that our first-order method is comparable

to the best higher-order methods in terms of accuracy.
We achieve this with a new node embedding algorithm called

NEWS (Node EmbeddingsWithout Similarity assumptions)1. Un-
der NEWS, the embedding of a node 𝑖 is the feature vector of a
personalized classifier for 𝑖 . Given the embedding of another node
𝑗 , this classifier predicts if 𝑗 is a neighbor of 𝑖 , or not. Since many
nodes have few neighbors, and hence limited training data, NEWS
uses a robust training algorithm. This algorithm only uses statistics
that can be reliably estimated even from limited data. NEWS’s time
and space complexities are linear in the number of edges and

nodes respectively. Furthermore, NEWS is parameter-free, and
needs no cross-validation. It also enables fast link prediction via
simple matrix operations.

The rest of the paper is organized as follows. We present NEWS
in Section 2, and analyze it in Section 3. Empirical results are shown
in Section 4. We discuss related work in Section 5, and conclude in
Section 6.

2 PROPOSEDWORK

We are given an undirected graph of 𝑛 nodes with adjacency matrix
𝐴, where𝐴𝑖 𝑗 = 𝐴 𝑗𝑖 = 1 if nodes 𝑖 and 𝑗 are linked by an edge, and 0
otherwise. We want to find vectors 𝒖𝑖 ∈ R𝑑 (𝑖 ∈ [𝑛]) that captures
1Code is available at https://github.com/deepayan12/news.

the information in𝐴. In other words, we should be able to infer 𝐴𝑖 𝑗

from the value of 𝑔(𝒖𝑖 , 𝒖 𝑗 ), for some fixed function 𝑔(., .). Thus, the
vectors 𝒖𝑖 “embed” the network 𝐴.

The algorithm to infer {𝒖𝑖 } should have three properties:
(P1) It should only use first-order proximity. Either two nodes

are linked, or not; the algorithm should make no extra as-
sumptions about node similarity.

(P2) The algorithm should be parameter-free. Hyperparameter-
tuning can tilt results in favor of the majority while nega-
tively affecting a hidden minority. Furthermore, embeddings
are often used for tasks that are not known beforehand. So,
we cannot rely on tuning hyperparameters.

(P3) Given {𝒖𝑖 }, link prediction should be fast and simple.

In other words, the function 𝑔(𝒖𝑖 , 𝒖 𝑗 ) should be easy to com-
pute and fixed a priori.

We will first present the formulation and main idea of our pro-
posed method. Then, we will discuss its details, its computational
complexity, and the extension to directed graphs.

2.1 Formulation

Consider the following problem:

(Local Problem) Given {𝐴𝑖 𝑗 ; 𝑗 ≠ 𝑖} and {𝒖 𝑗 ∈ R𝑑 ; 𝑗 ≠ 𝑖}, find 𝒖𝑖 .

The local problem focuses on inferring 𝒖𝑖 from only first-order
proximity. The global embedding of all nodes is just the fixed-point
solution of local problems for all 𝑖 ∈ [𝑛].

For the local problem, we can split the set of nodes [𝑛] \ {𝑖}
into the neighbors of 𝑖 (𝑆𝑖+ = { 𝑗 ; 𝑗 ≠ 𝑖, 𝐴𝑖 𝑗 = 1} ) and everyone
else (𝑆𝑖−). Now, we can think of 𝒖𝑖 as the parameter vector of a
classifier C𝑖 . The training data for C𝑖 has the set 𝑆𝑖+ as the positive
class and 𝑆𝑖− as the negative class. Each “training point” 𝑗 ∈ 𝑆𝑖+ ∪
𝑆𝑖− has a 𝑑-dimensional “feature vector” 𝒖 𝑗 . In the local problem,
these feature vectors are known. Since |𝑆𝑖+ | ≪ |𝑆𝑖− | typically,
the classification problem is imbalanced. Further, many real-world
networks have skewed degree distributions, withmost nodes having
low degrees [9]. In other words, |𝑆𝑖+ | is very small for a large
fraction of the nodes. For example, in the benchmark Flickr network,
41% of the nodes have fewer than 32 neighbors, and 73% have fewer
than 128 neighbors. So, if we seek 𝒖𝑖 ∈ R𝑑 with 𝑑 = 32 or 128, we
have fewer positive points than features for many nodes: |𝑆𝑖+ | < 𝑑 .
Thus, inferring 𝒖𝑖 corresponds to imbalanced classification

from very limited data.

Interpretation of existing methods. Existing imbalanced classi-
fiers are ill-suited for such extreme data scarcity. For example, when
|𝑆𝑖+ | < 𝑑 , the positive points lie in a low-dimensional subspace of
the feature space. Sampling-based or cost-sensitive methods may
not account for this artificially low dimensionality [10, 27]. Com-
plex ensemble-based and neural classifiers have many parameters,
and hence may overfit [26] .

Existing embedding methods counter imbalance by using a fixed
ratio of negative to positive samples. But does not fix the scarcity
of positive samples. Second-order and higher-order proximity aug-
ments the positive set 𝑆𝑖+ with nodes that are not directly linked
to 𝑖 . This reduces data scarcity, but requires extra assumptions. As
discussed in Section 1, such assumptions may be unfair and have
other weaknesses, which we wish to avoid.

https://github.com/deepayan12/news
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2.2 Main Idea

When |𝑆𝑖+ | is small, the average loss on 𝑆𝑖+ is a poor proxy for
the expected test loss for the positive class. So, if we optimize C𝑖
over the average loss, it can overfit. Our approach is to construct
a robust smoothed distribution D★

𝑖+ for the positive class. Then,
instead of the average loss on 𝑆𝑖+, we use the expected loss on D★

𝑖+.
Furthermore, we ensure that this expected loss has a closed-form
formula, via an appropriate choice of the loss function.
Robust smoothed distribution D★

𝑖+. We use a robust kernel den-
sity estimate for the positive class as D★

𝑖+. Each node 𝑖 has a “per-
sonalized” kernel, built from statistics that can be reliably estimated
even when |𝑆𝑖+ | is small. By relying only on such robust statistics,
NEWS avoids overfitting to the idiosyncrasies in the data. The per-
sonalization ofD★

𝑖+ also contrasts with alternative approaches such
as using a generic regularization term for all nodes.
Choice of classifier C𝑖 . The desired embedding 𝒖𝑖 is the parameter
vector that minimizes the expected test loss of C𝑖 . For the negative
class, the expected test loss is close to the average loss on 𝑆𝑖− , since
|𝑆𝑖− | is large enough. For the positive class, we use the expected
loss over D★

𝑖+, as discussed above. Now, in general, this expected
loss over D★

𝑖+ will not have a closed form. We can approximate it
by sampling, but this increases the variability of results and the
computational effort. Instead, we choose a loss function for which
the expected loss under D★

𝑖+ has a closed form. This simplifies and
speeds up the optimization of 𝒖𝑖 .

