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Abstract
Networks with node covariates are commonplace:
for example, people in a social network have inter-
ests, or product preferences, etc. If we know the
covariates for some nodes, can we infer them for
the remaining nodes? In this paper we propose a
new similarity measure between two nodes based
on the patterns of their 2-hop neighborhoods. We
show that a simple algorithm (CN-VEC) like
nearest neighbor regression with this metric is
consistent for a wide range of models when the
degree grows faster than n1/3 up-to logarithmic
factors, where n is the number of nodes. For
“low-rank” latent variable models, the natural con-
tender will be to estimate the latent variables using
SVD and use them for non-parametric regression.
While we show consistency of this method under
less stringent sparsity conditions, our experimen-
tal results suggest that the simple local CN-VEC
method either outperforms the global SVD-RBF
method, or has comparable performance for low
rank models. We also present simulated and real
data experiments to show the effectiveness of our
algorithms compared to the state of the art.

1. Introduction
Suppose we have a social network where each person has
a vector of interests, such as desired products, or preferred
news topics, or sporting interests. For some people, we know
their interest vector from, say, their past tweets or comments.
But for others, such data may be unavailable or insufficient.
Can we infer their interests from a few people’s known
interests and the structure of the social network? This basic
question is relevant for many applications, such as content
and ad targeting, friend and group recommendations, and
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for investigating privacy in social networks, among others.
Thus, a general solution to this problem would be useful in
many contexts.

Formally, we consider a network where each node has a
vector of node covariates. For some nodes, these covariates
are known; we want to predict the covariates for all other
nodes. Further, the predictions must have consistency guar-
antees. That is, the predicted covariates must converge to
their actual values as the size of the network grows under
some limiting process. In particular, we want consistency
even for relatively “sparse” networks, often seen in real-
world settings, where the average node degree grows slowly
compared to the number of nodes.

To predict node covariates using the network structure, we
use latent variable models. Here, the network and the node
covariates are “generated” by latent variables associated
with the nodes. Such models have been used before for
community detection (Yang et al., 2013; Zhang et al., 2016;
Weng and Feng, 2016; Binkiewicz et al., 2017; Zhang et al.,
2019; Yan and Sarkar, 2020). But the node covariate predic-
tion problem is less well-studied.

A seemingly simple solution is to take the average of the
covariates of a node’s neighbors in the network. But this is
not effective in sparse networks. In sparse network models,
with high probability, two nodes with identical latent values
will not have an edge or even share a common neighbor. So,
a node’s neighbors may not be the nodes most similar to it.
Random-walk heuristics go beyond a node’s direct neigh-
bors, but these lack provable guarantees except in special
cases (Li et al., 2019b). Thus, we need a more refined mea-
sure of similarity between nodes, which accurately reflects
distances in latent space and can be estimated consistently
from even sparse networks.

We propose a method (CN-VEC) to predict node covariates
by a nearest-neighbor regression using the top-k nodes with
the most similar two-hop neighborhoods. The similarity
between nodes i and j depends on the number of common
neighbors between the node pair (i, h), compared against
(j, h), over all nodes h. This goes beyond a simple count
of the common neighbors of i and j. Our carefully chosen
similarity formula is provably consistent for a wide range
of latent variable models and sparsities; to our knowledge,
it is the first such algorithm. We do not need to know
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the function linking the probabilities to the latent variables.
Also, the similarity measure has no parameters, so CN-VEC
needs no fine-tuning.

If we have some prior knowledge of the underlying model,
for example, if it is a “low-rank” model (Udell and
Townsend, 2019) like the Generalized Random Dot Product
Graph (GRDPG) models (Young and Scheinerman, 2007;
Rubin-Delanchy et al., 2020), which include many models
like the Stochastic Blockmodel (Holland et al., 1983), the
Mixed Membership Stochastic Blockmodel (Airoldi et al.,
2008), it will be natural to first do singular value decom-
position to estimate the latent variables, and then use those
directly in non-parametric regression for estimating an un-
known covariate. We denote this method by SVD-RBF.

