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Abstract

We tackle an extreme form of imbalanced classifi-
cation, with up to 105 features but as few as 5 sam-
ples from the minority class. This problem occurs
in predicting predicting tumor types and fraud de-
tection, among others. Standard imbalanced clas-
sification methods are not designed for such se-
vere data scarcity. Sampling-based methods need
too many samples due to the high-dimensionality,
while cost-based methods must place too high a
weight on the limited minority samples. Our pro-
posed method, called DIRECT, bypasses sample
generation by training the classifier over a robust
smoothed distribution of the minority class. DI-
RECT is fast, simple, robust, parameter-free, and
easy to interpret. We validate DIRECT on several
real-world datasets spanning document, image, and
medical classification. DIRECT is up to 5x − 7x
better than SMOTE-like methods, 30−200% better
than ensemble methods, 3x − 7x better than cost-
sensitive methods. The greatest gains are for set-
tings with the fewest samples in the minority class,
where DIRECT’s robustness is most helpful.

1 Introduction
Suppose we have a corpus of articles tagged with topics, and
we want to predict topic tags for new articles. Each article
may have O(105) keyword-based features. But there may be
only a few articles on any one topic. For example, in a knowl-
edge base of “help articles” at Dell Inc., half the topics had
fewer than 9 articles (Figure 1). In such cases, a training set
of articles for any single topic will have very few positive
examples on that topic, but many negative examples. Simi-
larly, to predict tumor types from genetic data, we may have
around 10 positive examples (patients) but O(104) features
(genes) [Yeang et al., 2001]. Acquiring much more data is
infeasibly costly and time-consuming. Similar problems oc-
cur in fraud detection [Wei et al., 2013] and cheminformat-
ics [Czarnecki and Rataj, 2015]. For concreteness, consider
the following problem which occurs in our experiments:

How do we train a classifier from 5 positive points and
1, 000 negative points with 100, 000 features?

Figure 1: Distribution of the number of documents per topic for a
large knowledge base: 50% of the topics had fewer than 9 docu-
ments per topic, and 70% had fewer than 26 documents per topic.

Existing methods mainly focus on the class imbalance.
But, as we show empirically, the critical constraint is the ex-
treme scarcity of minority class examples (e.g., only 5 sam-
ples in the question above). Sampling-based methods may
generate biased samples when these are built from so few
minority datapoints. Cost-sensitive methods may overfit to
the minority class samples due to the overwhelming cost of
misclassifying them. The same applies to complex classi-
fiers. For example, deep-learning methods [Chung et al.,
2016] often need orders of magnitude more minority class
samples. Simple methods outperform neural classifiers on
limited training data [Cunha et al., 2021; Yang et al., 2019].

Our proposed method, called DIRECT,1 offers a robust and
tractable solution to the problem of imbalanced binary clas-
sification under extreme data scarcity with no side informa-
tion. It is, to our knowledge, the first method to focus on this
problem. Our approach is based on two ideas. First, we build
a robust smooth distribution for the minority class, using only
the statistics that can be reliably estimated. This robust dis-
tribution succinctly captures what can be inferred and what
is uncertain about the true distribution. This makes DIRECT
ṙobust to estimation errors, which helps combat the prob-
lems of limited sample size. Note that this is different from
adversarial robustness, since there is no data corruption in-
volved and the training and test distributions are the same.

1Our code is available at https://github.com/deepayan12/direct.

https://github.com/deepayan12/direct


Second, we show that DIRECT’s expected loss under this
robust distribution can be calculated in closed form. This
enables DIRECT to bypass sample generation and train in a
single-step. In effect, DIRECT optimizes over all possible
samples, weighted by their probability. This improves both
the speed and accuracy of the classifier.

DIRECT has several other appealing properties. With so
few minority samples, cross-validation itself can be a source
of error. However, DIRECT is parameter-free, and does not
need cross-validation. DIRECT is also fast and easily imple-
mentable using any off-the-shelf optimizer.