Thus, we can solve the local problem (find 𝒖𝑖 for node 𝑖 ∈ [𝑛])
by training C𝑖 using the above approach. The global problem of
finding all embeddings is the fixed-point solution of all 𝑛 local
problems. Our proposed method, called NEWS, trains all classifiers
∪𝑖C𝑖 jointly to solve the global problem.
Matching properties (P1)-(P3). NEWS uses the network only
to construct the subsets 𝑆𝑖+ and 𝑆𝑖− for each node 𝑖 . It makes no
further assumptions about node similarities. Hence, NEWS is a
first-order proximity method, matching property (P1). The entire
method has no hyperparameters, so no cross-validation is necessary.
The only parameters are those for the optimizer, which are fixed
for all our experiments and standard for all algorithms. So NEWS
satisfies property (P2). Finally, with our chosen classificationmodel,
link prediction only needs simple matrix operations, matching
property (P3). Finally, our focus on the local problem makes NEWS
personalized by default.

2.3 Details of NEWS

The chances of two people being friends depends on (a) how much
their interests match, and also (b) their ability to attract friends
irrespective of interests (“celebrity” status). To model this, NEWS
splits every node vector 𝒖𝑖 ∈ R𝑑 into a “bias” term 𝛼𝑖 ∈ R and a
vector of “interests” 𝜷𝑖 ∈ R𝑑−1, i.e., 𝒖𝑖 = (𝛼𝑖 , 𝜷𝑖 ). So, our goal in the
local problem is to infer 𝒖𝑖 = (𝛼𝑖 , 𝜷𝑖 ) given all {𝒖 𝑗 = (𝛼 𝑗 , 𝜷 𝑗 ); 𝑗 ≠ 𝑖}.

To infer the interests 𝜷𝑖 of node 𝑖 , we need to know the interest
distribution among 𝑖’s neighbors (𝑆𝑖+) and non-neighbors (𝑆𝑖−).
Since there are many non-neighbors (large |𝑆𝑖− |), we can use the
empirical distribution. But many nodes have few neighbors (small
|𝑆𝑖+ |). So, NEWS constructs a robust distribution D★

𝑖+ from the
neighbors’ interests. We will now discuss the construction of D★

𝑖+

and the optimization of 𝒖𝑖 = (𝛼𝑖 , 𝜷𝑖 ). Then, we will present the
complexity analysis, and the extension to directed graphs.
Robust smoothed distribution. For each node 𝑖 , we want a
smooth density D★

𝑖+ for the positive class that is personalized to 𝑖 .
Such personalization must be based on the statistics of 𝑖’s neighbors
{𝒖 𝑗 ; 𝑗 ∈ 𝑆𝑖+}. When there are few neighbors, only low-order mo-
ments can be reliably estimated. Higher-order moments are more
sensitive to the tail of a distribution, and hence are harder to esti-
mate accurately from a few samples. So, the personalized density
can use robust estimates of the mean and covariance, but otherwise
should be as flexible as possible.

A common measure of the flexibility of a distribution is its en-
tropy. The maximum-entropy distribution with a given mean and
covariance is the Gaussian distribution [11]. So, we use a Gaussian
kernel density as 𝑖’s personalized density D★

𝑖+ for the positive class.
Specifically, we set the probability density at 𝒙 ∈ R𝑑−1 to be

𝑝D★
𝑖+
(𝒙) = 1

|𝑆𝑖+ |
∑︁
𝑗∈𝑆𝑖+

𝜙

(
(Σ★𝑖+)

−1/2 (𝒙 − 𝜷 𝑗 )
)
, (1)

Σ★𝑖+ = 𝜂𝑖 · Σ̂𝑖+ + 𝜈𝑖 · 𝐼 , (2)
where 𝜙 (.) is the standard Normal density, 𝜷 𝑗 the interest vector
for node 𝑗 , and Σ̂𝑖+ the sample covariance of {𝜷 𝑗 ; 𝑗 ∈ 𝑆𝑖+}. Here, 𝜂𝑖
and 𝜈𝑖 are shrinkage parameters for the robust covariance estimator
Σ★
𝑖+.We choose the optimal shrinkage (𝜂𝑖 , 𝜈𝑖 ) to minimize the

expected mean-squared error of Σ★
𝑖+. These optimal values can be

computed via simple matrix operations [33].
Thus, the density D★

𝑖+ uses a maximum-entropy kernel based
on robust estimates of the low-order moments. This allows for
personalization without being sensitive to the noise in 𝑆𝑖+. We note
that our kernel density does not have a bandwidth parameter. The
optimal bandwidth varies as 𝑛−1/(𝑑+4) , where 𝑛 is the number of
points and 𝑑 the dimensionality [50]. In our case, 𝑛 = |𝑆𝑖+ | is often
small, while the embedding dimension 𝑑 is much larger (𝑑 = 32 or
𝑑 = 128 are common choices). Thus, the scaling of the bandwidth
can be ignored.
Choice of classifier. Next, we formalize the classifier C𝑖 with
parameters 𝒖𝑖 = (𝛼𝑖 , 𝜷𝑖 ). Let ℓ (𝑦, (𝑎, 𝜷); (𝛼𝑖 , 𝜷𝑖 )) denote the loss on
a data point with bias 𝑎 ∈ R and interest vector 𝜷 ∈ R𝑑−1 belonging
to class 𝑦 ∈ {+1,−1}. Then, we seek 𝒖𝑖 = (𝛼𝑖 , 𝜷𝑖 ) that minimizes

1
|𝑆𝑖− |

∑︁
𝑗∈𝑆𝑖−

ℓ (𝑦 = −1, (𝛼 𝑗 , 𝜷 𝑗 ); (𝛼𝑖 , 𝜷𝑖 ))

+ 1
|𝑆𝑖+ |

∑︁
𝑗∈𝑆𝑖+

𝐸𝜷∼D★
𝑖+
ℓ (𝑦 = +1, (𝛼 𝑗 , 𝜷); (𝛼𝑖 , 𝜷𝑖 )) . (3)

The second term is the expected loss over D★
𝑖+, and will generally

not have a closed form. Sampling-based approximations of the
expected loss can be slow. Instead, we will choose a loss function
ℓ (.) for which the expected loss overD★

𝑖+ has a closed-form formula.
Specifically, we set

ℓ (𝑦, (𝑎, 𝜷); (𝛼𝑖 , 𝜷𝑖 )) = max(0, 1 − 𝑦 · (𝑎 + 𝛼𝑖 + 𝜷𝑇𝑖 𝜷)) .

