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Abstract

We consider the problem of estimating community memberships of nodes in a
network, where every node is associated with a vector determining its degree of
membership in each community. Existing provably consistent algorithms often require
strong assumptions about the population, are computationally expensive, and only
provide an overall error bound for the whole community membership matrix. This
paper provides uniform rates of convergence for the inferred community membership
vector of each node in a network generated from the Mixed Membership Stochastic
Blockmodel (MMSB); to our knowledge, this is the first work to establish per-node
rates for overlapping community detection in networks. We achieve this by establishing
sharp row-wise eigenvector deviation bounds for MMSB. Based on the simplex structure
inherent in the eigen-decomposition of the population matrix, we build on established
corner-finding algorithms from the optimization community to infer the community
membership vectors. Our results hold over a broad parameter regime where the
average degree only grows poly-logarithmically with the number of nodes. Using
experiments with simulated and real datasets, we show that our method achieves
better error with lower variability over competing methods, and processes real world
networks of up to 100,000 nodes within tens of seconds.

Keywords: Overlapping community detection, clustering, networks, asymptotic analysis
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1 Introduction

In most real-world networks, a node belongs to multiple communities. In an university,

professors have joint appointments to multiple departments; a movie like “Dirty Harry”

in the Netflix recommendation network belongs to action, thriller, and the drama genre

according to Google; in a book recommendation network like goodreads.com, “To Kill a

Mockingbird” can be classified as a classic, historical fiction, young-adult fiction, etc. The

goal of community detection is to consistently infer each node’s community memberships

from just the network structure.

A well-studied variant of this problem assumes that each node belongs to a single

community. For instance, under the Stochastic Blockmodel (SBM) [1], the probability of

a link between two nodes depends only on their respective communities. Thus, provably

consistent inference under the Stochastic Blockmodel involves finding the unknown cluster

membership of each node (see [2, 3, 4]) and these are not immediately applicable for the

general problem where a node may belong to multiple communities to different degrees.

In this paper, we work with the popular Mixed Membership Stochastic Blockmodel

(MMSB) [5]. This generalizes the Stochastic Blockmodel by letting each node i have different

degrees of membership in all communities. In particular, each node i is associated with a

community membership vector θi ∈ RK (θi ≥ 0, ‖θi‖1 = 1), drawn from a Dirichlet prior.

The model for generating the symmetric adjacency matrix is as follows: 1

θi ∼ Dirichlet(α) α ∈ RK
+ , i ∈ [n]

P := ρΘBΘT Aij = Aji ∼ Bernoulli(Pij) i, j ∈ [n]
(1)

The matrix Θ has θTi as its ith row. For identifiability we assume maxij Bij = 1. When B

has higher values on its diagonal as compared to the off-diagonal, edges are likely between

nodes that have a high membership in the same community. These are called assortative
1Note that self-loops are allowed here for simplicity of analysis. Without them, the analysis gets

cumbersome, leading to a negligible error term added to all our bounds, and we skip it for ease of exposition.
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communities. In contrast, in disassortative settings, off-diagonal elements are larger than

diagonal elements. Bipartite graphs are an extreme case of this. The smallest singular value

of B, denoted by λ∗(B), is a measure of the separation between communities. A larger

λ∗(B) corresponds to more well-separated communities. The parameter ρ controls the the

expected average degree of nodes O(nρ). We allow both ρ and λ∗(B) to go to zero with

increasing number of nodes n. The quantity α0 = ∑K
a=1 αa controls the level of overlap

between members of different communities. As α0 → 0, the MMSB model degenerates to

the Stochastic Blockmodel. The goal of community detection under the MMSB model is to

recover Θ and B from the observed adjacency matrix A.

Prior work on this problem include MCMC [5] and computationally efficient variational

approximation methods [6] (SVI) which do not have any guarantees of consistency. Other

interesting network models for overlapping communities and non-negative matrix factoriza-

tion style inference methods which do not have theoretical guarantees include [7, 8, 9, 10].

A notable family of algorithms that has been shown to be theoretically consistent uses

tensor-based methods [11, 12]. However, these are typically hard to implement, and provide

overall error bounds for the columns of the estimated Θ matrix.

Recently Mao et al. [13] have proposed a provably consistent geometric algorithm

(GeoNMF) for MMSB with diagonal B and α = α01K/K. However the guarantees only

work in the dense regime where average degree grows faster than
√
n. In contrast we

consider the general model where the only condition on B is full rank. We propose a

different algorithm which works when the degree grows faster than poly-logarithm of n.

Zhang et al. [14] propose a provably consistent spectral algorithm (OCCAM) for a related

but different model with degree correction. Similar to non-negative matrix factorization

methods [15, 13], the authors assume that each community has some “pure” nodes (which

only belong to that community). The authors also assume that B is positive semidefinite

and full rank with equal diagonal entries. Other assumptions ensure that the k-medians

loss function on θi attains its minimum at the locations of the pure nodes and there is a
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curvature around this minimum. This condition is typically hard to check.

Concurrent work [16] studies the degree corrected MMSB model, which extends the

MMSB model by allowing degree heterogeneity. The authors show an interesting fact

that the top eigenvectors, normalized appropriately, still form a simplex. However, their

proposed algorithm requires a combinatorial search step (SVS)2, and has a complexity

O(nKL + K3LK+1) for some tuning parameter L ≥ K. This can be prohibitive for large

K. SVS is analyzed under three separate settings, a) θi are sampled from a distribution

on the simplex such that every cluster has Θ(n) pure nodes, and the non pure nodes are

sufficiently separated from the pure ones; b) the θi’s are fixed, but form a few clusters, or c)

the θi’s are fixed, and most nodes are pure nodes.

Other notable examples of related but different models include [17, 18]. In [17], the

authors show consistency when the overlap between clusters is small, whereas in [18], a

combinatorial algorithm (SAAC) is proposed for detecting overlapping communities for a

related model.

In this paper, our contributions are as follows.

Identifiability: We present both necessary and sufficient conditions for identifiability of

the MMSB model in Sec 2. To our knowledge, we are the first to report both necessary and

sufficient conditions for identifiability under the MMSB model.

Recovery algorithm: As shown by many authors [13, 16, 19], the population eigenvectors

(i.e., eigenvectors of the matrix P) form a rotated and scaled simplex. We present an

algorithm called SPACL, which re-purposes an existing algorithm [20] for detecting corners

in a rotated and scaled simplex to find pure nodes, and then uses these to infer Θ and B.

It also includes a novel preprocessing step that improves performance in sparse settings.

The main compute-intensive parts of the algorithm are a) top-K eigen-decomposition of A,
2In the latest version of [16], the authors have added other methods, and proved node-wise error bounds.

