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Abstract

What does a ‘normal’ computer (or social) network look like? How can we spot
‘abnormal’ sub-networks in the Internet, or web graph? The answer to such questions
is vital for outlier detection (terrorist networks, or illegal money-laundering rings),
forecasting, and simulations (“how will a computer virus spread?”).

The heart of the problem is finding the properties of real graphs that seem to
persist over multiple disciplines. We list such patterns and “laws”, including the
“min-cut plots” discovered by us. This is the first part of our NetMine package: given
any large graph, it provides visual feedback about these patterns; any significant
deviations from the expected patterns can thus be immediately flagged by the user
as abnormalities in the graph. The second part of NetMine is the A-plots tool
for visualizing the adjacency matrix of the graph in innovative new ways, again
to find outliers. Third, NetMine contains the R-MAT (Recursive MATrix) graph
generator, which can successfully model many of the patterns found in real-world
graphs and quickly generate realistic graphs, capturing the essence of each graph in
only a few parameters. We present results on multiple, large real graphs, where we
show the effectiveness of our approach.
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1 Introduction

Graphs and networks have attracted significant interest recently, due to their
ability to model many distinct real-world datasets under one intuitive frame-
work. For example, the World Wide Web of webpages connected by hyperlinks,
the Internet of computers connected by routers, social networks of individuals,
protein interaction networks, and many other datasets can be easily expressed
as a graph of nodes (webpages, computers, individuals, etc.) connected by
edges (hyperlinks, routing links, etc.) The question we must ask is: How can
we visualize the information contained in such large graphs efficiently?

Laying out the graph on a computer screen quickly becomes a hard prob-
lem as the graph size grows to millions (or even billions) of nodes of edges
(such as the WWW graph). One solution is to look for patterns or motifs that
appear in most real-world graphs, and indeed, many surprising regularities
and “laws” have recently been discovered. The World Wide Web, the Inter-
net topology and Peer-to-Peer networks follows surprising power-laws (Broder
et al., 2000; Faloutsos et al., 1999; Barabási, 2002), exhibit strange “bow-tie”
or “jellyfish” structures (Broder et al., 2000; Tauro et al., 2001), while still
having a small diameter (Albert and Barabási, 2002). Finding patterns, laws
and regularities in large real networks has numerous applications, from crimi-
nology and law enforcement (Chen et al., 2003) to analyzing virus propagation
patterns (Pastor-Satorras and Vespignani, 2001) and understanding networks
of regulatory genes and interacting proteins (Barabási, 2002) and so on. A
method for visualizing common patterns can immediately tell the user how
the given graphs matches “expectations,” and whether there are any abnor-
malities that merit further attention.

To find better patterns (and, concurrently, better anomaly detection algo-
rithms), we need to model real-world graphs well. In other words, we can
develop a good graph generator, which can create synthetic yet “realistic”
graphs. Then, given any graph as input, we can check to see if the generator
can build a “similar” graph under any set of parameters. If not, then it might
represent an anomaly in the input graph, such as a misconfigured router in
the Internet graph.

Which patterns should we be looking for? How can we spot suspicious/erroneous
subgraphs quickly? These are the questions that our NetMine system focuses
on. The main contributions of this paper are that

• it proposes the “min-cut plots”, an interesting pattern to check for while
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analyzing a graph
• it proposes the “A-plots” as a tool for quickly finding suspicious subgraphs/nodes
• it scales very well with size of the graph for all its tasks, and thus is able to

quickly handle graphs of hundreds of thousands of nodes
• it shows how to interpret these plots, and how we found surprising patterns

and outliers on real graphs
• finally, it describes a recent, promising graph generator, “R-MAT”, so that

the user could generate similar, synthetic graphs.

The rest of this paper is organized as follows: Section 2 surveys the existing
graph laws and generators. Section 3 presents our proposed methods and al-
gorithms for mining large graphs. Section 4 gives the experimental results. We
conclude in Section 5.

2 Background and Related Work

A graph G = (V, E), is a set V of N nodes, and a set E of E edges between them.
The adjacency matrix A of graph G is an N ∗N matrix, with entry a(i, j) = 1
if the edge (i, j) exists, and 0 otherwise. The edges may be undirected (like
the network of Internet routers and their physical links) or directed (like the
network of who-trusts-whom in the epinions.com database (Richardson and
Domingos, 2002)). Bipartite graphs have edges between two sets of nodes,
like, for example, the graph of the movie-actor database (www.imdb.com). We
split the discussion of related work into two parts: graph patterns, and graph
generators.