Finally, we show strong empirical results on six text, two
image, one medical, and twenty general UCI datasets. Most
tasks have 10, 000 to 100, 000 features. DIRECT is up to
5x−7x better than sampling-based methods, 30−200% bet-
ter than ensemble methods, 3x−7x better than cost-sensitive
SVMs. On most datasets and settings, DIRECT is either com-
parable or better than existing methods. The most significant
gains occur in settings with the fewest minority class samples,
where the robustness of DIRECT has the most impact.

The rest of the paper is organized as follows. We present
details of DIRECT in Section 2. Empirical results are shown
in Section 3. We survey the related literature in Section 4, and
conclude in Section 5. Proofs and extra results are provided
in the supplementary material.

2 Proposed Work
We are given an imbalanced training dataset D = {(xi, yi)},
where each point i has a feature vector xi ∈ Rp and a class
label y ∈ {+1,−1}. We assume, without loss of general-
ity, that the positive class is the minority class. That is, if
there are nlo positive points and nhi negative points in D,
then nlo ≪ nhi. We focus on the setting where the number
of features p is large but nlo is small. For example, p = 105

and nlo ≤ 7 for the text classification example of Figure 1.
We want a binary classifier with three properties:

• (P1) It should be robust, since estimation errors are un-
avoidable with small sample sizes.

• (P2) It should not need sampling, since we need many
samples to model high-dimensional distributions, and
such sampling takes time and makes results variable.

• (P3) It should be parameter-free, since tuning parame-
ters by cross-validation is noisy with so few samples.

Our proposed classifier, called DIRECT (Distribution for
Imbalanced data with Robust Estimation of Covariance
Technique), achieves this by using a robust kernel density
to model the minority class distribution. With an appropriate
choice of loss function, we show that the expected loss under
the robust density has a closed form. This simplifies the train-
ing of DIRECT. Next, we will discuss the robust density, the
calculation of the expected loss, and the overall algorithm.

2.1 Robust Minority Class Distribution
To construct the robust distribution, we need statistics that
we can reliably estimate even from a few samples. High-
order moments are unreliable because they are sensitive to
the distribution’s tail, from which we may not have enough

samples. Even the sample covariance is unreliable for small
nlo and high p. Formally, when nlo/p is fixed but nlo, p →
∞, the sample covariance does not converge to the population
covariance matrix [Marcenko and Pastur, 1967]. Hence, our
robust distribution uses only the sample mean and a robust
covariance estimate.

Our robust covariance estimators are shrinkage estima-
tors [Ledoit and Wolf, 2004; Ledoit and Wolf, 2012]. Given
a minority-class data matrix Xlo ∈ Rnlo×p with the singular
value decomposition Xlo = USV T , they estimate the covari-
ance as Σlo = V S′V T+q·I . The diagonal matrix S′ contains
min(nlo, p) entries (nlo ≪ p for us), and q > 0 is a scalar.
Both S′ and q can be calculated optimally to minimize the ex-
pected estimation error of Σlo. Hence, unlike regularization,
we do not need cross-validation to find the best parameters.
Note that we do not explicitly construct Σlo, which has O(p2)
entries. We only calculate V ∈ Rp×min(nlo,p), S′, and q.

Now, we use Σlo to construct a kernel density for the mi-
nority class. This places a smooth distribution (a “kernel”)
centered on each of the minority class points, and averages
over them to get an overall density. Our choice for the kernel
is against driven by robustness concerns. The kernel distri-
bution should be the distribution with the greatest uncertainty
(i.e., the maximum entropy) subject to zero mean (since it is
centered on the points) and covariance Σlo. This is just the
Gaussian distribution N (0,Σlo) [Cover and Thomas, 2006].
Using the Gaussian kernel, our robust density for the minority
class is given by:

p⋆lo(x) =
1

nlo

∑
{i|yi=+1}

ϕ
(
Σ

−1/2
lo (x− xi)

)
(1)

Σlo = V S′V T + q · I, (2)

where xi is a point from the minority class (yi = +1), ϕ(.) is
the N (0, 1) density, and (V, S′, q) are discussed above.