But they note that among these methods, SVS performs the best. We compare against the newer bounds

later in our paper.
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Table 1: Table of notations. K leading eigenvectors of a matrix correspond to K largest

eigenvalues in magnitude.
n Number of nodes K Number of communities

ρB ∈ [0, 1]K×K Community link probabilities (B = BT ) α ∈ RK×1
+ Dirichlet prior parameters

Θ ∈ Rn×K
+ Fractional community memberships α0

∑
i αi

αmin (αmax) mini∈[K] αi (maxi∈[K] αi) ν α0/αmin

A Adjacency matrix P ρΘBΘT

ρ Upper bound on Pij Im m×m identity matrix

E Diagonal matrix of K largest eigenvalues in magnitude of P V ∈ Rn×K K leading eigenvectors of P

Ê Diagonal matrix of K largest eigenvalues in magnitude of A V̂ ∈ Rn×K K leading eigenvectors of A

VP ∈ RK×K True K pure node index rows of V λK(M) Kth largest eigenvalue of M

Vp ∈ RK×K Estimated K pure node index rows of V λ∗(M) Kth largest singular value of M

κ(M) Condition number of matrix M λi ith largest eigenvalue of P

Π ∈ {0, 1}K×K Permutation matrix λ̂i ith largest eigenvalue of A

1m All ones vector of length m ei ei(j) = 1(i = j)

b) calculating k-nearest neighbors of a point for preprocessing. There are highly optimized

algorithms and data structures for both of these steps [21, 22, 23].

Node-wise error bound: Some of the existing works on MMSB type models show

consistency in terms of the deviation or correlation of Θ̂ as a whole with respect to the

truth [14, 18, 12, 16]. Others establish consistency of the deviation of columns of Θ̂ [11]

(soft memberships of all nodes to a particular community) from their population counterpart.

In contrast, we obtain a uniform rate of convergence of each cluster membership vector

θ̂i, i ∈ [n] to θi. To our knowledge this is the first work to establish uniform node-wise error

bounds for an estimation algorithm for overlapping network models.

Empirical validation: In Sec 4, we compare SPACL with OCCAM, variational methods,

SAAC and existing non-negative matrix factorization algorithms (GeoNMF, BSNMF) on

both simulated and large real world networks with up-to 100,000 nodes.
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2 Notations, Identifiability and Algorithms

Before presenting our results on identifiability we introduce some notations and assumptions.

Let [n] := {1, 2, · · · , n}. For any matrix M, we use M(i, :)/M(:, i), M(S, :)/M(:, S) to

denote the ith row/column of matrix M and the submatrix formed by rows/columns in set

S of matrix M respectively, and S = i : j denotes the set of indices from i to j. We use

‖M‖ and ‖M‖F to respectively denote the operator and Frobenius norms of a matrix M,

and ‖v‖ to denote the Euclidean norm of a vector v. We denote [X|Y] as the concatenation

of columns of matrices X and Y. We use Õ and Ω̃ to denote upper and lower bounds up to

poly-logarithmic factors. Finally we present a consolidated list of notations in Table 1.

We shall now provide necessary and sufficient conditions for the identifiability of the

MMSB model with respect to Θ and B.

2.1 Identifiability

In this section, we obtain necessary and sufficient conditions for the identifiability of MMSB.

In contrast, prior work [14, 13, 18, 19] typically establishes sufficient conditions. We defer

the proofs of the theorems in this section to the supplementary material (Sec I).

Define a pure node as a node which belongs to exactly one community. All nodes in a

Stochastic Blockmodel are pure nodes, since every node belongs to exactly one community.

Define a “completely mixed” node as a node m such that θmj > 0 for all j ∈ [K].

Theorem 2.1. Suppose there are K communities, with at least one pure node for each

community. Then,

(a) If rank(B) = K, then the MMSB model is identifiable up to a permutation.

(b) If rank(B) = K − 1, and no row of B is an affine combination of the other rows of

B, then the MMSB model is identifiable up to a permutation.

(c) In any other case, if there exists a completely mixed node, then the model is not

identifiable.
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Theorem 2.2. Suppose that ρBij ∈ (0, 1) for all i, j ∈ [K]. MMSB is identifiable up to a

permutation only if there is at least one pure node for each of the K communities.

The above theorems show that the existence of pure nodes is necessary in most practical

scenarios.

2.2 Algorithm

We do inference for the MMSB model under the following assumption, which is sufficient

for identifiability.

Assumption 2.1. B ∈ RK×K is full rank, and there is at least one pure node for each of

the K communities.

Since the Dirichlet distribution does not give rise to pure nodes, we assume that the set

{θi, i ∈ [n]} includes one pure nodes from each cluster in addition to n−K vectors drawn

from a Dirichlet. The addition of one pure node per cluster to the standard Dirichlet draws

does not affect the analysis and we ignore this for ease of exposition.

We will now discuss our inference algorithm, whose consistency results are presented in

Sec 3. Let P = VEVT be the top-K eigendecomposition of P. We proceed from a simple

observation that the population eigenvectors lie on a rotated and scaled simplex, as shown

next. The following lemma is the starting point of most existing analysis for Stochastic

Blockmodels, and different variants of this have been observed independently by a number

of other researchers [19, 16, 13].

Lemma 2.3. Let V be the top K eigenvectors of P. Then, under Assumption 2.1, V =

ΘVP , where VP = V(I, :) is full rank and I is the indices of rows corresponding to K pure

nodes, one from each community.

Proof. W.L.O.G., reorder the nodes so that Θ(I, :) = I. Then, VPEVT
P = P(I, I) = ρB, so
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Algorithm 1 SPACL
Input: Adjacency matrix A, number of

clusters K

Output: Θ̂, B̂, ρ̂.

1: Get the top-K eigen-decomposition of

A as V̂ÊV̂T .

2: S = Prune(V̂, 10, .75, .95)

3: X = V̂([n] \ S, :)

4: Sp = SPA(XT )

5: Xp = X(Sp, :)

6: Θ̂ = V̂X−1
p .

7: Θ̂ = diag(Θ̂+1K)−1Θ̂+

8: B̂ = XpÊXT
p

9: ρ̂ = maxi,j B̂ij. B̂ = B̂/ρ̂

Algorithm 2 Prune
Input: Empirical eigenvectors V̂ ∈ Rn×K ,

an integer r, and two numbers

q, ε ∈ (0, 1).

Output: Set S of nodes to be pruned.

1: for i ∈ n do

2: vi = ‖eTi V̂‖

3: end for

4: S0 = {i : ‖eTi V̂‖ ≥ quantile(v, q)}

5: for i ∈ S0 do

6: di :={Dist. to r nearest neighbors}

7: xi = ∑
j dij/r

8: end for

9: S = {i : xi ≥ quantile(x, 1− ε)}

VP ∈ RK×K is full rank. Now, observe that VPEVT = P(I, :) = ρΘ(I, : )BΘT = ρBΘT .

Hence, V = PVE−1 = ρΘBΘTVE−1 = ΘVPEVTVE−1 = ΘVP .

Lemma 2.3 establishes that the corners of the simplex have the highest norm. This

allows us to find the pure nodes using existing corner-finding methods such as the successive

projection algorithm (SPA) [20].