2.1 Patterns and “Laws”

Skewed distributions, and power laws of the form y = xa, appear very often.
Power-laws have been observed for the degree distributions of the Internet,
the WWW and the citation graph, the distribution of “bipartite cores” (≈
communities), the eigenvalues of the adjacency matrix and others (Faloutsos
et al., 1999; Kleinberg et al., 1999; Albert and Barabási, 2002). Recently, Pen-
nock et al. (Pennock et al., 2002) observed deviations from power-laws for the
Web graph, which are well-modeled by the truncated, discretized lognormal
(“DGX”) distribution of Bi et al. (Bi et al., 2001). Graphs also exhibit a strong
“community” effect (Gibson et al., 1998; Kumar et al., 1999). Most real graphs
like the Web and the Internet have surprisingly small diameters (Albert and
Barabási, 2002; Tauro et al., 2001).Apart from these, there are many other
measures such as clustering coefficient, expansion, resilience, prestige, influ-
ence, stress and so on (Chakrabarti, 2002; Gkantsidis et al., 2003; Tangmu-
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narunkit et al., 2001; Palmer et al., 2002). Broder et al. (Broder et al., 2000)
show that the WWW has a “bow-tie” structure, while Tauro et al. (Tauro
et al., 2001) find that the Internet topology is organized as a set of concentric
circles around a small core, like a “Jellyfish”.

2.2 Graph Generators

The earliest graph generating model is by Erdős and Rényi. However it prov-
ably violates the power laws above. Recent graph generators can be grouped
in two classes: degree based and procedural. Given a degree distribution (typ-
ically following a power-law), the degree-based ones try to find a graph that
matches it (Albert and Barabási, 2002; Newman, 2003), but without giving any
insights about the graph or trying to match other criteria (like small diameter,
eigenvalues etc.). On the other hand, procedural generators (like our proposed
R-MAT method) try to find simple mechanisms to generate graphs that match
a property of the real graphs and, typically, the power law degree distribution.
The typical representative here is the Barabasi-Albert (BA) method with the
“preferential attachment” idea: keep adding nodes; new nodes prefer to con-
nect to existing nodes with high degrees. Many modifications and alternatives
to the basic idea have been proposed; some generators also include the ge-
ometrical layout of nodes in their models (Albert and Barabási, 2000, 2002;
Newman, 2003; Pennock et al., 2002; Bu and Towsley, 2002). The BRITE
generator (Medina et al., 2000) uses components from several of the above
models.

In general, all of the above generators fail to meet one or more of the following
goals: (a) the generator should be procedural (b) it should be able to generate
all types of graphs (directed/undirected, bipartite, weighted) (c) it should
match both power-law degree distributions and the “unimodal” distributions
observed by Pennock et al. (Pennock et al., 2002) (d) it should satisfy more
criteria (like diameter, eigenvalue plots), in addition to the degree distribution.

A related field is that of relational learning (Dzeroski and Lavrac, 2001); how-
ever, this focuses on finding structure at a more local level while our work
focuses on the global level. Other topics of interest involving graphs include
graph partitioning,frequent subgraph discovery,finding cycles in graphs,and
many others. These address interesting problems, and we are investigating
their use in our work.
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(a) A grid and its min-cut (b) 2D grid min-cut plot (c) Averaged min-cut plot

Fig. 1. Plot (a) shows a portion of a regular 400x400 2D grid, and a possible min-cut.
Plot (b) shows the full min-cut plot, and plot (c) shows the averaged plot. If the
number of nodes is N , the length of each side is

√
N . Then the size of the min-cut

is O(
√

N), which leads to a slope of −0.5, which is exactly what we observe.

3 Proposed Method

The contributions of NetMine are threefold: (1) we present the “min-cut
plots”, a new pattern for comparing a synthetically-generated graph to a real
one; this is in addition to the list of patterns described in Section 2 above,
(2) we present a novel tool called A-plots for interactive inspection of graphs
and for finding erroneous/outlier nodes and subgraphs, and (3) we present the
R-MAT graph generator, which can match almost all these patterns. Each of
these provides us with a tool to visually probe the graph dataset; they let
us infer, at a glance, some interesting properties of the graph while, at the
same time, highlighting possible anomalies. In this section, we describe each
of these parts; the observations we can make from visualizing them are better
explained via experiments, described later in section 4.