For both CN-VEC and SVD-RBF, we provide consistency
guarantees. For general models, CN-VEC is consistent
when the average degree grows faster than n1/3 up-to log-
arithmic factors, where n is the number of nodes. Note
that CN-VEC depends on 2-hop connections, but the num-
ber of 2-hop paths between two nodes only concentrates
when the average degree grows faster than

√
n (Sarkar and

Chakrabarti, 2015). The better convergence guarantee of
CN-VEC is due to its specially constructed similarity mea-
sure. This similarity measure concentrates even when 2-
hop path counts do not concentrate. Thus, the analysis for
CN-VEC is quite different to analysis of common neigh-
bors (Sarkar and Chakrabarti, 2015; Sarkar et al., 2010). For
low-rank models, we show that SVD-RBF is consistent
when the average degree grows faster than polylog of n.

We compare CN-VEC with SVD-RBF and a variety of
other methods, including random-walks, regression using
Jaccard similarity, node2vec (Grover and Leskovec, 2016),
a recent embedding-based algorithm called NOBE (Jiang
et al., 2018) and regression with network cohesion
(RNC) (Li et al., 2019a; Le and Li, 2020). We run ex-
periments using 4 simulated graph models and 3 real-world
networks. Overall, SVD-RBF, CN-VEC, node2vec and
NOBE outperform the rest. Among the four, CN-VEC is
either the best or close to it. This is a surprising observa-
tion, since CN-VEC uses local statistics like 2-hop paths,
whereas nearly all other methods use the whole network for
inference. Also, CN-VEC is 10x-100x faster than node2vec
and NOBE, depending on the sparsity of the network.

Our main contribution is the CN-VEC algorithm, which
is based on a novel similarity measure. CN-VEC does
not assume a low-rank model, needs no parameters for its
similarity measure, and uses only local information, yet
mostly outperforms the global SVD-RBF algorithm both
in accuracy and time. We provide SVD-RBF mainly to
show that CN-VEC does not lose much due to its weaker
assumptions.

The paper is organized as follows. We review related work
in Section 2. In Section 3, we present our model and de-
scribe CN-VEC and SVD-RBF, and provide consistency
guarantees. Section 4 shows the empirical results. We con-
clude in Section 5.

2. Related work
We will survey connections to node similarity measures,
node classification, regression with network cohesion, and
estimation in latent variable models.

Node similarity measures: There are many existing
similarity measures, based on the number of common
neighbors (Sarkar et al., 2010) and its weighted variants
(Adamic/Adar) (Adamic and Adar, 2003), preferential at-
tachment (Barabási and Albert, 1999), resource alloca-
tion (Zhou et al., 2009), Katz index (Katz, 1953), PageR-
ank (Brin and Page, 1998), SimRank (Jeh and Widom,
2002), and graph neural networks (Zhang and Chen, 2018)
(see (Lü and Zhou, 2011) for a survey). While these often
work well, only a few have consistency guarantees (Sarkar
et al., 2010; Sarkar and Chakrabarti, 2015). Our CN-VEC
method constructs a similarity measure that provably works
in sparser settings.

Node classification: Here the goal is to predict labels
of nodes based on the network structure. Many meth-
ods are based on random walks, such as label propa-
gation (Xiaojin and Zoubin, 2002), personalized PageR-
ank (Page et al., 1999; Kloumann et al., 2017; Jeh and
Widom, 2003), partially absorbing random walks (Wu et al.,
2012), etc. A weighted version of personalized PageR-
ank has provable guarantees under the degree-corrected
Stochastic Blockmodel, but only when there are two com-
munities of nodes (Li et al., 2019b). Another direction is
node embeddings, which aims to represent nodes by vec-
tors while retaining some network-based properties (Tang
et al., 2015; Berberidis and Giannakis, 2019; Tsitsulin et al.,
2018; Grover and Leskovec, 2016; Perozzi et al., 2014;
Jiang et al., 2018; Qiu et al., 2019). With the embedding
vectors, one can train a classifier to predict the unseen la-
bels. These typically lack provable guarantees, but often
work well in practice. As a special case of node embedding,
SVD-RBF uses the eigenvectors and eigenvalues of the ad-
jacency matrix to embed nodes, which is also known as the
spectral embedding. It has been well studied in the statistics
literature (Tang et al., 2013; Sussman et al., 2014; Rubin-
Delanchy et al., 2020). However theoretical consistency
of spectral embedding is typically studied under low-rank
GRDPG models, while CN-VEC does not need any such
model restriction.