This is a unit-margin hinge loss where 𝑠 = 𝑎+𝛼𝑖 +𝜷𝑇𝑖 𝜷 measures the
similarity between two nodes with embeddings (𝑎, 𝜷) and (𝛼𝑖 , 𝜷𝑖 ).
The term 𝜷𝑇

𝑖
𝜷 in the score measures the overlap of interests be-

tween the two nodes. The term 𝑎 + 𝛼𝑖 is the total propensity to
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attract friends irrespective of interests. Higher the score 𝑠 , greater
the similarity between the nodes. We predict a link iff 𝑠 > 0, and
the prediction is incorrect if 𝑦 · 𝑠 < 0 (since 𝑦 ∈ {+1,−1}). Thus,
this choice of loss enables a simple and fast link prediction system.

Theorem 2.1. The expected loss on the positive class is given by

𝐸𝜷∼D★
𝑖+
ℓ (𝑦 = +1, (𝛼 𝑗 , 𝜷); (𝛼𝑖 , 𝜷𝑖 ))

=
1

|𝑆𝑖+ |
∑︁
𝑗∈𝑆𝑖+

[
(1 − 𝑠𝑖 𝑗 ) · Φ

( 1 − 𝑠𝑖 𝑗

𝑡𝑖

)
+ 𝑡𝑖 · 𝜙

( 1 − 𝑠𝑖 𝑗

𝑡𝑖

)]
, (4)

𝑠𝑖 𝑗 =𝛼 𝑗 + 𝛼𝑖 + 𝜷𝑇𝑖 𝜷 𝑗 , (5)

𝑡𝑖 =

√︃
𝜷𝑇
𝑖
Σ★
𝑖+𝜷𝑖 (6)

=

√√√√√√√
𝜂𝑖 ·

©«
∑

𝑗∈𝑆𝑖+

(
𝜷𝑇
𝑖
𝜷 𝑗

)2
|𝑆𝑖+ |

−
(∑

𝑗∈𝑆𝑖+ 𝜷
𝑇
𝑖
𝜷 𝑗

|𝑆𝑖+ |

)2ª®®¬ + 𝜈𝑖 · ∥𝜷𝑖 ∥2,
where Φ(.) and 𝜙 (.) are the cdf and pdf of the standard Normal
distribution, and Σ★

𝑖+ was defined in Eq. 2.

Corollary 2.2. Under the setting of Theorem 2.1, the overall loss
in Eq. 3 increases monotonically with 𝑡𝑖 .

Both are proved in the appendix.
For intuition, suppose we fix 𝜷𝑖 and let ∥Σ★

𝑖+∥ → 0. Then, the
density D★

𝑖+ tends to the empirical distribution of the positive class.
So the expected loss on point 𝑗 should reduce to the empirical hinge
loss max(0, 1 − 𝑠𝑖 𝑗 ). Plugging ∥Σ★

𝑖+∥ → 0 into Eq. 4, we find that
𝑡𝑖 → 0, so 𝜙 ((1−𝑠𝑖 𝑗 )/𝑡𝑖 ) → 0 and Φ((1−𝑠𝑖 𝑗 )/𝑡𝑖 ) → 1(1−𝑠𝑖 𝑗 > 0).
Hence, the expected loss becomes (1 − 𝑠𝑖 𝑗 ) · 1(1 − 𝑠𝑖 𝑗 > 0) =

max(0, 1 − 𝑠𝑖 𝑗 ), as desired.
Now, suppose we fix Σ★

𝑖+ and vary 𝜷𝑖 such that the interest
match 𝜷𝑇

𝑖
𝜷 𝑗 is fixed. So 𝑠𝑖 𝑗 remains fixed, and only 𝑡𝑖 changes. By

Corollary 2.2, among all possible 𝜷𝑖 with the same interest match,
we prefer the one with the lowest 𝑡𝑖 . Note that 𝑡𝑖 = ∥Σ★

𝑖+
1/2𝜷𝑖 ∥. So,

the 𝑡𝑖 term acts as a regularizer for 𝜷𝑖 , but instead of a norm, it uses
a Mahalanobis metric that is specific to 𝑖 .
Implementation. The above steps were aimed at the local problem.
To solve the global problem of finding all node embeddings, NEWS
trains all the classifiers C𝑖 jointly. In particular, we seek {𝒖𝑖 ; 𝑖 ∈ [𝑛]}
to minimize the sum of losses (Eq. 3) over all nodes 𝑖 . We use the
ADAM optimizer in all our experiments.

NEWS uses two optimizations to speed up processing. First, we
never calculate Σ★

𝑖+ explicitly, since we only need it for 𝑡𝑖 (Theo-
rem 2.1). We can compute 𝑡𝑖 via simple matrix operations. Second,
for the negative class loss (the first term of Eq. 3), we average over
a sample of nodes instead of all nodes in 𝑆𝑖− . Following [41], we
sample node 𝑗 ∈ 𝑆𝑖− with probability proportional to𝑑3/4

𝑗
, where𝑑 𝑗

is its degree. Note that the choice of sampling scheme is orthogonal
to our method, and other schemes can be used. In each mini-batch,
we choose one set of samples which we use as the negative class
for all nodes in that mini-batch. Then, we only need one matrix
multiplication to calculate all negative loss terms. This speeds up
the loss computation considerably.
Complexity. To calculate (𝜂𝑖 , 𝜈𝑖 ), we need 𝑂 (min( |𝑆𝑖+ |2 · 𝑑, |𝑆𝑖+ | ·
𝑑2)) time, where 𝑑 is the embedding dimension. For the expected

loss on the positive class (Eq. 4), we need all 𝑠𝑖 𝑗 and 𝑡𝑖 , which
takes 𝑂 ( |𝑆𝑖+ | · 𝑑) time. For the negative class, we average the loss
over a fixed-size sample of nodes from 𝑆𝑖− , and this take 𝑂 (𝑑)
time. Hence, the time taken for every epoch of the optimizer is∑
𝑖 𝑂 (min( |𝑆𝑖+ | · 𝑑2, |𝑆𝑖+ |2 · 𝑑)) = 𝑂 (𝑚𝑑2), where𝑚 =

∑
𝑖 |𝑆𝑖+ | is

the number of edges in the network.
The embedding requires 𝑂 (𝑑) space per node, and the calcula-

tion of (𝜂𝑖 , 𝜈𝑖 ) takes 𝑂 (min( |𝑆𝑖+ |2, 𝑑2)) space. Hence, the overall
space complexity is 𝑂 (𝑛𝑑2), where 𝑛 is the number of nodes in the
network. Thus, NEWS’s complexity is linear in the number of

nodes and edges.