3.1 “Min-cut plots”:

Several criteria have been previously proposed to compare a synthetic graph to
a real-world graph. These include degree distributions, hop-plots, scree-plots
and others. NetMine includes all these, and adds “min-cut plots”.

A min-cut of a graph G = (V, E) is a partition of the set of vertices V into
two sets V1 and V − V 1 such that both partitions are of approximately the
same size, and the number of edges crossing partition boundaries is minimized.
The number of such edges in the min-cut is called the min-cut size. Min-cut
sizes of various classes of graphs has been studied extensively, and are known
to have important effects on other properties of the graphs (Rosenberg and
Heath, 2001). For example, Figure 1(a) shows a regular 2D grid graph, and
one possible min-cut of the graph. We see that if the number of nodes is N ,
then the size of the min-cut (in this case) is O(

√
N).
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The min-cut plot is built as follows: given a graph, its min-cut is found, and
the set of edges crossing partition boundaries deleted. This divides the graph
into two disjoint graphs; the min-cut algorithm is then applied recursively to
each of these sub-graphs. This continues till the size of the graph reaches a
small value (set to 20 in our case). Each application of the min-cut algorithm
becomes a point in the min-cut plot. The graphs are drawn on a log-log scale.
The x-axis is the number of edges in a given graph. The y-axis is the fraction
of that graph’s edges that were included in the edge-cut for that graph’s
separator.

Figure 1(b) shows the min-cut plot for the 2D grid graph. In plot (c), the
value on the y-axis is averaged over all points having the same x-coordinate.
The min-cut size is O(

√
N), so this plot should have a slope of −0.5, which

is exactly what we observe. In section 4, we will see how the min-cut plots of
real-world graphs look like, and how their similarities with figure 1 allow us
to characterize them.

3.2 A-plots:

A simple way to find suspicious nodes/subgraphs in a large graph could be
very useful in a variety of situations. However, the obvious approach of trying
to visualize the graph does not work very well: visualization of large graphs is
notoriously tough and time consuming, and is a research topic in its own right.
Our next tool, called A-plots, is another way to visually hunt for anomalies.
It consists of three types of plots for undirected graphs: (1) the plot of the
adjacency matrix with nodes sorted in decreasing order by their network values
(RV -RV plot, for Rank of network Value), (2) the plot of the degree of a
node verses its rank of network value (D-RV plot, for Degree verses Rank of
network Value), and (3) the plot of the adjacency matrix with nodes sorted in
decreasing order by their degrees (RD-RD plot, for Rank of Degree). Together,
these plots often reveal interesting patterns and properties of the graph.

Consider, for example, the D-RV plot for, say, the Internet router graph. In
general, we expect nodes with high degree to be near the core of the graph
(the Internet “backbone”), and thus also have high network value. Thus, before
seeing the D-RV plot, we might expect it to decay smoothly, with low degree
being correlated with low rank in network value. However, as we shall in
Section 4, there are sudden spikes in this plot, which we can immediately
pick out visually as outliers. Thus, visual inspection of the D-RV plot reveals
anomalies which might have gone unnoticed otherwise. The reasons behind
this particular anomaly will be discussed later in Section 4.
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3.3 The R-MAT generator:

A good graph generator, with a proper choice of parameters, should be able
to match a given real-world graph; the absence of a good match may indicate
abnormalities in the given graph. Several previous graph generators have been
described in Section 2, but they all fail in one aspect or another. The goals a
graph generator should achieve are that the generated graph should:

• (g1) match the degree distributions (power laws or not)
• (g2) exhibit a “community” structure
• (g3) have a small diameter, and match other criteria.

A good generator, matching these patterns, can be useful for many applica-
tions:

• Detection of abnormal subgraphs/edges/nodes: Abnormalities should deviate
from the “normal” patterns, so a good graph generator will not be able to
match an abnormal graph very well. Thus, given an input graph, we can
check for anomalies using a three-step process: (1) find the best matching
parameter set for our graph generator, (2) generate a synthetic graph using
these parameters, and (3) visually compare the patterns of the input graph
against the generated graph. Absence of a fit may point to anomalies.