We note that kernel density estimates also have a band-
width parameter. For large p and small nlo, this bandwidth
approaches 1 and can be ignored (see Eq. 4.14 and Table 4.1
of [Silverman, 1986]).

2.2 Model-Fitting
Consider a classifier with parameters θ and loss function
ℓ(y,x;θ). We must train it using nlo points from the mi-
nority class and nhi from the majority class, with nlo ≪ nhi.
For the majority class, nhi is large enough that the average
loss is a good proxy for the test loss. But for the minority
class, nlo is too small, and the average loss can be noisy. So
we use the expected loss over the robust distribution (Eq. 1).
Hence, we find the model parameters θ to minimize∑

{i|yi=−1} ℓ(yi = −1,xi;θ)

nhi
+ Ez∼p⋆

lo
ℓ(yi = +1, z;θ).

(3)

We can approximate the second term by averaging the loss
over samples drawn from p⋆lo(.). However, we can avoid this
sampling step by choosing a loss whose expectation has a
closed form. In this paper, we choose θ = (c,w) ∈ R × Rp

and ℓ(y,x;θ = (c,w)) = max(0, 1 − y · (c + wTx)). In



other words, given a feature vector x, our model predicts y =
sign(c + wTx) and uses the hinge loss with unit margin to
measure accuracy. This loss is convex in θ, so the objective
of Eq. 3 is convex too. Furthermore, we can calculate the
second term of Eq. 3 in closed form, as shown next (all proofs
are deferred to the supplementary material).
Theorem 1.

Ez∼p⋆
lo
ℓ(yi = +1, z;θ)

=(1/nlo)
∑

i|yi=+1

si · Φ
(si
t

)
+ t · ϕ

(si
t

)
, (4)

si =1− (c+wTxi),

t =
√

wTΣlow.

Here, ϕ(·) and Φ(·) represent the pdf and cdf of a standard
normal respectively.

For intuition, suppose t ≈ 0. Then the expected loss for
point i from the positive class becomes si · Φ(si/t) + t ·
ϕ(si/t) ≈ si · 1si>0 = max(0, si), which is exactly the
hinge loss for i. Thus, for t ≈ 0, we recover the empirical
loss. As t increases, the loss increases, as shown below.
Corollary 1. The expected loss over the robust distribution
(Eq. 4) is an increasing function of both si and t.

Thus, t = ∥Σ1/2
lo w∥ acts as a regularizer for w. But unlike

standard regularization, this is not a norm of w, and we do
not need cross-validation to select the regularization penalty.

Using Theorem 1, Eq. 3 has a closed-form formula:

min
w∈Rp,c∈R

1

nhi
·

∑
i|yi=−1

max
(
0, 1 + (c+wTxi)

)
+

1

nlo
·

∑
i|yi=+1

(
si · Φ

(si
t

)
+ t · ϕ

(si
t

))
(5)

Eq. 5 is a convex problem, and we can use any off-the-shelf
solver to minimize it. A significant speedup is provided by
the following theorem.
Theorem 2. Let (w⋆, c) be the minimizer of Eq. 5. Then w⋆

lies in the subspace spanned by the nlo + nhi vectors {xi}.
Hence, when nlo + nhi ≪ p (as in our case), we can

assume w⋆ =
∑

i αixi and only search for the optimal
α ∈ Rnlo+nhi . This reduces the search space for the con-
vex solver from p dimensions to nlo + nhi dimensions.