Extensions. For directed graph, we can have separate bias and
interest vectors for incoming and outgoing edges:
𝒖𝑖 =

(
𝛼
(𝑖𝑛)
𝑖

, 𝜷 (𝑖𝑛)
𝑖

, 𝛼
(𝑜𝑢𝑡 )
𝑖

, 𝜷 (𝑜𝑢𝑡 )
𝑖

)
. The necessary modifications

to NEWS are straightforward. The positive set 𝑆𝑖+ becomes the
out-edges of 𝑖 , and the robust distribution D★

𝑖+ is now built from
{𝜷 (𝑖𝑛)

𝑗
; 𝑗 ∈ 𝑆𝑖+}. The score for a directed edge 𝑖 → 𝑗 becomes

𝑠𝑖 𝑗 = 𝛼
(𝑜𝑢𝑡 )
𝑖

+ 𝛼
(𝑖𝑛)
𝑗

+
(
𝜷 (𝑜𝑢𝑡 )
𝑖

)𝑇
𝜷 (𝑖𝑛)
𝑗

.
For undirected graphs, by symmetry, theminimum loss is achieved

when the in- and out-parameters are identical for each node. So, we
recover the node embeddings of the undirected NEWS algorithm,
but with half the embedding dimension.

3 ANALYSIS AND SIMULATIONS

NEWS’s embedding includes the bias terms 𝛼𝑖 alongside the in-
terest vectors 𝜷𝑖 . In contrast, most existing methods do not have
bias terms. Here, we show the need for bias terms by exploring
their interaction with interest vectors. Further evidence for the
importance of bias terms will be shown in Section 4.

Figure 1a plots the norm of 𝜷𝑖 against 𝛼𝑖 for the Deezer social
network. As the degree increases, ∥𝜷𝑖 ∥ increases and 𝛼𝑖 decreases.
We see similar patterns for communication and protein interaction
networks too. To understand why, we simulated a random graph
with 𝑛 = 10, 000 nodes and an expected degree of 5 (Fig. 1b).
Why ∥𝜷 ∥ increases with degree. The explanation lies in the
correlations between the interest vectors of the nodes. Consider two
nodes 𝑖 and 𝑗 connected by an edge.We find that the cosine between
𝜷𝑖 and 𝜷 𝑗 decreases with degree (Figure 2a). This is intuitive; as
the degree of a node increases, it is harder to have high cosine
similarity with all its neighbors. Now, to minimize loss, we should
have 𝛼𝑖 + 𝛼 𝑗 + 𝜷𝑇

𝑖
𝜷 𝑗 ≫ 0. When the degree of 𝑖 increases, the

cosine decreases, so we must either increase 𝛼𝑖 or ∥𝜷𝑖 ∥. The choice
depends on the fluctuations in the cosine. In this instance, linked
nodes have small cosine fluctuations ( Figure 2a). So NEWS chooses
to increase ∥𝜷𝑖 ∥ such that 𝜷𝑇

𝑖
𝜷 𝑗 is nearly constant for all degrees

(Fig. 2b). Hence, ∥𝜷 ∥ increases with degree.
Why𝛼 decreases as ∥𝜷 ∥ increases.Consider nodes 𝑖 and 𝑗 that are
not linked by an edge. Ideally, we should have 𝑠𝑖 𝑗 := 𝛼𝑖+𝛼 𝑗+𝜷𝑇𝑖 𝜷 𝑗 ≪
0. But cos(𝜷𝑖 , 𝜷 𝑗 ) ≈ 0 for unlinked node pairs (Figure 2a). This is
because for a fixed 𝜷𝑖 , the volume of the cone {𝜷 ∈ R𝑑−1; ∥𝜷 ∥ =

1, cos(𝜷, 𝜷𝑖 ) < −(1− 𝜖)} decays exponentially with the embedding
dimension 𝑑 . So it is difficult to push the vectors for unlinked node
pairs to have a negative cosine. Instead, they behave like random
vectors, which are nearly orthogonal in high dimensions [54].
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(a) Deezer social network (b) Random graph

Figure 1: An inverse relation between ∥𝜷𝑖 ∥ and 𝛼𝑖 .

(a) Cosine (b) Dot-product

Figure 2: Correlations between interest vectors.

Now, as discussed above, ∥𝜷𝑖 ∥ grows with the degree of 𝑖 . So,
as the cosine fluctuates around 0, the dot product 𝜷𝑇

𝑖
𝜷 𝑗 shows

larger fluctuations for high-degree nodes (Figure 2b). Hence, some
unlinked node pairs will have a dot-product that is relatively large
and positive. To ensure 𝑠𝑖 𝑗 < 0, the bias terms for such pairs must
be correspondingly large and negative. Hence, 𝛼𝑖 becomes more
negative as the degree increases (and ∥𝜷 ∥ increases).

In summary, Figure 1 reflects the relationship between cosines
and degrees. The norms of the interest vectors account for this
variation in cosines. But without the bias terms, the interest vectors
would not have this flexibility. This shows the importance of the
bias terms. However, note that 𝑡𝑖 also increases with ∥𝜷 ∥ (Eq. 6),
which in turn increases the loss on the positive class. Hence, in
general, the relationship between ∥𝜷 ∥ and 𝛼 can be complex.

4 EXPERIMENTS

We compared NEWS against competing methods on the accuracy
of link prediction, and how it varies with the embedding dimension.
We also show results for node classification, and test the importance
of the robust distribution and the bias term in NEWS.
Baselines. Our focus is on plain embedding methods, without
node or edge features. Since there is a large literature on such
methods, we chosemethods that workedwell in a recent benchmark
study [38] and added a few other recent methods. These methods
are GraRep [7], HOPE [43], LINE (second order) [51], Node2Vec [17],
ProNE [60], VERSE [52], SDNE [55], and Graph2Gauss (G2G) [5].
These cover matrix-based methods, auto-encoders, random-walk
methods, and energy-based methods. The unsupervised version
of GraphSage [19] performed no better than Graph2Gauss, so it is

not shown. We do not consider other convolution-based methods
since they are meant for supervised or semi-supervised settings,
and need features or side information for training. We used default
settings for all methods since we may not know beforehand the
tasks for which the embeddings will be used.
Datasets. We ran experiments on 21 real-world datasets. These
include networks based on social interactions (Deezer, Flickr, Blog
Catalog, and Youtube), citations (Cora and DBLP), location-based
connections (Gowalla), product co-purchases (Amazon), collabo-
rations (four Arxiv networks, and Youtube group memberships),
biology (Protein interactions, and Reactome), financial relations
(Prosper lending), transportation (US airports and Texas roads),
communications (Enron and EU Emails), and other networks (Word-
net) [16, 24, 29, 30, 34, 42, 59]. We made all networks undirected
and removed self-loops.