• Simulation studies: Algorithms meant for large real-world graphs can be
tested on synthetic graphs which “look like” the original graphs. This is
particularly useful if collecting the real data is hard or costly.

• Realism of samples: Most graph algorithms are super-linear on the node
count, and thus prohibitive for large graphs. We might want to build a
small sample graph that is “similar” to a given large graph. In other words,
this smaller graph needs to match the “patterns” of the large graph to be
realistic.

• Extrapolation of data: Given a real, evolving graph, we expect it to have x%
more nodes next year; how will it then look like, assuming that our “laws”
are still obeyed? For example, in order to test the next-generation Internet
protocol, we would like to simulate it on a graph that is “similar” to what
the Internet will look like a few years into the future.

In the following, we will describe our R-MAT graph generator, show that it
matches goals g1-g3, and develop a parameter-fitting method for it.

3.3.0.1 Main Idea: We provide a method which fits both unimodal and
power-law graphs using very few parameters. Our method, called Recursive
MATrix, or R-MAT for short, generates the graph by operating on its adja-
cency matrix in a recursive manner. Recursive generators have been proposed
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Fig. 2. The R-MAT model

in passing before (Palmer and Steffan, 2000), but the emphasis was on network
issues.

3.3.0.2 Fast Algorithm to generate Directed Graphs: Recall that the
adjacency matrix A of a graph of N nodes is an N ∗ N matrix, with entry
a(i, j) = 1 if the edge (i, j) exists, and 0 otherwise. The basic idea behind R-
MAT is to recursively subdivide the adjacency matrix into four equal-sized
partitions, and distribute edges within these partitions with a unequal prob-
abilities: starting off with an empty adjacency matrix, we “drop” edges into
the matrix one at a time. Each edge chooses one of the four partitions with
probabilities a, b, c, d respectively (see Figure 2). Of course, a + b + c + d = 1.
The chosen partition is again subdivided into four smaller partitions, and the
procedure is repeated until we reach a simple cell (=1 × 1 partition). This is
the cell of the adjacency matrix occupied by the edge. The number of nodes in
the R-MAT graph is set to 2n; typically n = ⌈log

2
N⌉. There is a subtle point

here: we may have duplicate edges (ie., edges which fall into the same cell in
the adjacency matrix), but we only keep one of them. To smooth out fluctua-
tions in the degree distributions, we add some noise to the (a, b, c, d) values at
each stage of the recursion and then renormalize (so that a + b + c + d = 1).
Table 1 shows the symbols used in the paper.

3.3.0.3 Discussion: Meeting the Goals: Intuitively, our technique is gen-
erating “communities” in the graph. Typically, a ≥ b, a ≥ c, a ≥ d.

• The partitions a and d represent separate groups of nodes which correspond
to communities (say, soccer and automobile enthusiasts).

• The partitions b and c are the cross-links between these two groups; edges
there would denote friends with separate interests.

• The recursive nature of the partitions means that we automatically get
sub-communities within existing communities (say, motorcycle and car en-
thusiasts within the automobile group).

8



Symbol Meaning

N Number of nodes in the real graph

2n Number of nodes in the R-MAT graph

E Number of edges in the real graph, and

in the R-MAT generated graph after

duplicate elimination

(a, b, c, d) Probabilities of an edge falling into partitions

in the R-MAT model. a + b + c + d = 1.

Table 1
Table of symbols.

The third bullet results in “communities within communities” (goal g2). The
skew in the distribution of edges between the partitions (a ≥ d) leads to
lognormals and the DGX distribution (goal g1). We shall show experimentally
that R-MAT also generates graphs with small diameter and matching other
criteria as well (goal g3).

3.3.0.4 Parameter fitting with AutoMAT-fast: The R-MAT model can
be considered as a binomial cascade in two dimensions. We can calculate the
expected number of nodes ck with out-degree k:

ck =

(

E

k

)

n
∑

i=0

(

n

i

)

[

pn−i(1 − p)i
]k [

1 − pn−i(1 − p)i
]E−k

where 2n is the number of nodes in the R-MAT graph and p = a + b. Fitting
this to the observed outdegree distribution gives us the estimated values for
p = a + b (and similarly q = a + c for the indegree distribution). Conjecturing
that the a : b and a : c ratios are approximately 75 : 25 (as seen in many real
world scenarios), we can calculate the parameters (a, b, c, d).