Our algorithm, called “Sequential Projection After CLeaning” (SPACL, Algorithm 1)

applies SPA after a preprocessing step that prunes away noisy high-norm points. SPA first

finds the node with the maximum row norm of empirical eigenvector matrix V̂. This node

is added to the set of pure nodes. Then, all remaining rows of V̂ are projected on to the

subspace that is orthogonal to the span of the pure nodes. The process is repeated for K

iterations, and yields a set of K pure nodes, one from each community. With the pure nodes
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Figure 1: MMSB model with n = 5000, α = (0.4, 0.4, 0.4), B = (1 − q)I3 + q131T3 with

q = 0.001. (A) Nodes picked out by Pruning with ρ = 0.007. (B) Effect of pruning on

estimating Θ̂ (relative error defined in Sec 4.1).

in hand, SPACL estimates Θ and B using Lemma 2.3. We will show that these estimates

are consistent up to a permutation (Theorem 3.5).

If we had access to the population eigenvectors V, SPA would return the true pure nodes.

However, in reality we only observe the empirical eigenvectors, which are noisy versions of

the population eigenvectors. So there can be spurious nodes with row norm larger than

those of the “pure” nodes. As the graph gets sparser, the empirical points deviate more

from the population simplex. This motivates the pruning step of SPACL. The main idea

of pruning is to identify and remove the nodes which are far away from the population

simplex. Algorithm 2 finds these by first finding contenders of pure nodes, i.e., nodes i

whose eigenvector rows V̂i := eTi V̂ have large norm. Among these, it prunes nodes which

do not have too many nearest neighbors, or in other words, have larger average distance to

their nearest neighbors in comparison to others. The removal of these nodes improves the

performance of SPA on sparse networks.

Fig 1 (A) shows the benefits of pruning on a simulated network. After pruning, the

remaining nodes are closer to the population simplex. This leads to better estimation. Fig 1
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(B) varies ρ from 0.0050 to 0.0138 leading to average degrees increasing from 8 to 23, and

shows the effect of pruning (blue ♦) over not pruning (red ×) on the relative estimation

error of Θ. A more detailed discussion on pruning can be found in the supplementary

material (Sec X).

3 Main results

We want to prove that the sample-based estimates Θ̂, B̂ and ρ̂ concentrate around their pop-

ulation counterparts, respectively, Θ, B, and ρ. By Lemma 2.3, this requires concentration

of the rows of the empirical eigenvector matrix V̂ to the population counterpart V. Existing

techniques like the Davis-Kahan Theorem [24] only provide convergence in the Frobenius

norm ‖V − V̂O‖F (for some rotation matrix O) or the operator norm ‖VVT − V̂V̂T‖.

These lead to loose bounds on the rows of V̂. Other existing techniques [25, 26, 13] can be

applied to show that rows of V̂ have ÕP (1/
√
nρ2) relative error, but this is only meaningful

when the degree grows faster than square root of n, i.e. the dense degree regime. We show

that, under a broad parameter regime, the suitably defined relative deviation of any row of

V̂ from its population counterpart, converges to zero when average degree only grows faster

than the poly-logarithm of n.

In Section 3.1, we show the row-wise eigenspace error bound in terms of eigenvalues of

ΘTΘ. In Section 3.2, we translate the eigenspace bounds into error bounds on estimated

Θ̂ and B̂ matrices. Then, in Section 3.3, we provide detailed results when the rows of Θ

are drawn i.i.d from a Dirichlet distribution. Throughout, we compare our bounds to other

bounds in concurrent results. We also discuss the implications of our results for specific

models like the Stochastic Blockmodel.
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3.1 Row-wise eigenvector error bounds

Assumption 3.1. Assume ρn = Ω(log n), λK(ΘTΘ) ≥ 1/ρ, and λ∗(P) ≥ 4√nρ(log n)ξ

for some constant ξ > 1.

Theorem 3.1 (Row-wise eigenspace error). If Assumptions 2.1 and 3.1 are satisfied, then

with probability at least 1−O(Kn−2),

max
i∈[n]

∥∥∥eTi (V̂V̂T −VVT )
∥∥∥ = Õ

(
ψ(P)

√
Kn

√
ρλ∗(B)(λK(ΘTΘ))1.5

)
, (2)

where ψ(P) measures how well the eigenvalues of P can be packed into bins. The precise

definition is deferred to Eq (7), Sec 5 for ease of exposition.

Later, we will show that ψ(P) ≤ 2 min{K,κ(P)}2 in the worst case. But ψ(P) = O(1)

if the eigenvalues of P can be divided into a constant number of bins where each bin has

eigenvalues of the same order.

Remark 3.1 (Generalizing to low rank population matrices). In the supplementary material

(Sec VI), we also establish a similar eigenvector deviation result for networks generated

from general low rank population matrices.

Remark 3.2 (Row-wise eigenvector error). Note that the above row-wise error immediately

gives us an error bound on rows of V̂,

‖eTi (V̂−V(VT V̂))‖ = ‖eTi (V̂V̂T −VVT )V̂‖ ≤ ‖eTi (V̂V̂T −VVT )‖.

The K ×K matrix VT V̂ takes out the projection of V on V̂ from V̂. Note that while we

use VT V̂ to align V and V̂, most existing literature uses its matrix sign function [27, 28].

An detailed example can be found in Lemma IV.1 in the supplementary material.

The proof of Theorem 3.1 can be found in Sec 5. A key element in the proof is the

delocalization of population eigenvectors.
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Lemma 3.2 (Delocalization of population eigenvectors). We have that, maxi ‖eTi V‖2 ≤

1/λK(ΘTΘ) and mini ‖eTi V‖2 ≥ 1/(Kλ1(ΘTΘ)).

We defer the proof to the supplementary material (Sec II). Using this, we can prove the

following.

Corollary 3.3 (Row-wise relative convergence). If Assumption 3.1 is satisfied, and further-

more, λK(ΘTΘ) = Ω(n/K), K = Θ(1) and λ∗(B) = Ω(1), then

max
i∈[n]

∥∥∥eTi (V̂V̂T −VVT )
∥∥∥

‖eTi VVT‖
= Õ

(
1
√
nρ

)

with probability at least 1−O(Kn−2).

In concurrent work on MMSB models [19], analysis of empirical eigenvectors yields

a suboptimal ÕP (1/
√
nρ2) rate on the Frobenius norm of the overall deviation of the

whole community membership matrix from its population counterpart, thereby proving

consistency only in the regime where average degree grows faster than square root of

n, not poly-logarithm of n. While concurrent developments on entry-wise eigenvector

analysis [27, 29, 30] obtain the better ÕP (1/√nρ) rate, they either have a relatively worse

dependence on λ∗(B) or implicitly assume that the population eigenvalues are of the same

order. In [30], the authors assume that K grows slower than poly-log of n. We show that

the row-wise eigenvector bounds in [27] yield a worse dependence of λ∗(B) than ours in the

supplementary material (Sec IV). We achieve this better dependence on λ∗(B) by a new

construction in which we consider groups of population eigenvalues lying within specially

constructed intervals, such that the ratio of the largest and smallest eigenvalues within any

interval is controlled. Note that, if the population eigenvalues are of the same order, average

expected degree in [27] can be a constant times log n, whereas we require it to grow faster

than log2 n.