2.3 Post-Processing
The process above yields a feature vector w⋆ and an intercept
c to minimize the loss function of Eq. 3. However, our over-
all objective is classification accuracy over a balanced test set.
So, in a post-processing step, we adjust the intercept for this
objective. In particular, we minimize the expected misclassi-
fication:

min
c′∈R

1

nhi
·

∑
i|yi=−1

1c′+wT
⋆ xi

+
1

nlo
·

∑
i|yi=+1

Ezi∼N (xi,Σlo)1−(c′+wT
⋆ zi)︸ ︷︷ ︸

=Φ

(
− c′+wT

⋆ xi√
wT

⋆ Σlow⋆

) . (6)

Algorithm 1 DIRECT

1: function DIRECT(Training set Xlo ∈ Rnlo×p, Xhi ∈
Rnhi×p)

2: Σlo ← robust covariance for minority class (Eq. 2)
3: (w⋆, c)← minimize the convex loss of Eq. 5
4: c⋆ ← minimize misclassification loss of Eq. 6
5: return (w⋆, c⋆)
6: end function

Any off-the-shelf single-variable optimizer can be used to
find the minimizer c⋆. Algorithm 1 shows the pseudocode
for training DIRECT. This returns the optimal parameters
(w⋆, c⋆). Now, given a test point x, DIRECT predicts ŷ =
sign(c⋆ + xTw⋆).

Matching desired properties. DIRECT achieves robust-
ness to limited data (property (P1)) by only using reliable
statistics such as the optimal shrinkage covariance. The re-
sulting robust distribution (Eq. 1) reflects these statistics, but
also the uncertainty about other moments. DIRECT avoids
sampling (property (P2)) by using a closed-form formula for
the expected loss under the robust distribution (Theorem 1).
This speeds up model-fitting and also avoids the variability of
sampling. Finally, DIRECT’s only parameters are the shrink-
age parameters for the robust covariance Σlo (Eq. 2). We can
compute the optimal shrinkage from the data itself, without
cross-validation. Thus, we achieve property (P3).

Remark 1. We note that any complex classifier can be
trained within our robust framework via sampling. In other
words, we can approximate the expected loss (Eq. 3) by sam-
pling from the robust distribution p⋆lo, and use this approxi-
mation for parameter-fitting. This retains the robustness to
limited data, but loses the speed of DIRECT. Another alter-
native is available if we want a classifier based on functions
of x (say, a finite number of interaction terms). Then, we can
construct new feature vectors x̃i from functions of xi, and use
DIRECT on this modified dataset.

3 Experiments
We will discuss three questions: (a) how accurate is DIRECT,
(b) how does the accuracy vary with the imbalance ratio and
the minority class sample size, and (c) how fast is DIRECT?

Experimental setup. We ran experiments on six text, two
image, and one medical dataset, along with 20 UCI datasets
(Table 1). In each experiment, we created a training set with
nlo positive and nhi negative samples that were randomly
chosen from the dataset. All remaining datapoints were used
for testing. We ran experiments on 509 unique (dataset, class,
nlo, nhi) combinations, each being repeated 30 times.

Note that our focus is on the limited data binary classi-
fication problem (as motivated by Figure 1). So, we used
nlo ≤ 50 for almost all experiments. Also, we do not con-
sider multiclass classification or specialized feature construc-
tion methods. Multiclass learning can be implemented via
repeated one-versus-all classification using DIRECT. Spe-
cialized features may not be available (e.g., for our medical



Type Dataset Features Classes
Text Dell 100, 000 8

20-Newsgroups 25, 804 20
Reuters 20, 000 21

News Search 20, 000 11
Arxiv 20, 000 10

Recipes 10, 000 8
Medical Tumors 16, 063 15
Image MNIST (digits) 784 10

MNIST (fashion) 784 10
Misc. UCI (20 datasets) 8 . . . 561 20

Table 1: Dataset statistics.