3.3.0.5 Extending R-MAT to Undirected Graphs: An undirected graph
must have a symmetric adjacency matrix. We achieve this by generating a di-
rected graph with b = c and then using a “clip-and-flip” on the resulting
adjacency matrix. This involves throwing away the half of matrix above the
main diagonal and copying the lower half to it. The effect of this is twofold:
first, since b = c, the number of edges in the final undirected matrix is ap-
proximately equal to that in the directed graph; and second, this technique
guarantees that the resulting matrix will be symmetric, and hence the corre-
sponding graph will be undirected.
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3.3.0.6 Extending R-MAT to Bipartite Graphs: For a bipartite graph,
the length and height may be different, and the adjacency matrix will be a
rectangle instead of a square. Here too, we set the length and width to be
powers of 2, denoted by 2n1 and 2n2 . While dropping edges, we might form a
partition with a length(height) of 1; in such a case, further partitions are just
top-bottom(left-right) with the appropriate probabilities.

4 Experiments

The questions we wish to answer are:

• [Q1] How do the min-cut plots look for real-world graphs? Does R-MAT
match them? What can the min-cut plot tell us about the graph?

• [Q2] How can A-plots be used for analyzing large graphs?
• [Q3] How does R-MAT compare with existing generators for undirected

graphs?
• [Q4] How does R-MAT compare with existing generators for directed graphs?
• [Q5] How does R-MAT compare with existing generators for bipartite graphs?

The datasets we use for our experiments are:

• Epinions: A directed graph of who-trusts-whom from epinions.com (Richard-
son and Domingos, 2002): N = 75, 879; E = 508, 960.

• Epinions-U: An undirected version of the Epinions graph: N = 75, 879; E =
811, 602.

• Clickstream: A bipartite graph of Internet users’ browsing behavior (Mont-
gomery and Faloutsos, 2001). An edge (u, p) denotes that user u accessed
page p. It has 23, 396 users, 199, 308 pages and 952, 580 edges.

• Lucent is an undirected graph of network routers, obtained from www.isi.

edu/scan/mercator/maps.html. N = 112, 969; E = 181, 639.
• Router is a larger graph (the SCAN+Lucent map) from the same URL,

which subsumes the Lucent graph. N = 284, 805; E = 898, 492.
• Google is a graph of webpage connectivity from the Google (Google Pro-

gramming Contest, 2002) programming contest. N = 916, 428; E = 5, 105, 039.

4.1 [Q1] Min-cut Plots:

What do the min-cut plots for real-world graphs look like? Are they like min-
cut plots for random graphs, or are they completely different? Figure 3 shows
min-cut sizes of some real-world graphs. For each graph, we used the Metis
graph partitioning library (Karypis and Kumar, 1995) to generate a separator,
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Fig. 3. These are the min-cut plots for several datasets. We plot the ratio of min-
cut-size to edges versus number of edges on a log-log scale. The first row shows the
actual plots; in the second row, the cutsize-to-edge ratio is averaged over all points
with the same number of edges.

as described by Blandford, Blelloch, and Kash (Blandford et al., 2003).

For random graphs, we expect about half the edges to be included in the cut.
Hence, the min-cut plot of a random graph would be a straight horizontal
line with a y-coordinate of about log(0.5) = −1. A very separable graph (for
example, a line graph) might have only one edge in the cut; such a graph with
N edges would have a y-coordinate of log(1/N) = − log(N), and its min-cut
plot would thus be on the line y = −x.

As we can see from Figure 3, the plots for real-world graphs do not match
either of these situations, meaning that real-world graphs are quite far from
either random graphs or simple line graphs. Indeed, it appears as if the graph
looks like a grid when the number of edges is low (as in figure 1), but with a
distinguishing “lip” when the number of edges is very high.

Observation 1 (Noise) We see that real-world graphs seem to have a lot of
“noise” in their min-cut plots, as shown by the first row of Figure 3.

Observation 2 (“Lip”) The ratio of min-cut size to number of edges de-
creases with increasing edges, except for graphs with large number of edges,
where we observe a “lip” in the min-cut plot.