4.1 Link Prediction

Since the goal of node embeddings is to capture the network struc-
ture, link prediction accuracy is the natural metric for comparing
algorithms.
Experimental setup. For each network, we used 80% of the edges
as the training set. We used the remaining 20% of the edges as
positive test examples, and added randomnode pairs as negative test
examples. Specifically, for each node 𝑖 with a positive example (𝑖, 𝑗),
we created 100 node pairs (𝑖, 𝑗 ′) with nodes 𝑗 ′ chosen randomly.

For each algorithm, we computed embeddings from the training
set, and used these to rank the test node pairs. For NEWS, we used
Eq. 5 to score the test pairs (Node2Vec has a similar formula). For
the other methods, we trained a neural network with two hidden
layers to score the test pairs. For Graph2Gauss, the neural network
outperformed the energy-based score proposed by the authors. We
do not compare against non-embedding link prediction heuristics,
since they underperform our baselines [38].

For each node and each algorithm, we ranked all test pairs with
that node, and calculated the area under the precision-recall curve
(AUPRC). The AUPRC is a standard measure for imbalanced set-
tings [13]. Note that theAUPRCmeasures the embedding’s accuracy
for each node. Thus, better the personalization, higher the AUPRC.
Results. Table 1 reports the trimmed mean of the AUPRC scores
for nodes grouped by degree. For each row, we circle the methods
that are within 0.05 of the best AUPRC, and underline those that
are worse at the 𝑝 < 0.01 level. Methods that did not finish are
shown by crosses. We make two observations:

• NEWS is among the best performingmethods in almost

all cases. Note that NEWS only uses first-order proximity,
while the baselines use second and higher-order proximity.
Even with this severe constraint, NEWS is better than most
baselines and comparable to the best method on any dataset.

• NEWS performs well even for low-degree nodes. These
are the nodes for which extra assumptions of higher-order
proximity can have the most impact. NEWS works well even
without such assumptions. This points to the importance of
NEWS’s robust approach.

Varying the embedding dimension. Figure 3 shows the accuracy
of NEWS and VERSE as the embedding dimension varies from
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Cora (1, 434 nodes, 4, 256 edges)
(0, 2] 0.04 0.48 0.10 0.17 0.69 0.48 0.25 0.70 0.76
(2, 3] 0.04 0.47 0.31 0.34 0.76 0.52 0.31 0.67 0.79
(3, 5] 0.04 0.44 0.26 0.23 0.66 0.46 0.28 0.63 0.70
(5, 10] 0.05 0.36 0.28 0.23 0.59 0.37 0.30 0.54 0.69
(10, 140] 0.09 0.37 0.36 0.27 0.55 0.29 0.25 0.49 0.54

Amazon (334, 863 nodes, 925, 872 edges)
(0, 2] 0.02 0.38 0.02 0.46 0.61 0.73 0.02 0.90 0.87
(2, 3] 0.02 0.46 0.02 0.66 0.70 0.86 0.02 0.99 0.98
(3, 4] 0.02 0.51 0.02 0.74 0.69 0.91 0.02 1.00 1.00
(4, 7] 0.02 0.51 0.02 0.73 0.56 0.92 0.02 1.00 0.99
(7, 428] 0.04 0.56 0.04 0.73 0.50 0.92 0.04 0.99 0.98

Deezer (28, 281 nodes, 92, 752 edges)
(0, 2] 0.02 0.19 0.05 0.14 0.33 0.33 0.05 0.42 0.33
(2, 4] 0.02 0.16 0.09 0.19 0.42 0.40 0.08 0.48 0.41
(4, 7] 0.02 0.18 0.14 0.25 0.48 0.46 0.13 0.51 0.46
(7, 12] 0.03 0.21 0.22 0.32 0.54 0.50 0.21 0.56 0.52
(12, 137] 0.05 0.37 0.43 0.48 0.65 0.59 0.40 0.66 0.65

Arxiv (Gen. Rel.) (5, 241 nodes, 14, 484 edges)
(0, 3] 0.03 0.80 0.05 0.55 0.85 0.81 0.36 0.96 0.95
(3, 5] 0.03 0.71 0.15 0.53 0.89 0.76 0.37 0.96 0.94
(5, 10] 0.03 0.68 0.32 0.52 0.83 0.72 0.46 0.84 0.91
(10, 21] 0.05 0.74 0.47 0.60 0.80 0.70 0.52 0.80 0.86
(21, 78] 0.15 0.93 0.82 0.94 0.92 0.90 0.89 0.97 0.99

US Airports (1, 574 nodes, 17, 215 edges)
(0, 5] 0.07 0.31 0.18 0.28 0.26 0.19 0.18 0.31 0.27
(5, 12] 0.10 0.38 0.27 0.30 0.33 0.35 0.30 0.45 0.44
(12, 21] 0.14 0.51 0.44 0.48 0.35 0.47 0.55 0.53 0.54
(21, 57] 0.26 0.53 0.51 0.57 0.39 0.55 0.55 0.58 0.58
(57, 295] 0.57 0.72 0.75 0.71 0.56 0.71 0.76 0.70 0.73

Prosper Lending Network (89, 269 nodes, 3, 330, 022 edges)
(0, 11] 0.03 0.18 0.08 0.38 0.14 0.19 0.14 0.43 0.51
(11, 25] 0.07 0.31 0.19 0.50 0.15 0.44 0.31 0.56 0.58
(25, 48] 0.11 0.44 0.33 0.61 0.17 0.60 0.49 0.67 0.65
(48, 99] 0.18 0.56 0.48 0.72 0.21 0.72 0.66 0.76 0.72
(99, 5503] 0.35 0.73 0.68 0.84 0.32 0.85 0.82 0.85 0.81

DBLP (317, 080 nodes, 1, 049, 866 edges)
(0, 2] 0.02 0.63 0.03 0.68 0.79 0.84 0.03 0.98 0.97
(2, 3] 0.02 0.69 0.03 0.81 0.87 0.90 0.04 1.00 1.00
(3, 6] 0.03 0.69 0.04 0.81 0.89 0.89 0.06 0.99 1.00
(6, 10] 0.03 0.67 0.06 0.78 0.90 0.85 0.11 0.98 0.99
(10, 266] 0.06 0.71 0.17 0.75 0.90 0.81 0.25 0.95 0.98