dataset); when available, they can be used as inputs to DI-
RECT. Hence, we do not pursue these topics in this paper. The
supplementary material has more details about our datasets.
Accuracy metric. Our comparison metric is the area under
the precision-recall curve (AUPRC), which is the standard ac-
curacy metric for imbalanced binary classification [Davis and
Goadrich, 2006]. The AUPRC scores for all 509 experiments
are presented in the supplementary material. In this section,
we report the lift in AUPRC of DIRECT over competing meth-
ods. The lift provides an aggregate measure of the outperfor-
mance of DIRECT across all classes for a dataset. The sup-
plementary material also shows alternate metrics such as the
balanced accuracy and the G-mean, which show similar pat-
terns as the AUPRC results.
Competing methods. Among data balancing methods, we
consider SMOTE [Chawla et al., 2002], ADASYN [He et
al., 2008], Borderline-SMOTE [Han et al., 2005], and over-
sampling with smoothed bootstraps (ROSE) [Menardi and
Torelli, 2014]. These are coupled with a linear SVM so that
the number of parameters is the same as in DIRECT. Among
ensemble methods, we show results using balanced random
forests, balanced boosting (RUSBoost), SMOTE with Gra-
dient Boosting (XGBoost), and balanced bagged decision
trees [Chen et al., 2004; Seiffert et al., 2010]. We also
show results against a cost-sensitive SVM, an imbalance-
aware margin classifier (LDAM-RDW) [Cao et al., 2019],
and vanilla SVM (SVC).

Cost-sensitive deep learning [Chung et al., 2016] under-
performed other baselines even after tuning hyperparameters
on the test sets, so we do not show those results. [Cunha et
al., 2021] make similar observations about deep learning for
limited data. Our code will be made publicly available after
incorporating comments from the reviewers.

3.1 Accuracy Comparison
Table 2 shows the trimmed mean of DIRECT’s lift in AUPRC.
The trimmed statistics are robust to noise due to the limited
sample sizes. Detailed results for all 509 problem settings are
in the supplementary material.

We see that DIRECT is 5x− 7x better than all SMOTE-
like methods on the Tumors dataset. For example, with
nlo = 5, the median AUPRC over all classes is 0.59 for DI-
RECT but only 0.07 (close to random) for the SMOTE-based
methods. On other datasets, with nlo ≤ 20, DIRECT typically
outperforms SMOTE-like methods. When nlo = 50, DI-
RECT is better for News Search and the two MNIST datasets.

Overall, DIRECT outperforms SMOTE-based methods signif-
icantly on several datasets and is comparable otherwise.

DIRECT is 77− 145% better than bagging, 50− 74%
better than random forests, and 30− 210% better than
boosting for certain settings. The most significant differences
are for Arxiv, MNIST (digits), Recipes, and Tumors. The
closest competitor is SMOTE with gradient boosting, which
is better than DIRECT for 20Newsgroups but is comparable or
significantly worse on other datasets (e.g., DIRECT is 180%−
215% better on Dell).

DIRECT is 3x− 7x better than cost-sensitive SVMs
and 75− 80% better than ROSE on the Tumors dataset.
The closest competitor of DIRECT is ROSE-SVM. But, in
most cases, DIRECT is comparable or better than it. DIRECT
outperforms LDAM-RDW, showing that for small nlo, the ro-
bustness to limited data is more important than margin adap-
tation. DIRECT also outperforms SVC by a wide margin.

Figure 2 shows the distribution of the lift, instead of just the
trimmed mean. It confirms that DIRECT can be much better
than other methods but is rarely much worse. The most sig-
nificant outperformance is for small nlo, where the robustness
of DIRECT has the most impact.

3.2 Varying the Training Size
In practical applications such as document tagging (Figure 1),
the minority class sample size nlo is often very limited. Our
previous experiments focused on such settings. DIRECT’s
success resulted from its robustness to limited data. Now,
we investigate further the relative impact of limited data and
the imbalance ratio on DIRECT’s accuracy.

Figure 3a shows how DIRECT’s AUPRC varies with the
size of the training data for the News Search dataset. When
nlo = 5, the AUPRC increases only 38% even as nhi in-
creases by a factor of 40. Thus, AUPRC improves in spite of
increasing imbalance. But when nhi = 1000, the AUPRC in-
creases quickly with nlo before flattening at nlo = 100. Thus,
increasing nlo from 5 to 100 provides a significant benefit, but
further reduction in imbalance does not help. The greatest
gains occur when both nlo and nhi increase in lockstep.