We can show that our bound is tighter by an order of 1/√nρ than a direct application

of the concentration bounds for general singular subspaces established in [28] to the MMSB
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model. While it is possible to improve this bound by using our theoretical results and careful

analysis similar to that of the ρ-correlated SBM graphs in [28], even then, our row-wise

eigenspace error bound is tighter by a factor of √ρ under a broad parameter regime, a

detailed discussion of which is deferred to Sec V of the supplementary material along with

derivations.

So far we have talked about row-wise bounds on empirical eigenspaces. But it seems

cumbersome to apply our algorithms on the n×n V̂V̂T matrix. The following simple result

shows that our algorithms return the same set of pure nodes using V̂ and V̂V̂T (proof in

Sec VII of the supplementary material). Thus, for the algorithm we simply use V̂.

Lemma 3.4. The pruning algorithm (Algorithm 2) and the SPA algorithm will return the

same node indices on both V̂ (V̂T for SPA) and V̂V̂T .

3.2 Consistency of estimated quantities

We now use our row-wise eigenspace error bounds to analyze Algorithm 1. We do not

analyze the pruning algorithm (Algorithm 2), since that requires distributional assumptions

on the row-wise eigenvector errors. We need the following assumption.

Assumption 3.2. Assume λ∗(B) = Ω̃
(
ψ(P)(κ(ΘTΘ))1.5K

√
n

√
ρλK(ΘTΘ)

)
.

Theorem 3.5. Let Θ̂ be obtained from Step 6 of Algorithm 1. We denote the row-wise

eigenspace error from Theorem 3.1 as follows:

ε = Õ

(
ψ(P)

√
Kn

√
ρλ∗(B)(λK(ΘTΘ))1.5

)
.

If Assumptions 2.1, 3.1, and 3.2 hold, there exists a permutation matrix Π such that with

probability at least 1−O(K/n2),

max
i∈[n]

∥∥∥eTi (Θ̂−ΘΠ
)∥∥∥ = O

(√
λ1(ΘTΘ)κ(ΘTΘ)ε

)
, (3)
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1
ρ
‖ρ̂B̂− ρΠTBΠ‖F = O

κ(ΘTΘ)
√
Kn√

λK(ΘTΘ)
ε

 . (4)

The proof can be found in the supplementary material (Sec VII).

Under the conditions of Corollary 3.3, our row-wise eigenvector bound leads to Õ(1/√nρ)

rates of convergence of θ̂i to θi. To our knowledge, this is the first such result for detecting

mixed memberships in networks.

Remark 3.3 (Application to Stochastic Blockmodels). Theorem 3.1 can be used to establish

strong consistency for Spectral Clustering for Stochastic Blockmodels. Here Θ is a binary

membership matrix with exactly one “1” on each row representing the cluster that node

belongs to. So, ΘTΘ is a diagonal matrix whose diagonal elements (and eigenvalues)

represent the sizes of the clusters. Consider the standard settings of K = 2 equal-sized

clusters: ρB = (pn − qn)I2 + qn121T2 , and λ1(ΘTΘ) = λK(ΘTΘ) = n/2. By definition,

maxij Bij = 1, so ρ = pn and λ∗(B) = (pn − qn)/pn. Our results imply exact recovery

with probability greater than 1 − O(K/n2), as long as (pn − qn)/√pn = Ω̃(1/
√
n). This

matches the separation condition in existing literature [4, 31] up-to logarithmic factors. Note

that, existing work on sharp threshold for exact recovery [32] assumes pn = alog n/n and

qn = blog n/n, where a, b are some constants. This implies λ∗(B) = (a− b)/a. But we also

allow λ∗(B)� 1 in the regime that the average expected degree grows as poly-log of n.

Remark 3.4 (Comparison to [16]). In the latest version of [16] (updated Sep. 4th, 2019),

the authors have added row-wise concentration results for eigenspaces. Their assumptions

translate to κ(ΘTΘ) = Θ(1). Furthermore, their assumption on the eigenvalues of P

translates to ψ(P) = O(1) in our terminology. Thus, in this regime, our error bound on

estimating θi (converted to `1 norm by multiplying
√
K) is

√
K worse than theirs up-to

logarithmic factors. A detailed discussion can be found in Sec VIII of the supplementary

material.
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3.3 Application to Dirichlet Prior

Now we consider the case where the {θi} vectors are drawn from a Dirichlet distribution.

We cannot directly use the bound in Theorem 3.5 since that bound depends on Θ. However,

we can probabilistically bound the relevant functions of Θ.

Lemma 3.6. If θi ∼ Dirichlet(α) with αmax = maxa αa, αmin = mina αa and ν := α0/αmin,

P
(
λ1(ΘTΘ) ≤ 3n (αmax + ‖α‖2)

2α0(1 + α0)

)
≥ 1−K exp

(
− n

36ν2(1 + α0)2

)

P
(
λK(ΘTΘ) ≥ n

2ν(1 + α0)

)
≥ 1−K exp

(
− n

36ν2(1 + α0)2

)

P
(
κ(ΘTΘ) ≤ 3αmax + ‖α‖2

αmin

)
≥ 1− 2K exp

(
− n

36ν2(1 + α0)2

)

where κ(.) is the condition number of a matrix.

Assumption 3.3 (Parameters of Dirichlet). Assume for some constant ξ > 1, we have,

ν := α0

αmin
≤

min(
√

n
27 logn , nρ)

2(1 + α0) ,
λ∗(B)
ν
≥ 8(1 + α0)(log n)ξ

√
nρ

.

One can easily check that under Assumption 3.3, by Lemma 3.6, Assumption 3.1 is

satisfied with probability at least 1−O(Kn−3). When α0 is a constant, the condition on

λ∗(B)/ν immediately implies ρn = Ω((log n)2ξ), since λ∗(B) ≤ ‖B‖ ≤ K ≤ ν. Since the

expected average degree is O(nρ), these conditions mean that the average degree must

grow faster than poly-log of n. This is the most common regime where most consistency

results on network clustering are shown [11, 2, 4]. The magnitude of α0 limits the amount of

overlap between communities. As noted also by [11], in many real world applications nodes

belong a few communities – so a constant or slowly growing α0 is a reasonable assumption.

For example, the conditions imposed by [16] on Θ can be translated to α0 = O(1) in the

context of MMSB models. Note that, our results can handle large α0, but at the cost of a

worse error bound.
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Our conditions also allow K to grow with n. If ρ = O(1), α0 = O(1), and λ∗(B) = Θ(1),

then K can grow with
√
n, up to poly-log terms (using the fact that ν ≥ K). Now, consider

the common case of a simple MMSB model withK communities: ρB = (pn−qn)IK+qn1K1TK
and α = α01K/K. Since the largest element of B is one by definition, we have ρ = pn.

This yields λ∗(B) = (pn − qn)/pn. We also have ν = K. Hence the second condition can

be interpreted as a lower bound on cluster separation: (pn − qn)/√pn = Ω̃ (K/
√
n). This

matches the separation condition in existing literature [11].