Enron (36, 692 nodes, 183, 831 edges)
(0, 3] 0.06 0.56 0.20 0.74 0.74 0.58 0.32 0.91 0.93
(3, 7] 0.06 0.63 0.17 0.80 0.91 0.63 0.41 0.92 0.99
(7, 17] 0.06 0.53 0.22 0.75 0.90 0.57 0.48 0.83 0.92
(17, 44] 0.08 0.56 0.32 0.74 0.89 0.57 0.61 0.77 0.88
(44, 1317] 0.19 0.60 0.53 0.74 0.89 0.63 0.70 0.77 0.89

Flickr (80, 513 nodes, 5, 899, 882 edges)
(0, 12] × 0.16 0.15 0.25 0.34 0.16 0.14 0.37 0.36
(12, 29] × 0.31 0.26 0.41 0.50 0.37 0.30 0.54 0.52
(29, 65] × 0.48 0.41 0.60 0.65 0.57 0.51 0.69 0.67
(65, 160] × 0.66 0.60 0.77 0.78 0.75 0.73 0.81 0.80
(160, 4560] × 0.87 0.84 0.92 0.91 0.91 0.91 0.93 0.92

Blog Catalog (10, 312 nodes, 333, 983 edges)
(0, 7] 0.15 0.48 0.51 0.56 0.09 0.32 0.53 0.55 0.45
(7, 15] 0.16 0.52 0.54 0.59 0.11 0.41 0.56 0.57 0.52
(15, 30] 0.21 0.60 0.61 0.65 0.19 0.53 0.62 0.62 0.61
(30, 66] 0.27 0.66 0.69 0.71 0.31 0.63 0.70 0.70 0.69
(66, 3162] 0.44 0.78 0.81 0.81 0.57 0.78 0.81 0.80 0.80
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Gowalla (196, 591 nodes, 950, 327 edges)
(0, 4] 0.03 0.12 0.09 0.42 0.56 0.36 0.09 0.69 0.65
(4, 9] 0.03 0.20 0.10 0.54 0.72 0.48 0.13 0.77 0.79
(9, 17] 0.03 0.26 0.13 0.59 0.77 0.53 0.20 0.78 0.84
(17, 35] 0.04 0.34 0.19 0.64 0.80 0.59 0.34 0.79 0.86

(35, 14118] 0.11 0.54 0.41 0.74 0.88 0.68 0.58 0.81 0.90
Youtube (1, 134, 890 nodes, 2, 987, 624 edges)

(0, 3] × × × 0.30 0.37 0.18 0.30 0.56 0.41
(3, 5] × × × 0.41 0.62 0.25 0.34 0.66 0.59
(5, 12] × × × 0.48 0.70 0.31 0.40 0.70 0.66

(12, 22971] × × × 0.70 0.84 0.56 0.61 0.82 0.78
Arxiv (Astrophysics) (18, 771 nodes, 198, 050 edges)

(0, 9] 0.02 0.58 0.03 0.75 0.94 0.54 0.17 0.90 0.99
(9, 20] 0.03 0.59 0.06 0.77 0.97 0.57 0.47 0.86 0.97
(20, 35] 0.03 0.59 0.14 0.76 0.95 0.60 0.61 0.83 0.94
(35, 57] 0.04 0.64 0.39 0.78 0.95 0.66 0.69 0.86 0.95
(57, 489] 0.06 0.63 0.51 0.76 0.93 0.67 0.70 0.80 0.92

Arxiv (Cond. Mat.) (38, 741 nodes, 58, 595 edges)
(0, 2] 0.02 0.06 0.05 0.06 0.59 0.64 0.03 0.76 0.73
(2, 3] 0.02 0.06 0.05 0.05 0.53 0.71 0.03 0.84 0.80
(3, 5] 0.02 0.05 0.05 0.04 0.39 0.74 0.03 0.88 0.82
(5, 96] 0.03 0.07 0.06 0.05 0.22 0.71 0.03 0.86 0.78

Protein Interactions (56, 688 nodes, 793, 632 edges)
(0, 6] 0.17 0.44 0.07 0.52 0.67 0.38 0.20 0.60 0.61
(6, 12] 0.29 0.52 0.18 0.62 0.73 0.52 0.41 0.71 0.76
(12, 20] 0.37 0.62 0.34 0.71 0.78 0.62 0.56 0.78 0.85
(20, 37] 0.47 0.72 0.52 0.79 0.83 0.73 0.70 0.85 0.89
(37, 561] 0.68 0.87 0.74 0.90 0.90 0.87 0.87 0.93 0.95

Reactome (6, 229 nodes, 146, 160 edges)
(0, 6] 0.03 0.52 0.07 0.63 0.92 0.42 0.29 0.82 0.93
(6, 16] 0.04 0.67 0.12 0.82 0.96 0.53 0.51 0.87 0.96
(16, 35] 0.07 0.81 0.38 0.92 0.98 0.76 0.82 0.94 0.98
(35, 88] 0.18 0.92 0.86 0.97 0.98 0.91 0.95 0.97 0.99
(88, 700] 0.35 0.98 0.98 1.00 0.97 0.99 0.99 0.99 0.99

Wordnet (146, 005 nodes, 656, 999 edges)
(0, 3] 0.10 0.37 0.06 0.75 0.78 0.76 0.08 0.97 0.98
(3, 4] 0.10 0.46 0.09 0.86 0.90 0.82 0.12 0.99 1.00
(4, 6] 0.10 0.46 0.12 0.87 0.91 0.82 0.16 0.98 1.00
(6, 11] 0.09 0.43 0.15 0.84 0.94 0.79 0.19 0.97 1.00
(11, 821] 0.12 0.43 0.28 0.80 0.92 0.75 0.32 0.94 0.98

Email-EU (265, 009 nodes, 364, 481 edges)
(0, 3] 0.31 0.78 0.87 0.90 0.31 0.28 0.88 0.94 0.86
(3, 8] 0.35 0.79 0.88 0.91 0.78 0.23 0.87 0.95 0.95

(8, 5030] 0.33 0.72 0.78 0.82 0.82 0.44 0.75 0.89 0.88
HepTh (9, 875 nodes, 25, 973 edges)

(0, 2] 0.02 0.74 0.03 0.61 0.83 0.83 0.30 0.94 0.94
(2, 5] 0.03 0.70 0.05 0.61 0.83 0.77 0.35 0.88 0.90
(5, 9] 0.03 0.61 0.09 0.52 0.82 0.68 0.44 0.83 0.86
(9, 17] 0.03 0.57 0.15 0.44 0.76 0.54 0.40 0.74 0.72
(17, 63] 0.05 0.63 0.45 0.56 0.77 0.61 0.56 0.73 0.75