In our problem setting, the minority class has extreme data
scarcity. Here, these results suggest that the limited sample
size is the main problem, and not the imbalance. Even a few
more minority class samples helps accuracy, but more major-
ity class samples have low marginal benefit. This shows the
utility of DIRECT’s robustness to limited data.

3.3 Wall-Clock Time
Figure 3b show the wall-clock time for training on the News
Search dataset. We observe:

• By avoiding sampling, DIRECT is significantly faster
than ROSE and SMOTE with XGBoost, both of which
generate new samples for the minority class.

• By being parameter-free, DIRECT is faster than even
SVC, which needs cross-validation for choosing the reg-
ularization parameter.

DIRECT also outperforms both in terms of accuracy. In test-
ing, DIRECT was 30x faster than balanced bagging and boost-
ing classifiers. This is because DIRECT only calculates a lin-
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nhi nlo Tumors
100 3 x x x 77.5%* 97.3%* 52.8%* x 74.3%* 300.7%* 411.0%* 284.4%*
100 5 474.2%* 474.2%* 474.8%* 78.8%* 101.7%* 51.1%* 33.6%* 77.6%* 474.2%* 623.2%* 434.3%*
100 7 698.2%* 698.3%* 698.3%* 83.7%* 95.8%* 55.5%* 33.8%* 63.7%* 698.3%* 969.7%* 607.8%*

News Search
1000 5 6.3% 6.3% 6.4% 1.3% 24.4%* 8.8%* 10.9%* 29.4%* 6.4% 29.5%* 51.7%*
1000 10 7.3% 7.1% 7.3% 2.1% 33.1%* 9.5%* 18.4%* 44.1%* 7.3% 24.7%* 73.8%*
1000 20 8.1% 7.9% 8.1% 4.2% 37.5%* 9.6%* 16.7%* 55.9%* 8.1% 17.1%* 98.3%*
1000 50 6.5% 6.3% 6.6% 5.4% 29.8%* 5.9% 15.1%* 73.3%* 6.5% 10.1%* 58.0%*

Arxiv
1000 5 21.2%* 20.8%* 21.2%* 6.3% 143.1%* 73.8%* 78.7%* 187.4%* 21.2%* 105.8%* 583.9%*
1000 10 14.5%* 13.8%* 14.5%* 3.9% 125.1%* 60.9%* 61.9%* 195.0%* 14.5%* 62.5%* 776.8%*
1000 20 6.1%* 5.9%* 6.1%* 0.2% 95.9%* 42.0%* 41.7%* 195.1%* 6.1%* 29.9%* 888.1%*
1000 50 -1.3% -1.4% -1.3% -2.1% 58.5%* 27.9%* 31.6%* 209.1%* -1.3% 12.1%* 25.7%

MNIST (digits)
1000 5 68.7%* 68.7%* 68.7%* 22.0%* 76.9%* 14.3%* 36.4%* 34.6%* 68.7%* 555.4%* 130.0%*
1000 10 61.9%* 61.9%* 62.1%* 19.2%* 42.4%* 6.7%* 7.4%* 33.2%* 61.9%* 628.9%* 126.7%*
1000 20 51.0%* 51.0%* 51.2%* 16.0%* 23.2%* 1.5% 0.1% 24.5%* 51.0%* 715.9%* 94.2%*
1000 50 38.7%* 38.7%* 38.7%* 13.1%* 7.4%* -3.1%* -4.3%* 27.9%* 38.7%* 615.5%* 41.5%*