Thus, the min-cut plot seems to have a linear slope over a wide range of the
x-axis, but with a (as yet unexplained) “lip” at the end. Now, given any real-
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Fig. 4. Here, we compare min-cut plots for the Epinions dataset and a dataset
generated by R-MAT, using properly chosen parameters (in this case, a=0.5, b=0.2,
c=0.2, d=0.1) We see from plot (c) that the shapes of the min-cut plots are similar.

world graph, we can visualize its min-cut plot, and any significant deviations
from this general pattern might be due to anomalies in the graph.

The min-cut plot contains important information about the graph (Rosenberg
and Heath, 2001). Hence, any synthetically generated graph meant to simulate
a real-world graph should match the min-cut plot of the real-world graph. In
Figure 4, we compare the mincut-plots for the Epinions graph with a graph
generated R-MAT. As can be seen, the basic shape of the plot is the same in
both cases, though the R-MAT plot appears to be shifted slightly from the
original.

Observation 3 The graphs generated by R-MAT appear to match the basic
shape of the min-cut plot for several real-world graphs.

Summary of min-cut plots: Given an input graph, the min-cut plot is a useful
visual tool which helps us understand its structure. Most real-world graphs
exhibit high noise, but on average, they look like a grid (in some dimension)
for low values on the x-axis, and a “lip” for high values. Significant deviations
from this pattern would indicate the presence of outliers at some scale in the
graph.

4.2 [Q2] A-plots:

Figures 5 and 6 show A-plots for the Router dataset. Figure 5 shows the
RV -RV and RD-RD plots, and Figure 6 shows the D-RV plot under different
scalings. We can make the following observations:

Observation 4 (“Water-Drop”) The RV -RV plot has a clean and smooth
oval-shaped boundary for the edges in the graph.
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Fig. 5. A-plots for the “Router” graph: Plot (a) shows the RV -RV plot, and a
very interesting “Water-Drop” pattern is immediately apparent. The outermost
“boundary stripes” are due to nodes of degree one (solid curve) and two (broken
curve), whose positions can be calculated using Equations 1,2 as shown by plot (b).
Plot (c) shows the RD-RD plot.
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Fig. 6. A-plots for the “Router” dataset: Plot (a) shows the D-RV plot, and plot (b)
shows a blowup of a portion, clearly demonstrating the “white stripes” phenomenon.
Plot (c) shows the D-RV plot in the linear-linear scale; nodes with the highest
degree do not have the highest network value. Plot (d) shows the actual network
configuration of routers involved in the stripe and spikes. An explanation is provided
in Observation 9 in the text.

Explanation: The boundary of the edges is defined by the one-degree nodes
in the graph. There are many such nodes because of the power law distribution
of the degrees. Let Ii denote the network value of node i; if node i has a degree
of one and node j is the only node it is connected to, the properties of spectral
decomposition of a matrix imply that

Ii = 1/λ1 ∗ Ij (1)

where λ1 is the largest eigenvalue of the adjacency matrix of the graph (Zhan,
2003). Therefore the boundary of edges in the RV -RV plot can be calculated
from the first eigenvalue and eigenvector. Figure 5(b) shows just this; the solid
curve represents degree-one nodes. These are obviously the boundary curves
for plot (a).

13



We also see that there is no edge at all outside of the boundary. Let node
i have network value Ii, and have node j with network value Ij as its most
“important” neighbor (in the sense of high network value). Then, Ii ≥ 1/λ1∗Ij .
Therefore all edges are confined within the boundary in the RV-RV plot.

Observation 5 (Nested Water-Drops) There are a pair of “secondary”
lines within the boundary of the edges in the RV -RV plot.

Explanation: These lines are the results of some two-degree nodes. When a
node i has two degrees and the two nodes it is connected to have about the
same network values (say, Ij), we can calculate where the involved edges will
show up in the RV -RV plot similar to the one-degree case:

Ii = 2/λ1 ∗ Ij (2)

The dashed lines in Figure 5(b) show the results, which match with the
RV -RV plot. The presence of these “secondary” lines in the plot means that a
significant number of the two-degree nodes in the graph are connected to two
“similar” (similar as is defined by similar network values) nodes. The presence
of the faint “tertiary” lines can be explained accordingly.