Roads (TX) (1, 379, 917 nodes, 1, 921, 660 edges)
(0, 2] × 0.01 0.01 0.02 0.48 0.52 0.50 0.96 0.79
(2, 3] × 0.01 0.01 0.03 0.69 0.67 0.50 1.00 0.94
(3, 11] × 0.01 0.02 0.05 0.70 0.78 0.50 1.00 0.98

Groups (Youtube) (124, 325 nodes, 293, 360 edges)
(0, 3] 0.04 0.24 0.39 0.40 0.37 0.22 0.39 0.60 0.44
(3, 5] 0.04 0.31 0.38 0.48 0.61 0.30 0.38 0.67 0.64
(5, 11] 0.04 0.35 0.38 0.54 0.65 0.36 0.41 0.69 0.70

(11, 6110] 0.09 0.49 0.43 0.66 0.72 0.50 0.49 0.76 0.77

Table 1: Link prediction accuracy: We calculate the area under the precision-recall curve (AUPRC) for link prediction for

each node. We then split the nodes into equal-sized bins based on degree, and report the trimmed mean of AUPRC scores for

nodes in each bin. We circle the methods that are within 0.05 of the best AUPRC, and underline the ones that are statistically

significantly worse by at least 0.05 (at the 𝑝 < 0.01 level). NEWS is seen to be comparable to the best higher-order proximity

method for almost all datasets and degree ranges, even though NEWS uses only first-order proximity.
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(a) Arxiv (Cond. Mat.) (b) Flickr (c) Protein Interactions (d) Groups (Youtube)

Figure 3: Varying the embedding dimension: The top panel shows NEWS, while the bottom panel shows VERSE. Both show

similar patterns and plateau beyond an embedding dimension of 𝑑 = 32.

Lift

𝑑𝑒𝑔 ≤ 2 14.6%
2 < 𝑑𝑒𝑔 ≤ 3 15.5%
3 < 𝑑𝑒𝑔 ≤ 5 17.3%
5 < 𝑑𝑒𝑔 27.9%

(a) Arxiv (Cond. Mat.)

Lift

𝑑𝑒𝑔 ≤ 3 −2.5%
3 < 𝑑𝑒𝑔 ≤ 5 22.1%
5 < 𝑑𝑒𝑔 ≤ 11 23.3%
11 < 𝑑𝑒𝑔 21.3%

(b) Groups (Youtube)

Lift

𝑑𝑒𝑔 ≤ 12 27.7%
12 < 𝑑𝑒𝑔 ≤ 29 19.9%
29 < 𝑑𝑒𝑔 ≤ 65 10.2%
65 < 𝑑𝑒𝑔 ≤ 160 3.1%

160 < 𝑑𝑒𝑔 0.4%
(c) Flickr

Lift

𝑑𝑒𝑔 ≤ 6 22.5%
6 < 𝑑𝑒𝑔 ≤ 12 11.7%
12 < 𝑑𝑒𝑔 ≤ 20 7.2%
20 < 𝑑𝑒𝑔 ≤ 37 5.0%

37 < 𝑑𝑒𝑔 2.1%
(d) Protein Interactions

Table 2: Lift of NEWS over not using a robust density.

𝑑 = 8 to 𝑑 = 128. In both cases, the accuracy plateaus for 𝑑 ≥ 32,
so we chose 𝑑 = 32 for our experiments. For NEWS, the accuracy
on low-degree nodes can dip as 𝑑 increases. This is because lim-
ited data in higher dimensions increases the chances of overfitting.
Higher-order proximity methods converge to their assumed similar-
ity matrix as 𝑑 increases, so their accuracy depends on the quality
of that assumption.

4.2 Ablation study

Next, we show the importance of the robust smoothed distribution
and the bias terms in NEWS.
Importance of robust smoothing. Recall that the main difficulty
with first-order proximity stems from low-degree nodes, for which
we have little data. NEWS creates a robust distribution (Eq. 2) to
account for the lack of data. We ran an experiment replacing it with

Lift

(0, 2] 50.7%
(2, 3] 67.9%
(3, 5] 85.0%
(5, 96] 108.4%

(a) Arxiv (Cond. Mat.)

Lift

(0, 3] 68.8%
(3, 5] 47.2%
(5, 11] 45.0%

(11, 6110] 41.6%
(b) Groups (Youtube)

Lift

(0, 12] 572.6%
(12, 29] 143.8%
(29, 65] 39.4%
(65, 160] 10.8%
(160, 4560] 2.0%

(c) Flickr

Lift

(0, 6] 196.4%
(6, 12] 103.8%
(12, 20] 59.5%
(20, 37] 29.2%
(37, 561] 6.3%

(d) Protein Interactions

Table 3: Lift of NEWS over not using a bias term.

the empirical distribution. This is the same as setting 𝑡𝑖 → 0 in
Eq. 4. For both the robust and empirical distributions, we calculate
the AUPRC trimmed mean for each degree range. Table 2 shows
the percentage lift achieved by the robust distribution.

For each of the four datasets, the robust distribution yields

> 20% lift. Also, we see improvements for nodes of all degrees,
and not only the low-degree nodes. The reason is that low-degree
nodes predominate in networks and often connect to high-degree
nodes. So, better embeddings for low-degree nodes lead to better
embeddings for other nodes too.
Importance of bias terms. Recall that NEWS’s embedding is of
the form 𝒖𝑖 = (𝛼𝑖 ∈ R, 𝜷𝑖 ∈ R𝑑−1), where 𝛼𝑖 is the bias term for
node 𝑖 . In this experiment, we find the best embedding without bias
terms: 𝒖𝑖 = (𝜷𝑖 ∈ R𝑑 ). Figure 3 shows the lift of NEWS over the
version without bias terms. Across all four datasets, the bias terms
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(a) Blog Catalog (39 classes) (b) Flickr (195 classes)

(c) Deezer (2 classes)
(d) Protein Interactions (121
classes)

Figure 4: Classification accuracy versus % labeled nodes.

provide a significant lift in accuracy. The reason is that the bias
terms ensure a negative score for node pairs that are not linked by
an edge, as discussed in Section 3.

4.3 Node Classification

Here, we used the node embeddings as features in a random forest
for node classification. We do not use any extra features because
we only want to compare embedding methods. Figure 4 shows that
NEWS is comparable to higher-order proximity methods.