We now show error bounds on Θ̂ and B̂, when θi is drawn from a Dirichlet distribution.

For ease of exposition, we focus on the case with similar αi and α0 = O(1). This corresponds

to roughly-balanced communities with limited overlap.

Corollary 3.7. Let θi ∼ Dirichlet(α) with maxa αa ≤ C mina αa for some constant C ≥ 1,

α0 = O(1). If Assumptions 2.1 and 3.3 hold, and λ∗(B) = Ω̃(min{K,κ(B)}2K2
√
nρ

), there exists a

permutation matrix Π such that with probability at least 1−O(K/n2),

max
i∈[n]

∥∥∥eTi (Θ̂−ΘΠ
)∥∥∥ = Õ

(
min{K,κ(B)}2K1.5
√
ρnλ∗(B)

)
, (5)

1
ρ
‖ρ̂B̂− ρΠTBΠ‖F = Õ

(
min{K,κ(B)}2K3
√
ρnλ∗(B)

)
. (6)

Remark 3.5 (Error bound on Θ̂ as a whole). Note that we can get the Frobenius norm of

the error for the whole matrix by directly accumulating the row-wise error bounds. With

all other hyperparameters and parameters like α0, ν, K and λ∗(B) held constant, our

Frobenius-norm bound on Θ̂ is tighter by a factor of √ρ than that in [13, 19], which allows

the analysis to work on networks with average degree Ω̃(log n) rather than Ω̃(
√
n).

Anandkumar et al. [11] have the same degree regime as ours, but their algorithm assumes

prior knowledge of α0. Our bound has a worse dependence on K, α0 and ν compared to

them. To be concrete, when κ(B) = Θ(1) and the clusters are balanced with mild overlap,

i.e. maxa αa/mina αa = Θ(1) and α0 = O(1), we have an additional
√
K factor (after

converting our Frobenius norm bound to `1 norm by multiplying
√
Kn and theirs by K

16



to get the error of the whole Θ̂ matrix). In the worst case, our bound has an additional

K2√ν(1 + α0) factor. We provide more details in the supplementary material (Sec IX).

4 Experimental results

We present both simulation results and real data experiments to compare SPACL with

existing algorithms for overlapping network models. We compare with the Stochastic

Variational Inference algorithm (SVI) [6], a geometric algorithm for non-negative matrix

factorization for MMSB models with equal Dirichlet parameters (GeoNMF) [13], Bayesian

SNMF (BSNMF) [10], the OCCAM algorithm [14] for recovering mixed memberships, and

the SAAC algorithm [18].3 For real data experiments we use two large datasets (with

up to 100,000 nodes) from the DBLP corpus. One of these is assortative (B has positive

eigenvalues) and one which is disassortative (B has negative eigenvalues). We show that for

the disassortative setting, SPACL significantly outperforms other methods.

4.1 Simulations

In this section, we investigate the sensitivity of SPACL and competing algorithms to the

Dirichlet parameter α, the number of communities K, the sparsity control parameter ρ, and

to the eigenvalues of B. Our simulated graphs have n = 5000, unless specified otherwise. We

show the relative error (‖Θ̂−Θ‖F/‖Θ‖F ) of different methods, averaged over 10 random

runs in a range of parameter settings. The largest row-wise relative error has similar trends.

Further results for varying B are presented in the supplementary material (Sec XI).

Some algorithms have an underlying model that is slightly different from MMSB. We

handle these as follows. For OCCAM, we normalize each row of Θ by its `2 norm, thereby
3We were unable to run the GPU implementation of [11] since a required library CULA is no longer

open source. We could not get good results with the CPU implementation with default settings.
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(A) (B) (C) (D)

Figure 2: (A) Error against εα: α = (0.5− εα, 0.5, 0.5 + εα). (B) Error against increasing

K. (C) Error against increasing ρ (D) Error against λK(B).

absorbing the `2 norm in the degree parameter. For SAAC, we threshold elements of Θ by

1/K to get a binary matrix. For BSNMF, no adjustment is necessary. However, note that

BSNMF assumes B is identity.

Changing α: In Fig 2 (A) we use α = (0.5− εα, 0.5, 0.5 + εα) and plot the relative error

against εα. We set K = 3, ρ = 0.15, Bii = 1, i ∈ [K], Bij = 0.5 for i 6= j. Recall that for

skewed α we get unbalanced cluster sizes. SPACL is better than SAAC, SVI, BSNMF and

GeoNMF, and also more stable (small variance). For imbalanced clusters (large εα), SPACL

also outperforms OCCAM.

Changing K: In Fig 2 (B) we plot relative error against increasing K. We use ρ = 0.1,

αi = 3/K = 1, Bii = 1, i ∈ [K], Bij = 0.2 for i 6= j. We can see that SPACL outperforms

SAAC, and is more stable than BSNMF and GeoNMF. When K is very large (>7), everyone

performs poorly. When K is small (<5), SPACL works much better than OCCAM and

SVI. However, when K is moderately large, OCCAM is slightly better than SPACL. This

is because in those cases, the eigenspaces do not concentrate very well, and estimating Θ̂

with cluster centroids (as in OCCAM) seems to reduce the noise.

Changing sparsity: We set α = (0.4, 0.4, 0.4), Bii = 1, i ∈ [K], Bij = 0.05 for i 6= j. We

increase ρ from 0.005 to 0.013, Fig 2 (C) shows the result. We see that, the error of SPACL
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Table 2: Statistics for author-author (Mono) and bipartite paper-author (Bi) graphs.
Dataset DBLP1 DBLP2 DBLP3 DBLP4 DBLP5

Mono Bi Mono Bi Mono Bi Mono Bi Mono Bi

# nodes n 30,566 103,660 16,817 50,699 13,315 42,288 25,481 53,369 42,351 81,245

# communities K 6 12 3 6 3 6 3 6 4 8

Average Degree 8.9 3.4 7.6 3.4 8.5 3.6 5.2 2.6 6.8 3.0

Overlap % 18.2 6.3 14.9 5.6 21.1 5.7 14.4 6.9 18.5 9.7

is smaller than or similar to that of the best performing algorithm among the others. In

addition, it also has smaller variance.

Changing λK(B): We conclude the simulations with experiments on B with negative

eigenvalues. We generate B so that the smallest eigenvalue λK(B) of B is negative. We set

B =


1 0.2 0.1

0.2 0.5 0.075 · i

0.1 0.075 · i 0

 and vary i ∈ [15]. As i grows, λK(B) becomes more negative.

We set K = 3, ρ = 0.15, α = (1/3, 1/3, 1/3). In the plot of relative error against λK(B)

(Fig 2 (D)), we see that SPACL is much better than others over the entire parameter range.