MNIST (fashion)
1000 5 36.4%* 36.5%* 36.4%* 1.5% 38.8%* 10.0%* 29.4%* 20.1%* 36.4%* 525.3%* 56.8%*
1000 10 34.3%* 34.3%* 34.3%* 2.0% 21.8%* 6.1%* 7.4%* 18.1%* 34.3%* 577.6%* 53.1%*
1000 20 28.8%* 28.8%* 28.8%* 1.0% 12.2%* 2.6% -0.1% 16.4%* 28.8%* 612.5%* 33.3%*
1000 50 20.9%* 20.8%* 20.8%* 0.1% 3.3%* -2.2% -4.2% 17.6%* 20.8%* 512.8%* 8.7%*

Reuters
1000 5 11.7% 11.6% 11.7% -0.2% 20.5%* 37.8%* 22.0%* 13.1% 11.7% 52.7%* 498.6%*
1000 10 6.1% 5.7% 6.1% -0.1% 3.9% 22.8%* 8.0%* 14.1%* 6.1% 24.4%* 297.4%*
1000 20 2.6% 2.4% 2.6% -0.9% -2.8% 12.5%* 0.4% 13.0%* 2.6% 5.0% 63.9%*
1000 50 -0.2% -0.4% -0.2% -1.9% -13.1%* 7.1% -6.1% 13.3%* -0.2% -5.9% 0.8%

20-Newsgroups
1000 5 41.1%* 41.1%* 41.1%* 32.9%* 43.4%* 26.2%* -19.5%* 63.0%* 41.1%* 138.5%* 127.7%*
1000 10 35.3%* 35.3%* 35.3%* 21.3%* 59.2%* 39.5%* -16.2%* 107.9%* 35.3%* 250.7%* 238.4%*
1000 20 8.4%* 8.3%* 8.3%* -7.1%* 60.3%* 41.7%* -15.4%* 147.0%* 8.3%* 431.4%* 255.4%*
1000 50 -0.8% -0.8% -0.8% -12.5%* 38.1%* 30.9%* -6.3%* 164.9%* -0.8% 684.9%* 1.3%

Recipes
1000 5 0.1% -0.5% 0.1% -0.4% 78.7%* 66.1%* 30.5%* 77.9%* 0.1% 52.4%* 154.5%*
1000 10 -0.1% -0.6% -0.1% 0.4% 64.2%* 62.9%* 24.1%* 89.1%* -0.1% 38.5%* 187.4%*
1000 20 -0.1% -0.4% -0.1% 2.2% 53.4%* 49.0%* 17.5%* 92.5%* -0.1% 20.0%* 124.3%*
1000 50 -0.1% -0.1% -0.1% 3.0% 35.7%* 31.4%* 15.9%* 102.9%* -0.1% 9.0%* 0.1%

Dell
1000 3 x x x 0.7% x 42.8%* x 65.4%* 2.1% 467.6%* 943.0%*
1000 5 0.5% 0.5% 0.5% 0.4% 42.2%* 37.2%* 214.5%* 71.9%* 0.5% 190.6%* 627.4%*
1000 7 -0.2% -0.2% -0.2% 0.1% 27.1%* 27.0%* 182.9%* 55.3%* -0.2% 170.3%* 239.8%*

UCI
100 5 1.5% 1.7% 1.5% 3.0%* 4.4%* 2.0% 7.3%* 6.0%* 1.8% 30.1%* 5.9%*
100 20 1.4% 1.6% 1.7% 5.2%* 3.3%* 0.1% 2.9%* 8.2%* 1.6% 42.7%* 2.6%
100 50 1.7% 2.0%* 1.9%* 8.2%* 1.6%* -0.8% 1.7%* 6.6%* 1.7%* 47.8%* 1.0%

1000 100 1.6% 1.9% 1.9%* 6.4%* 1.5%* -1.6% -0.6% 11.9%* 1.4% 64.0%* 4.7%*

Table 2: AUPRC comparison: The table shows the trimmed-mean (over 30 experiments) of the lift of DIRECT over other methods. Higher the
lift, greater the outperformance of DIRECT. Stars indicate statistical significance (p < 0.01), and methods that fail to complete are marked
with a cross. The robustness of DIRECT enables it to outperform other methods in head-to-head comparisons, particularly for small nlo.