When only features are given, semi-supervised learn-
ing (Zhu et al., 2003; Nadler et al., 2009; El Alaoui et al.,
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2016; Calder and Slepčev, 2019) constructs the similarity
matrix from the features. Note that features are analogous
to the latent positions of nodes in our problem, and these
are unknown for us.

Regression with network cohesion: In regression with
network cohesion (Li et al., 2019a; Le and Li, 2020; Jung
and Tran, 2019; Jung, 2019), (xi, yi) pairs are observed
for each node, and the network is used as a regularizer. In
Network Lasso (Hallac et al., 2015), the network structure
is used to enforce smoothness much like (Li et al., 2019a).
Since node features are assumed to be observed in the latter,
it cannot be applied directly to our setting. As Network
Lasso requires edge weights, our similarity matrix can also
be potentially used as the edge weight matrix.

Latent variable inference: Consistent latent inference
algorithms have been developed for the Latent Space
Model (Ma et al., 2020), Stochastic Blockmodel (Rohe et al.,
2011; Lei and Rinaldo, 2015; Abbe, 2017) and its degree-
corrected version (Zhao et al., 2012; Jin, 2015; Gao et al.,
2018), Mixed Membership Stochastic Blockmodel (Mao
et al., 2017; Panov et al., 2017; Mao et al., 2020) and
its degree-corrected version (Jin et al., 2017; Mao et al.,
2018), Stochastic Blockmodel with Overlaps (Kaufmann
et al., 2016), Generalized Random Dot Product Graph mod-
els (Sussman et al., 2014; Athreya et al., 2017; Rubin-
Delanchy et al., 2020), and so on. However, one needs spe-
cialized algorithms for different models, and the true model
may be unknown for real world networks. For low rank
models, our SVD-RBF estimates the latent variables via
a singular value decomposition. However, the low rank as-
sumption is not required in our CN-VEC algorithm, which
works for a broad range of latent variable models.

For latent variable models, there is also related work on
estimating distances/dot-products in latent space. When the
latent variables represent positions in a random geometric
graph, spectral methods (Araya Valdivia and Yohann, 2019),
shortest path lengths (Arias-Castro et al., 2021), and com-
mon neighbor counts (Sarkar et al., 2010) have been used.
Recently (Parthasarathy et al., 2017) recovers the shortest
path metric from a noisy neighborhood graph. However,
those methods are specially designed for different link func-
tions, while CN-VEC does not require prior knowledge on
the form of the link function. A more in depth discussion
of related works on latent distance estimation can be found
in (Arias-Castro et al., 2021).

Other related problems: In matrix completion, we try
to fill in matrix entries given a partially observed noisy
matrix. (Song et al., 2016; Li et al., 2019c) introduce
a framework to estimate the missing values using near-
est neighbors under a latent variable matrix generation
model. In graphon estimation, we try to estimate un-

derlying edge probabilities of a random graph from the
observed adjacency matrix. Some recent work includes
sorting-and-smoothing (Chan and Airoldi, 2014), Stochastic
Blockmodel approximation (Airoldi et al., 2013), and neigh-
borhood smoothing (Zhang et al., 2017); see also (Gao et al.,
2015; Borgs and Chayes, 2017; Xu, 2018). Our problem is
different; we want to predict node covariates.