Observation 6 (Diagonal) There is more or less a solid line that goes through
the diagonal of the RV -RV plot even though the adjacency matrix does not
include any self-edges.

Explanation: This means a node is more likely to be connected with “similar”
nodes.

Observation 7 (White Stripes) There are white stripes (both vertical and
horizontal) visible in both the RV -RV and the D-RV plots.

Explanation: The stripes come from a large number of nodes that are con-
nected to exactly the same nodes, usually just one or two. Since nodes that are
connected the same way have exactly the same network values, they show up
as a group and become visible in the RV -RV and D-RV plots (Figures 5(a)
and 6(a, b) respectively).

Observation 8 (Isolated Components) The largely empty white square in
the corner of the RD-RD plot results from connections between one-degree
nodes.

Explanation: Any dots (edges) in this area correspond to two-node isolated
components.

Observation 9 (Degree vs. Importance) Figure 6(c) shows several points
in the D-RV plot having high degree, but low network value (and thus low
rank). Thus, high degree does not imply high “importance”.
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Explanation: The D-RV plot in Figure 6(c) shows that the two highest-
degree nodes actually have low ‘network value’. This is counter-intuitive -
how could it possibly be the case, in a power-law graph? Is it a data collection
error?

The answer is surprising, and actually also explains the white stripe in Fig-
ure 6(a,b): The two highest-degree nodes (labeled ‘Spike1’ and ‘Spike2’), and
a large number of two-degree nodes, form a subgraph like the one shown in
Figure 6(d). ‘Spike1’ and ‘Spike2’, being away from the core of the network,
have much lower network value than what their high degree would promise.
Their satellites (= all the 2-degree nodes connected to them) have identical,
relatively high network values, which cause the white strip in Figure 6(a,b).
We are currently investigating with domain experts the reasons for such a
weird sub-graph. However, our point is that the proposed D-RV and RV -RV
plots exactly spotted this strange pattern, which would go undetected if we
only used the traditional, or even recent tools, like degree-plots, scree-plots
etc.

Summary of A-plots: The three types of A-plots described above follow very
well-defined patterns, such as the “nested waterdrops” and diagonals. Anoma-
lous behavior in such plots can be easily detected, as evidenced by the “spikes
and stripes” anomaly detected in the real-world Router dataset. In a graph
of about 105 nodes and 106 edges, this small abnormal subgraph would have
gone completely unnoticed without this visualization tool.

4.3 [Q3] R-MAT on undirected graphs:

Apart from degree distributions, we compare the models on their singular
value vs. rank plot, first singular vectors (network values) vs. rank plots, “hop-
plot” (number of reachable pairs vs. number of hops) and “effective diame-
ter” (Palmer et al., 2002; Tauro et al., 2001), and stress distribution (Gkant-
sidis et al., 2003) (the stress of an edge is the number of shortest paths between
node pairs that it is a part of). For undirected graphs, eigenvalues and singular
values are equivalent; for bipartite graphs, eigenvalues may not exist.

We compared R-MAT to the AB (Albert and Barabási, 2000), GLP (Bu and
Towsley, 2002) and PG (Pennock et al., 2002) models, chosen for their pop-
ularity or recency. All of these are used to generate undirected graphs; they
have not been used for directed or bipartite graphs. Thus, we can compare
them with R-MAT only on Epinions-U. Also, we are unaware of any good
parameter-fitting mechanisms for these generators, so for each generator, we
exhaustively find the best parameter values. We use AB+, PG+ and GLP+
to stand for the original algorithms augmented by our parameter fitting.
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Fig. 7. The Epinions-U Undirected Graph: The R-MAT plots gives the best fit to
the Epinions-U graph (solid line) among all the generators.

We show results in Figure 7 for the Epinions-U undirected graph. Notice that
R-MAT is very close to Epinions-U in all cases, while the competitors are
not. Recall that all the y-scales are logarithmic, so small differences actually
represent large deviations. The “stress distribution” plot is similar, but is not
shown due to lack of space.

4.4 [Q4] R-MAT on Directed Graphs:

We can see from Figure 8 that the match between R-MAT and the Epinions
dataset is very good. The effective diameter is 4 for both the real graph and for
the R-MAT generated graph. The other models considered are not applicable.