4.2 Real Data

We use the two types of DBLP networks obtained from the DBLP dataset4, where each

ground truth community is a group of conferences on one topic. The author-author networks

were used in [13]; in this paper we also conduct experiments on the bipartite networks

by using both papers and authors as nodes. Each community is split into two, the paper

community and the author community. The papers are pure nodes since they belong to

one conference and hence one community, whereas the authors may belong to more than

one community, since they often publish in many conferences. The details of the subfields
4http://dblp.uni-trier.de/xml/
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Figure 3: RCavg and running time (log scale) on DBLP Mono (A, B) and DBLP Bi (C, D).

BSNMF was out of memory for bipartite versions of DBLP1 and DBLP5.

can be found in [13]. We have two simple preprocessing steps for the adjacency matrix:

1) delete nodes that do not belong to any community; 2) delete nodes with zero degree.

The statistics of the network are in Table 2, which show that despite being sparse, the

networks have large overlaps between communities. The amount of overlap is measured by

the number of overlapping nodes divided by n.

Implementation details: For real world networks, specially the bipartite networks, when

average degree of graphs with 100,000 nodes is smaller than four, some nodes may have

extremely small values of Θ̂ and the corresponding rows may in fact become zero after

thresholding. For those we essentially cannot make any prediction. This is why for Step 7

of Algorithm 1, we threshold all values smaller than 10−12 to zero and we do not normalize

rows which are all zeros. This does not make any difference for simulations, but for the real

world networks, this stabilizes the results.

Evaluation Metric: For author nodes, we construct the corresponding row of Θ by

normalizing the number of papers an author has in different ground truth communities. We

present the averaged Spearman rank correlation coefficients (RC) between Θ(:, a), a ∈ [K]

and Θ̂(:, σ(a)), where σ is a permutation of [K]. The formal definition is:

RCavg(Θ̂,Θ) = 1
K

max
σ

K∑
i=1

RC(Θ̂(:, i),Θ(:, σ(i))).

Note that RCavg(Θ̂,Θ) ∈ [−1, 1], and higher is better. Since SAAC returns binary
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assignment, we compute its RCavg against the binary ground truth.

Performance: We report the RCavg score in Fig 3. The superior performance of SPACL

on the paper-author networks over the author-author networks can be explained by the

fact that the bipartite network retains information that is lost when the author-author

networks are constructed. Also SPACL outperforms all other methods on bipartite networks,

since these are disassortative and the corresponding B will have negative eigenvalues. On

co-authorship graphs, SPACL performs comparably to GeoNMF, while the other methods

are worse. Both SPACL and GeoNMF are much faster than the competing algorithms.

5 Analysis

Here we present the main proof idea of Theorem 3.1. We equate the difference in empirical

and population eigenspaces with the Cauchy integral of a matrix resolvent. To bound

the row-wise difference in eigenspaces, we have to specify the contours for the complex

integration and then bound a matrix series expansion. Our contours are carefully chosen

by a discretization of the eigenvalues of P. This yields an error bound with the proper

dependence on λ∗(B) and κ(P). The matrix series expansion is controlled by upper-bounding

the first log n terms and the rest separately, where the partial sum for the first log n terms

is controlled by applying the union bound. This is a common technique in perturbation

analysis [33]. A similar strategy is also used in concurrent work [29]. We defer proofs of

some of the technical lemmas to the supplementary material (Sec III).

5.1 Eigenspace Row-wise Concentration

Before presenting the analysis of the row-wise error-bounds of empirical eigenvectors, we

present a discretization scheme of the population eigenvalues, which later helps in getting a

better dependence of the overall row-wise error on the smallest singular value of P, which

21



can also be thought of as the separation between blocks.
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Figure 4: An illustration of Definition 5.1.

Definition 5.1 (A discretization of eigenvalues). Let us divide the eigenvalues of P into

the positive ones (S+) and negative ones (S−). We start with the smallest eigenvalue in S+.

Denote this by λ∗+. We set the gap g1 = λ∗+ and keep moving through the eigenvalues in

S+ in increasing order until we find two consecutive eigenvalues which have gap g2 > g1.

We repeat this until all eigenvalues in S+ are covered. Then every pair of consecutive

eigenvalues in the kth interval is within gap gk, and gk grows with k. We define sk and ek as

the starting and ending index of eigenvalues of the kth interval. Formally, the kth interval of

positive eigenvalues is the set

S+
k = {λsk , . . . λek ∈ S+ : λi − λi+1 ≤ gk for sk ≤ i ≤ ek , λek+1 − λsk > gk}.

Let nk := |S+
k | be the number of eigenvalues in the kth interval. Fig 4 shows an example.

Let the number of intervals with positive eigenvalues be I+. Note that λ∗(P) ≤ λ∗+ ≤

g1 < g2 · · · < gI+ . By a similar splitting process for the negative eigenvalues in S−, we can

define I−, s−k, e−k, and g−k. Let λs0 = 0 and define

ψ(P) :=
I+∑
k=1

λsk(λsk − λsk−1)
g2
k

+
I−∑
k=1

λs−k(λs−k − λs−k+1)
g2
−k

. (7)

ψ(P) measures how tightly the eigenvalues of P can be packed together.

The above discretization lets us control the ratio of the largest eigenvalue in each interval

and the gap between an interval and the next. This in turn helps bound ψ(P).
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Lemma 5.1. In general, ψ(P) ≤ 2 min{K,κ(P)}2. If the eigenvalues of P can be divided

into a constant number of bins where eigenvalues in each bin are of the same order,

ψ(P) = O(1).

For ease of exposition, we shall henceforth work with just the positive eigenvalues in our

proofs, and use I for the number of intervals. The proofs go through for negative eigenvalues

using a nearly identical argument. We emphasize that the statement of Theorem 3.1

considers both positive and negative eigenvalues.

In order to prove Theorem 3.1, we will first introduce the notion of matrix resolvents

and useful identities on resolvents.

Definition 5.2. A resolvent of a matrix M ∈ Rn×n is defined as GM(z) = (M − zI)−1,

where z 6∈ {λi(M)}ni=1. We can also write the resolvent as ∑n
i=1

vi(M)vi(M)T
λi(M)−z , where vi(M) is

the ith eigenvector of M.

Let us define:

Ez = diag
{ λi

z(λi − z)

}K
i=1

 , Mz = VEzVT . (8)

As we see below this matrix is an integral part of the resolvent of the expectation matrix P.

GP(z) =
n∑
i=1

vivTi
λi − z

=
K∑
i=1

vivTi
( 1
λi − z

+ 1
z

)
− I
z

= Mz −
I
z

(9)

We will use a standard technique to compute eigenspaces of matrices (also used in [34]

Lemma A.2). Consider an interval (a, b) such that no eigenvalue of a symmetric matrix M

equals a or b. Now consider a rectangular contour C in the complex plane which passes

through a+ γ
√
−1, a− γ

√
−1, b− γ

√
−1, b+ γ

√
−1 in counter clockwise direction, where

γ > 0. From the Cauchy integration formula, we know that

1
2π
√
−1

∮
C
GM(z)dz = −

∑
i:λi(M)∈(a,b)

vi(M)vi(M)T (10)
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Definition 5.3. We consider a sequence of non-overlapping contours Ck, k ∈ [I] (I ≤ K)

created using ak, bk, γk, where ‖A−P‖ < ak < bk, and none of the eigenvalues of A or P

equal ak, bk for k ∈ [I].