3. Proposed Work
We are given an undirected and unweighted network be-
tween n nodes, represented by a binary adjacency ma-
trix A ∈ {0, 1}n×n. We are also given the node covari-
ates {Xi ∈ Rp; i ∈ S} for a subset of nodes S. Our
goal is to infer the node covariates of the remaining nodes
{Xi; i ∈ [n] \ S}. We will present our notation and model,
followed by our two algorithms for the model-agnostic and
low-rank cases.

Model. We consider networks generated from general la-
tent variable models. Each node i ∈ [n] in the network has
a latent vector zi ∈ Rd, with ‖zi‖ bounded by a constant C.
The probability that there is an edge between node i and j
depends solely on zi and zj :

Pij := P(Aij = 1|z1, z2, . . . , zn)

= ρnf(zi, zj ; Θ) for all i 6= j, (1)

where f(·) is bounded in [0, 1] and has parameters Θ, and
ρn = o(1) controls the sparsity of the graph. For simplicity,
we will drop the subscript on ρn for the rest of the paper.
Thus, the matrix P denotes the conditional expectation of
A given the latent variables; we set the diagonal of A to
zero. The node covariates are also generated from the latent
vectors:

Xi = g(zi) + εi, (2)

where g : Rd → Rp is bounded, and εi are i.i.d. noise
random vectors with uncorrelated elements, whose mean is
0 and variance is σ2. We assume that p = Θ(1), σ = Θ(1),
and g(·) is suitably smooth, which is a standard assumption
in nonparametric regression (Györfi et al., 2006; Wied and
Weißbach, 2012; Duchi, 2019):

Assumption 3.1. g(·) is Lipschitz, that is, there is a con-
stant Lg > 0 such that

‖g(v1)− g(v2)‖ ≤ Lg · ‖v1 − v2‖.

We denote by the column vector ai the ith column of the
adjacency matrix A. We denote by ei a vector such that
ei(j) = 1(i = j), with the vector size being evident from
the context. We use the standard o,O and ω, Ω order nota-
tions, with Õ hiding poly-logarithmic factors, and oP and
OP probabilistic order notations (Vaart, 1998).



Consistent Nonparametric Methods for Network Assisted Covariate Estimation

3.1. Model-Agnostic Algorithm

The node covariate Xi of a node i depends on the latent zi
and the function g(.), both of which are unknown. If we
knew the latents but not g(.), we could still estimate Xi

using a non-parametric estimator:

X̂i =

∑
j∈topk(i) Wij ·Xj∑
j∈topk(i) Wij

, (3)

where Wij is a measure of similarity between zi and zj ,
and topk(i) is a set of k nodes j ∈ S with the largest Wij

values. Under a smooth g(.) (Assumption 3.1) and mild
conditions on W, this is asymptotically consistent (Györfi
et al., 2006; Wied and Weißbach, 2012). But in our case,
we do not know the latents.

Our approach is to use the network to find topk(i), and we
will show how this is possible even without knowing the
latents. The underlying idea is that the latents generate the
P matrix, which in turn generates the adjacency matrix A.
So, similarities between latents should be reflected in the
network structure. We will now present a series of methods
of increasing complexity for finding topk(i), culminating in
our proposed method.

Adjacency matrix: The simplest idea is to average the co-
variates of a node’s neighbors in the network. For example,
consider a Stochastic Blockmodel (SBM) (Holland et al.,
1983). Here zi are latent memberships to r blocks and the
network is generated such that the probability of connection
of node i in block a and node j in block b is simply Bab,
where B is a r× r matrix. For this simple example, assume
that A is generated from an SBM and the node covariates
are generated such that nodes in block i have i.i.d covariates
from a distribution mean µi. The means of different blocks
are different. Suppose Pij is high if i and j belong to the
same cluster (zi = zj), and low otherwise. Then, if we
could set W = P, the nodes selected in topk(i) would be
those in the same cluster as i. So they would have the same
latent as i. Thus, averaging over the covariates of topk(i)
would give a good prediction for Xi. Now, we do not have
P, but the adjacency matrix A, which is a stochastic version
of P. However, if we use W = A, there is no way to dis-
tinguish between in-cluster versus out-of-cluster neighbors
of i. This leads to a biased prediction, so we cannot use the
adjacency matrix as the W matrix.