4.5 [Q3] R-MAT on Bipartite Graphs:

R-MAT matches the bipartite Clickstream dataset very well (Figure 9) includ-
ing the “un-powerlaw-like” outdegree distribution. The other models are not
applicable.

Summary of R-MAT: The experiments above demonstrate the ability of R-
MAT to match the patterns of several real-world graphs. Thus, it is another
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Fig. 8. The Epinions Directed Graph: The AB+, PG+ and GLP+ methods do not

apply. The crosses and dashed lines represent the R-MAT generated graphs, while
the pluses and strong lines represent the real graph.

useful tool in anomaly detection on graphs; if we cannot find some parameter
setting of R-MAT which matches some input graph, then the graph itself
might have abnormalities.

4.6 Time and space requirements:

An important concern while developing NetMine was scalability to large datasets.
Almost all of the graph operations mentioned in this paper can be computed
quickly and efficiently: for instance, degree distribution computation requires
only two sorting passes, and hopplots using a randomized method require only
O(N +E) time and O(N) extra space (Palmer et al., 2002). The largest singu-
lar values and singular vectors can be computed by iterative methods which,
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Fig. 9. The Clickstream Bipartite Graph: The AB+, PG+ and GLP+ methods do

not apply. The crosses and dashed lines represent the R-MAT generated graphs,
while the pluses and strong lines represent the real graph.

while having problem-dependent time and space complexity, are very fast and
parallelizable in practice (Berry, 1992). A-plots can be generated using these
plus an extra sorting pass over the data. R-MAT needs O(E log N) time and
O(E) space. The 2-way graph partitioning algorithm used by NetMine re-
quires O(N) time (Karypis and Kumar, 1995), implying a time complexity of
O(N log N) for computing min-cuts plots.

5 Conclusions

Visualization is a key component in any data mining application, including
graph mining. However, as against trying to visualizing the entire graph as
is, we show how visualizing certain functions of the graph, such as degree

18



distributions, min-cut plots, and A-plots, can be more useful. These help us
visualize the same graph from different perspectives, and one can easily detect
patterns in such plots that might not be apparent from just visualizing the
entire graph data structure.

We propose several new tools for mining and visualizing the information in
large graphs. Our emphasis is on scalable algorithms that can handle arbi-
trarily large graphs. When applied on real graphs, our new tools discovered
patterns that were not visible with the known tools (like degree plots, hop-
plots etc).

The contributions of this work are:

• Min-cut plots: They show the relative size of the minimum cut in a graph
partition. For regular 2-d and 3-d grid-style networks (like Delaunay trian-
gulations for finite element analysis), these plots have a slope that depends
on the intrinsic dimensionality of the grid. However, for real graphs, these
plots show significantly more ‘noise’, as well as a ‘lip’. Thus, visualizing
these plots can give significant information aout the graph; in fact, signif-
icant deviations from the common pattern might imply anomalies in the
graph.

• A-plots: These plots provide new viewpoints for inspecting large graphs.
We noticed some striking patterns (“water-drops”, stripes, “lone” points),
and we showed how to interpret them. In addition, we used these to detect
actual anomalies in a large Router graph dataset.

• R-MAT: This simple, parsimonious graph model is able to match almost
all the patterns of real-world graphs, and is more widely applicable and
accurate than other existing graph generators. We also showed how the
parameters of R-MAT can be efficiently set to mimic any given graph; this
allows the user to quickly generate similar graphs which are synthetic yet
realistic.

Moreover, we propose a list of natural tests which hold for a variety of real
graphs: matching the power-law/DGX distribution for the in- and out-degree;
the hop-plot and the diameter of the graph; the singular value distribution;
the values of the first singular vector (“Google-score”); and the “stress” dis-
tribution over the edges of the graph. All of these are packaged into the
NetMine package, freely available for download from http://www.cs.cmu.

edu/∼deepay/mywww/software/NetMine-Basic-03-30-2004.tgz, which pro-
vides a useful toolkit for analyzing and visualizing large graphs in a scalable
manner, as shown by our experiments. We believe that these and other novel
methods for visualizing the information hidden in a large graph would be in-
valuable tools for the data analyst, helping her understand and explore the
information from many different perspectives to gain a clearer picture of the
whole.
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