Figure 2: Distribution of the lift in AUPRC of DIRECT (higher is better).



(a) Change in AUPRC with varying sample size. (b) Wall-clock times with varying sample size.

Figure 3: Effect of sample sizes on AUPRC and wall-clock time.

ear function for a given test point, while ensemble methods
need more complex computations.

4 Related Work
We can divide prior work on imbalanced classification into
three groups: data modification, ensemble methods, and other
techniques. We also discuss robust approaches.

Data modification. SMOTE and its variants create a bal-
anced dataset by generating synthetic samples [Chawla et al.,
2002; Han et al., 2005; He et al., 2008]. However, SMOTE’s
synthetic points always lie within the convex hull of the mi-
nority class points. For limited data, these may only lie in
a subspace of the feature space. Also, nearest neighbors are
costly to compute and lose their intuitive meaning in high di-
mensions.

ROSE generates samples using a Gaussian kernel with a
diagonal covariance [Menardi and Torelli, 2014]. Unlike
DIRECT, a diagonal covariance ignores feature correlations.
Further, given limited training data, the diagonal covariance
may be noisy. Finally, ROSE needs sampling from the high-
dimensional kernel, unlike DIRECT.

Ensemble methods. These methods combine results from
multiple models trained on balanced versions of the imbal-
anced data. On these balanced datasets, one can train random
forests, boosted decision trees, and others [Chen et al., 2004;
Seiffert et al., 2010]. But when the training data is limited but
the number of features is high, ensemble methods can under-
perform, as we show empirically.

Cost-sensitive methods. There is work on modifying ex-
isting algorithms to allow for different misclassification
costs [Chung et al., 2016] or class-specific margins [Cao et
al., 2019]. However, cost-sensitive methods (including deep
learning) underperform for limited datasets [Cunha et al.,
2021]. Recent works also consider semi-supervised imbal-
anced classification [Yang and Xu, 2020] or use extra super-
vision [Meng et al., 2018]. We leave the extension of DIRECT
to these settings for future work.

Robust algorithms. Robust methods consider uncertainty
sets for uncertain or perturbed data or data distributions [Xu
et al., 2009; Tzelepis et al., 2018; Mohajerin Esfahani and
Kuhn, 2018]. But none of them consider data as limited as
ours. Chakrabarti [2021] provides a theoretical justification
for similar robust classifiers, but does not account for class
imbalance.

5 Conclusions

We considered binary classification problems with imbal-
anced classes, few samples from the minority class, and high
dimensionality. We devised a new algorithm called DIRECT
for this extreme setting. DIRECT is simple, parameter-free,
and robust to estimation error. In contrast to many existing
methods, DIRECT does not need to generate samples. In-
stead, DIRECT incorporates a smooth estimate of the minority
class distribution directly in its loss function. The estimated
distribution accounts for correlated features and is robust to
estimation error. DIRECT’s loss function is convex and easily
optimized via off-the-shelf solvers.

We empirically validated DIRECT on several real-world
classification tasks on document, image, and gene microarray
datasets. DIRECT is often significantly better than existing
methods and rarely worse. DIRECT is up to 5x − 7x better
than SMOTE-like methods, 30− 200% better than ensemble
methods, 3x− 7x better than cost-sensitive SVMs. The most
significant improvements often occur for the smallest sample
sizes. That is because DIRECT’s robustness to estimation er-
ror is most helpful in these settings.

One direction for future work is to extend DIRECT from
binary to multiclass and multilabel classification. Since in-
dividual one-versus-all classifiers may have different accura-
cies, we need to calibrate them before combining them. An-
other is to leverage sparse feature vectors, such as in docu-
ment classification. Finally, one can extend DIRECT to com-
plex classifiers, e.g., by sampling from the smoothed distri-
bution. This may be useful when there is enough data for the
minority class.
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