Common neighbor matrix: The previous idea of using
the adjacency matrix A failed because it did not accurately
reflect the probability matrix P. To remedy this, we can
set W = C, where Cij = aTi aj is the number of common
neighbors of nodes i and j (for i 6= j). The off-diagonal en-
tries of C concentrate around those of P2 when the average
degree of nodes grows faster than Õ(

√
n) (Rohe et al., 2011;

Sarkar and Chakrabarti, 2015). For the stochastic block-
model under appropriate conditions, the nodes selected in

topk(i) are again those in the same cluster as i. Thus, set-
ting W = C works in dense networks where nodes have
high degree. However, this method will not work for sparse
networks seen in real-world settings. For sparse matrices,
one may need to use more complex similarity matrices like
the personalized pagerank (Jeh and Widom, 2003) matrix,
which also uses information from long paths.

We will show experimentally that prediction accuracy
matches the above discussion. Using the adjacency ma-
trix directly is worse than the matrix of common neighbors,
which in turn is worse than matrices based on personalized
pagerank. However, we can do much better, and provably
so, by extending the common-neighbors idea. We describe
this next.

Distances between rows of C: Using W = C allowed us
to use the “rest of the network” in computing the similarity
between i and j. However, only nodes that are common
neighbors of both i and j contributed to this measure. Our
key observation is that if i and j have similar latents, then
we should also expect Pi` ≈ Pj` for any node ` 6= i, j. If
the same also holds for P2 (i.e., (P2)i` ≈ (P2)2j`), then
Ci` ≈ (P2)2i` ≈ (P2)2j` ≈ Cj` by concentration. So, in-
stead of just considering Cij as the similarity between i and
j, we should use a measure that compares Ci` to Cj` for all
`. In other words, we set Wij to be the similarity between
rows i and j of the matrix C. This goes beyond just the
common neighbors of i and j, and hence can work even in
sparse networks.

We need the following assumption:

Assumption 3.2. There exist positive constants ` and L,
and ∆n = o(1), such that

`‖zi − zj‖ −∆n ≤
1

n1.5ρ2
‖(ei − ej)

TP2
(
I− eie

T
i − eje

T
j

)
‖ ≤ L‖zi − zj‖.

The middle term equals the square root of∑
k 6=i,j

(
(P2)ik − (P2)jk

)2
, normalized by its order.

So, the assumption states that zi is far from zj iff (P2)ik is
far enough from (P2)jk for one or more k ∈ [n] \ {i, j}.
That is, for some nodes k in the 2-hop neighborhood of i or
j, there should be significant differences.

Remark 3.1. The second inequality of Assumption 3.2 can
be derived from the piece-wise Lipschitz condition that is
commonly used in graphon estimation literature (Airoldi
et al., 2013; Zhang et al., 2017; Chan and Airoldi, 2014;
Gao et al., 2018; Xu, 2018). The LHS ensures that each
node has enough nearest neighbors in latent space. While
the condition looks technical, we show that it is satisfied for
Generalized Random Dot Product Graph (GRDPG) mod-
els (Young and Scheinerman, 2007; Rubin-Delanchy et al.,
2020) which include Stochastic Blockmodel and Mixed
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Algorithm 1 CN-VEC: model-agnostic algorithm

Input: Adjacency matrix A, Set S of nodes with known
covariates, number of neighbors k

Output: Estimated node covariates X̂i, i ∈ [n] \ S
1: for i ∈ [n] \ S do
2: dist(j)← Kij (by Eq. (4)), for j ∈ S
3: topk(i)← k nodes with the smallest values of dist(j)

4: X̂i ←
1

k

∑
j∈topk(i) Xj

5: end for

Membership Stochastic Blockmodel. The details are in the
supplementary material.