Let Vk denote the n×nk matrix with the eigenvectors of P corresponding to eigenvalues

in (ak, bk). Similarly let V̂k denote the eigenvectors of A corresponding to eigenvalues in

(ak, bk). Hence, using the Cauchy integration formula (10), we have:

VkVT
k − V̂kV̂T

k = 1
2π
√
−1

∮
Ck

(GA(z)−GP(z)) dz (11)

Furthermore, it is not hard to check that, ∀x ∈ [n],

eTx
(
VkVT

k − V̂kV̂T
k

)
= 1

2π
√
−1

∮
Ck

eTx (GA(z)−GP(z)) dz (12)

We bound the Frobenius norm of the above quantities using Lemma 5.2 below.

Lemma 5.2. For contours in Definition 5.3, we have:∥∥∥∥∥eTx
I∑

k=1
(VkVT

k − V̂kV̂T
k )
∥∥∥∥∥ ≤

I∑
k=1

bk − ak + 2γk
π

max
z∈Ck

(P1(z) + P2(z)), (13)

where P1(z) = |z|‖GA(z)‖‖A−P‖‖Ez‖‖eTxGA−P(z)V‖,

P2(z) = ‖eTxGA−P(z)(A−P)V‖F‖Ez‖.

Now we need to:

1. Define contours and events so that the LHS of Eq (13) covers the whole eigenspace.

2. Bound P1(z) and P2(z) over each contour, under these events. This requires bounds on

‖eTxGA−P(z)vi‖, and ‖eTxGA−P(z)(A−P)vi‖, where vi denotes the ith column of V.

We also need ‖Ez‖, ‖GA(z)‖, ‖GA−P(z)‖, etc. This requires us to bound |eTi Htvi|

for t ≤ log n, where H := (A − P)/√nρ. For t = 1, we prove the following lemma,

which uses the fact that V is delocalized with high probability (see Lemma 3.2).
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Lemma 5.3. Let vk denote the kth population eigenvector of P. If Assumption 3.1 is

satisfied, for a fixed i, P
(
∃k ∈ [K], |eTi Hvk| ≥ 4 log n‖vk‖∞

)
= O(K/n3).

For 1 < t ≤ log n, we adapt a crucial result from [33].

Lemma 5.4. Let H := (A − P)/√nρ. As long as Assumption 3.1 is satisfied for some

constant ξ, for any fixed vector v, for a fixed i and for 1 < t ≤ log n,

P
(
|eTi Htv| ≤ (log n)tξ‖v‖∞

)
≥ 1− exp(−(log n)ξ/3).

Proofs of Lemmas 5.2, 5.3, and 5.4 are in the supplementary material (Secs III.2, III.3,

and III.4 respectively).

We will now define some events, which will be used extensively to show that the contours

cover all population and empirical eigenvalues, and to bound P1(z) and P2(z) in Eq (13). We

will use E to denote an event and Ē to denote its compliment. Let vk be the kth population

eigenvector. Under Assumption 3.1, for t ≤ log n,

E ′ := {‖A−P‖ ≤ C
√
nρ} P(Ē ′)

(i)
≤ n−3

E1 :=
{∣∣∣eTi Hvk

∣∣∣ ≤ 4 log n‖vk‖∞,∀k ∈ [K]
}

P(Ē1)
(ii)
≤ O

(
K/n3

)
(14)

Et :=
{∣∣∣eTi Htvk

∣∣∣ ≤ (log n)tξ‖vk‖∞,∀k ∈ [K]
}

P(Ēt)
(iii)
≤ K exp(−(log n)ξ/3), 1 < t ≤ log n

For any community membership matrix Θ, P(Ē ′|Θ) can be bounded directly using

Theorem 5.2 of [2], since Assumption 3.1 requires that nρ = Ω(log n). Hence step (i) follows.

Steps (ii) and (iii) follow from Lemmas 5.3 and 5.4 respectively. To denote order notation

conditioned on event E ′, we will use, X E ′= O(.) to denote, P(X = O(.)) = P(E ′).

Picking the contours Ck: Consider the discretization in Definition 5.1. For the kth

interval, use γk = gk/4, ak = max(λek − gk/2, (1 + c)‖A − P‖), for some c > 0 and

bk = λsk + gk/2. If bk ≤ ak, we ignore the contour. If either ak or bk equal an eigenvalue

of A or P, for any ε > 0, they can be perturbed by at most ε to guarantee that they do
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not coincide with eigenvalues of A or P. This is possible because for a given n, the set

{A | A ∈ {0, 1}n×n} is finite.

Now we bound ‖GA(z)‖, ‖GP(z)‖, ‖Ez‖ and ‖GA−P(z)‖. Since the gap between the

smallest eigenvalue (in magnitude) of the kth interval and the largest eigenvalue in the

(k − 1)th interval is gk, and by construction (Definition 5.1) λ∗(P) ≤ g1 < g2 < . . . , and

λek ≥ gk, we note that for each contour Ck, conditioned on E ′, |z| can be upper and lower

bounded as follows.

|z| ≤
√
b2
k + γ2

k ≤ bk + γk = λsk + 3gk/4 (15)

|z| ≥ max((1 + c)‖A−P‖, |λek − gk/2|) ≥ |λek − gk/2| ≥ gk/2 (16)

|z − λi| ≥ gk/2, |z − λ̂i|
(i)
≥ gk/2−O(√nρ) (17)

‖Mz‖ = ‖Ez‖ ≤ max
i

∣∣∣∣ 1
λi − z

+ 1
z

∣∣∣∣ = O

(
1
gk

)
(18)

For all i ∈ [n] and for all z ∈ Ck, Eq (18) follows from Eqs (8), (16) and (17) and

Assumption 3.1.

Step (i) in Eq (17), uses |λ̂i − λi|
E ′= O(√nρ) via Weyl’s inequality. Finally using

Eqs (16), (17) and (18) we also have for all z ∈ Ck, conditioned on E ′,

‖GP(z)‖ = O

(
1
gk

)
‖GA(z)‖ ≤

∥∥∥∥∥∑
i

v̂iv̂Ti
λ̂i − z

∥∥∥∥∥ = O

(
1

gk −O(√nρ)

)
(19)

Now conditioned on E ′ , Eq (19) gives:

‖GA(z)−GP(z)‖ ≤ ‖GP(z)‖‖P−A‖‖GA(z)‖ = O

(√
nρ

gk

)
O

(
1

gk −O(√nρ)

)
(20)

Now we will bound the RHS of Eq (13) in Lemma 5.2.