5 RELATEDWORK

We will review the literature on embeddings and fairness.
Embeddings. Our focus is on graphs with no extra features. Ex-
isting embedding methods for this problem can be split into three
groups. First-order proximity methods use only the link structure
of the graph. These include Locally Linear Maps [48], Laplacian
Eigenmaps [3], Graph Factorization [2], and Probabilistic Matrix
Factorization [49]. Second-order proximity methods measure sim-
ilarity between nodes based on their neighborhoods. Examples
include SDNE [55], which encodes the neighborhood via a deep
autoencoder, and LINE [51] and ProNE [60], which encode it via a
context vector.Higher-order proximitymethods consider similarities
between nodes that are farther apart in the network. DeepWalk [44]
and Node2Vec [17] do this via random walks. GraRep [7] also con-
siders a random-walk transition matrix, but then transforms it
and factorizes it. NetMF [46] uses a similar procedure on a differ-
ent matrix. HOPE [43] factorizes similarity matrices constructed
from common link prediction heuristics such as the Katz measure.
VERSE[52] uses a personalized pagerank similarity matrix.

When node or edge features are available, one can use Graph
Neural Networks and its many variants [19, 53, 58]. Recent sur-
veys [18, 57] cover these aspects in detail. Some methods construct
embeddings to jointly preserve proximity in terms of network topol-
ogy as well as attribute similarity [22]. SIGNet [23] is an embedding
for networks where edges have signs (e.g., trust versus no-trust

relationships). We focus on plain embeddings without node/edge
attributes, so these works are orthogonal to ours. Finally, there is
rich literature on latent variable inference under graph generative
models (see [28, 37] for a survey and recent results). However, the
assumption of a known generative model may not hold in practice.
Fairness. Fair algorithms trade off overall accuracy against a fair-
ness metric defined over groups of individuals [4, 20], pairs of
similar individuals [15], or for individuals under counterfactual
conditions [31]. Group memberships are often encoded as indi-
vidual attributes (called the “sensitive” attributes). FairGNN [12]
estimates the sensitive attributes when they are missing. GNNs
combining fairness and stability are explored in [1] and generaliza-
tion bounds analyzed in [36]. Fairwalk [47] modifies the random
walks of Node2Vec [17] to capture diverse neighborhoods. Other
work aims to ensure zero mutual information between node embed-
dings and sensitive attributes [6], or to establish individual fairness
given a similarity measure [14, 45]. However, unlike our setting,
these works assume the availability of the sensitive attribute or a
similarity metric between sensitive nodes.

There is also work on fairness when the sensitive attribute is
noisy [8, 56] or unknown [21, 32, 39]. These works typically apply
a worst-case robust optimization over the unknown value of the
sensitive attribute or their underlying distribution (though [25] use
posterior sampling). These sensitive attribute is also unknown in
our setting. However, our problem is different; we aim to remove
one source of systematic bias that comes from the assumptions
made by higher-order proximity methods.

6 CONCLUSIONS

There is significant interest in algorithms that are both accurate
and fair. One potential source of unfairness lies in the algorithm’s
assumptions. For node embedding methods, the assumptions are
about the similarity of unlinked nodes. Such similarity assumptions
govern many popular “higher-order” embedding methods. But in
seeking the highest overall accuracy, they may unintentionally bias
against a minority of nodes with atypical linkage patterns. We
present a method, called NEWS, that avoids making any similarity
assumptions without sacrificing much accuracy.

NEWS’s embedding for each node represents the parameter vec-
tor of a robust and personalized classifier for that node. Each node’s
classifier is trained to differentiate between that node’s neighbors
and the rest of the network. Wemake no assumptions about the sim-
ilarity of unlinked nodes. The robustness ensures stable embeddings
for low-degree nodes, for which the classifier has limited training
data. The personalization guarantees that each node’s embedding is
the best possible, given the embeddings of all other nodes. Together,
they remove potential sources of bias while still achieving accuracy
comparable to the best higher-order methods.

NEWS can be extended in several directions. One is to incorpo-
rate node or edge features within the framework of the personal-
ized classifiers. One possibility is to learn weights for these features
alongside the node embedding features we currently use. A second
extension is to try more complex classifiers for high-degree nodes.
For such nodes, the greater data availability makes it possible to fit
such classifiers without overfitting.
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APPENDIX

Proof of Theorem 2.1. The expected loss on the positive class
𝐸𝜷∼D★

𝑖+
ℓ (𝑦 = +1, (𝛼 𝑗 , 𝜷); (𝛼𝑖 , 𝜷𝑖 )) equals
1

|𝑆𝑖+ |
∑︁
𝑗∈𝑆𝑖+

𝐸𝜷∼N(𝜷 𝑗 ,Σ★𝑖+ ) max(0, 1 − 𝛼 𝑗 − 𝛼𝑖 − 𝜷𝑇𝑖 𝜷)

=
1

|𝑆𝑖+ |
∑︁
𝑗∈𝑆𝑖+

𝐸𝑧∼N(1−𝛼 𝑗−𝛼𝑖−𝜷𝑇𝑖 𝜷 𝑗 ,𝜷𝑇𝑖 Σ★
𝑖+𝜷𝑖 )

max(0, 𝑧)

=
1

|𝑆𝑖+ |
∑︁
𝑗∈𝑆𝑖+

[
(1 − 𝑠𝑖 𝑗 ) · Φ

( 1 − 𝑠𝑖 𝑗

𝑡𝑖

)
+ 𝑡𝑖 · 𝜙

( 1 − 𝑠𝑖 𝑗

𝑡𝑖

)]
,

where 𝑠𝑖 𝑗 and 𝑡𝑖 are defined in the theorem statement. Furthermore,

𝑡𝑖 =

√︃
𝜷𝑇
𝑖
Σ★
𝑖+𝜷𝑖 =

√︃
𝜂𝑖 · 𝜷𝑇𝑖 Σ̂𝑖+𝜷𝑖 + 𝜈𝑖 · ∥𝜷𝑖 ∥2

=

√√√√√√√
𝜂𝑖 ·

©«
∑

𝑗∈𝑆𝑖+

(
𝜷𝑇
𝑖
𝜷 𝑗

)2
|𝑆𝑖+ |

−
(∑

𝑗∈𝑆𝑖+ 𝜷
𝑇
𝑖
𝜷 𝑗

|𝑆𝑖+ |

)2ª®®¬ + 𝜈𝑖 · ∥𝜷𝑖 ∥2 .
□

Proof of Corollary 2.2. The first partial derivative of the pos-
itive class loss (Eq. 4) with respect to 𝑡𝑖 is

1
∥𝑆𝑖+∥

∑︁
𝑗∈𝑆𝑖+

𝜙 ((1 − 𝑠𝑖 𝑗 )/𝑡𝑖 ) > 0,

where we use the fact that Φ′ (𝑥) = 𝜙 (𝑥) and 𝜙 ′ (𝑥) = −𝑥𝜙 (𝑥). The
negative class loss does not depend on 𝑡𝑖 . □
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