Lemma 5.5. Let vi denote the ith column of V. Let Assumption 3.1 be satisfied for some

constant ξ. Consider the events defined in Eq (14). Conditioned on ⋂logn
t=1 Et ∩ E ′,

|eTxGA−P(z)vi| =
O
(
‖vi‖∞ + n−2ξ

)
λ∗(P) .
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|eTxGA−P(z)(A−P)vi| = O

√nρ
(
(log n)ξ‖vi‖∞ + n−2ξ

)
λ∗(P)

 .
Proof. First note that by construction ∀z ∈ Ck,∀k, |z| ≥ ak > ‖A − P‖, we have the

following series expansion for GA−P(z),

GA−P(z) = −1
z

∑
t≥0

(A−P
z

)t
. (21)

For H defined in Lemma 5.4, for 1 ≤ t ≤ log n, conditioned on Et, t ≥ 1,

∣∣∣∣∣eTx (A−P)tvi
zt

∣∣∣∣∣ =
∣∣∣∣∣eTxHtvi

(√nρ)t

zt

∣∣∣∣∣ ≤

(√

nρ(logn)ξ
|z|

)t
‖vi‖∞ t ≤ log n(

‖A−P‖
|z|

)t
t > log n

, (22)

where we use Lemmas 5.3 and 5.4. It is easy to verify that the above holds for t = 0. As

Assumption 3.1 gives:

λ∗(P)
E ′
≥ 4√nρ(log n)ξ ⇒ max

k,z∈Ck

√
nρ(log n)ξ

|z|
E ′
≤ 1

2 (23)

Conditioned on ⋂logn
t=1 Et ∩ E ′, Eqs (21) and (22) give:

max
k,z∈Ck

|eTxGA−P(z)vi| ≤ max
k,z∈Ck

1
|z|

∣∣∣∣∣
∞∑
t=0

eTx (A−P)t
zt

vi
∣∣∣∣∣

≤ max
k,z∈Ck

1
|z|

logn∑
t=0

∣∣∣∣∣eTx (A−P)tvi
zt

∣∣∣∣∣+ max
k,z∈Ck

1
|z|

∑
t>logn

∣∣∣∣∣eTx (A−P)tvi
zt

∣∣∣∣∣
(Eqs (22) and (23)) ≤ max

k,z∈Ck

‖vi‖∞
|z| − √nρ(log n)ξ + max

k,z∈Ck

(‖A−P‖/|z|)logn+1

|z| − ‖A−P‖

= O

(
‖vi‖∞

λ∗(P)/2−√nρ(log n)ξ +
(2C√nρ/λ∗(P))logn+1

λ∗(P)/2− C√nρ

)

(Eq (23)) =
O
(
‖vi‖∞ + n−2ξ

)
λ∗(P)

We also have, for large enough n,
(
2C√nρ/λ∗(P)

)logn+1
≤
(
C/(2(log n)ξ)

)logn+1
≤ exp(O(log n)−

ξ(log n+ 1) log log n) = O
(
1/(n2ξ)

)
. Furthermore, using the same argument as before,

max
k,z∈Ck

|eTxGA−P(z)(A−P)vi| = max
k,z∈Ck

∣∣∣∣∣
∞∑
t=1

eTx (A−P)t
zt

vi
∣∣∣∣∣ = O

√nρ
(
(log n)ξ‖vi‖∞ + n−2ξ

)
λ∗(P)


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Now we are ready to finish the proof of Theorem 3.1.

Proof of Theorem 3.1. Our goal is to bound the row norm of VVT −V̂V̂T using Lemma 5.2.

The first step is to show:

‖eTx (VVT − V̂V̂T )‖ E
′

==
∥∥∥∥∥

I∑
k=1

eTx (VkVT
k − V̂kV̂T

k )
∥∥∥∥∥ . (24)

Recall that ak = max(λek − gk/2, (1 + c)‖A−P‖). Conditioned on E ′, and using Assump-

tion 3.1 and Lemma II.4 in the supplementary material, we have λek − gk/2 ≥ λ∗(P)/2 =

ω(‖A−P‖). This gives ak = λek − gk/2. Hence the intervals are mutually exclusive and

cover all the population eigenvalues, proving Eq (24). By triangle inequality, conditioned

on ⋂logn
t=1 Et ∩ E ′, from Lemma 5.2, we have:

‖eTx (VVT − V̂V̂T )‖ ≤
I∑

k=1
‖eTx (VkVT

k − V̂kV̂T
k )‖

(i)=
I∑

k=1
O

(
λsk − λek + 2gk

gk

)
max
z∈Ck

(
O

(√
nρ(bk + γk)

gk

)
‖eTxGA−P(z)V‖+ ‖eTxGA−P(z)(A−P)V‖

)
(ii)= O(ψ(P)) max

k,z∈Ck

(
O (√nρ) ‖eTxGA−P(z)V‖+ ‖eTxGA−P(z)(A−P)V‖

)
(iii)= O

(
ψ(P)

√
Knρ

λ∗(P)

)(
(1 + (log n)ξ) max

i
‖vi‖∞ + 2n−2ξ

)
(iv)= O

(
ψ(P)

√
Knρ

ρλ∗(B)λK(ΘTΘ)

) 1 + (log n)ξ√
λK(ΘTΘ)

+ 2n−2ξ


(v)= Õ

(
ψ(P)

√
Kn

√
ρλ∗(B)(λK(ΘTΘ))1.5

)
(25)

Step (i) uses Eq (15). Step (ii) uses the fact that λek − λsk−1 = gk and λsk/gk = Ω(1). Step

(iii) follows from Lemma 5.5. Step (iv) uses λ∗(P) ≥ ρλ∗(B)λK(ΘTΘ) (Lemma II.4 in the

supplementary material) and Lemma 3.2. Step (v) uses λ1(ΘTΘ) ≤ n (Lemma II.2 in the

supplementary material) and 1/
√
λK(ΘTΘ) ≥ 1/

√
λ1(ΘTΘ) = Ω(1/

√
n) = Ω(n−2ξ). To
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bound the failure probability, for some constant ξ > 1 and large enough n, Eq (14) gives:

P(
logn⋂
t=1
Et ∩ E ′) ≥ 1− P(Ē ′)−

logn∑
t=1

P(Ēt) ≥ 1−O(Kn−3).

Now the theorem statement follows by using a union bound.

6 Conclusion

In this paper, we propose a fast and provably consistent algorithm called SPACL for

inferring community memberships of nodes in a network generated by a Mixed Membership

Stochastic Blockmodel (MMSB). Our proof has several new aspects, including a sharp row-

wise eigenvector bound using complex contour integration, a new grouping of the eigenvalues

to yield better dependence on the smallest singular value of B. Our eigenvector deviation

results can be easily generalized to low rank population matrices arising from models

other than MMSB. It also helps us establish the convergence of inferred soft community

memberships of each node to its population counterpart, which is to our knowledge, the

first such result for overlapping network models. In contrast to prior work, we only assume

that each community has at least one pure node, and we prove both necessary and sufficient

conditions for identifiability under MMSB. We demonstrate the empirical performance of

SPACL on simulated and real-world networks of up-to 100,000 nodes. Our experiments show

that SPACL has smaller error as well as lower variability than other competing methods. In

terms of scalability, we can obtain overlapping cluster memberships of large 100,000 node

networks in tens of seconds.
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