By Assumption 3.2, the similarity between i and j can
be inferred from

∑
k 6=i,j

(
(P2)ik − (P2)jk

)2
. But P is

unknown. So, we need a statistic that converges to this
quantity, up to a constant. Recall that Cij = aTi aj de-
notes the number of common neighbors between nodes i
and j. Now, it is easily shown that E[Cik] = (P2)ik. So it
may seem that

∑
k 6=i,j (Cik −Cjk)

2 will work. But Cik

converges to (P2)ik only for “dense” networks, where the
average degree grows faster than Õ(

√
n). In sparse net-

works, Cik = 0 for most (i, k) pairs. For a given k, it is
very unlikely that both Cik > 0 and Cjk > 0. So, paradox-
ically, |Cik −Cjk| = Cik + Cjk for many k. This means
that

∑
k 6=i,j (Cik −Cjk)

2 may be large even if zi = zj

and
∑
k 6=i,j

(
(P2)ik − (P2)jk

)2
= 0.

Instead, we propose the following statistic to measure the
similarity of i and j:

Kij =
∑
k 6=i,j

[
(C2

ik − 2)1(Cik ≥ 2)+

(C2
jk − 2)1(Cjk ≥ 2)− 2CikCjk

]
. (4)

This statistic concentrates around the desired quantity (up to
a constant) for both sparse and dense networks, as the next
theorem shows.
Theorem 3.1. We have:

Kij =

∑
k 6=i,j

(
(P2)ik − (P2)jk

)2+ e+ c,

where e = OP (n2.5ρ3
√

log n), c = −4(n − 2) if nρ2 =

Ω(logξ n), ξ > 1; and e = OP (n4ρ6 + nρ
√

log5 n), c = 0
if nρ2 = o(1), n2ρ3 = Ω(logξ n), ξ > 2.5.

Proof Sketch. We may understand the intuition for Kij by
separately considering the cases of dense and sparse net-
works. In the case of a dense network (nρ2 → ∞), we
expect Cik be large, so the indicators may be safely ig-
nored. Thus, we expect Kij ≈

∑
k 6=i,j(Cik −Cjk)2 + c.

Now, Cik =
∑
h AihAhk, so it is a sum of independent

random variables. Hence, by Bernstein’s inequality, Cik

concentrates around its expectation (P2)ik. This leads to
the desired concentration result in the dense case.

This reasoning does not hold for the sparse case (nρ2 → 0)
because E[Cik] ≈ 0 and Cik does not concentrate. In
this case, Cik is well-approximated by a Poisson random
variable with rate λik = (P2)ik = O(nρ2). Thus, the
indicator 1(Cik ≥ 2) is true when Cik = 2 with prob-
ability ≈ λ2ik/2, and Cik > 2 can be ignored since its
probability is of a lower order. Similarly, Cik and Cjk

can be treated as nearly independent since it is very un-
likely that a node h is connected to i, j, and also k. So
CikCjk = 1 with probability ≈ λikλjk, with higher
values having probabilities of a lower order. Thus, we
expect Kij ≈

∑
k(2 · (λ2ik/2 + λ2jk/2) − 2λikλjk) =∑

k(λik − λjk)2, which again gives the desired concen-
tration result. The detailed proof is more involved, and is
presented in the supplementary material.

Remark 3.2. When zi = zj , we have eTi P = eTj P, so
Kij − c = e. But when ‖zi − zj‖ � ∆n/`, Kij − c ≈(∑

k 6=i,j
(
(P2)ik − (P2)jk

)2)
= Ω(n3ρ4) � e. So for

both sparse and dense networks, the node pairs with small
Kij are also the node pairs with small ‖zi − zj‖.
Remark 3.3. We also want to emphasize that the above
theoretical result makes use of the fact that our common-
neighbor based metric is looking at an ensemble of common
neighbors, and hence it concentrates in a broader range of
sparsity parameters compared to pairwise common neigh-
bors (Sarkar and Chakrabarti, 2015). Our analysis is also
completely different from (Sarkar and Chakrabarti, 2015),
and requires finer analysis.

Remark 3.4. Note that although the c term in Theorem 3.1
may be large, for any graph, it is a constant and does not af-
fect the ordering of Kij . CN-VEC only needs this ordering
to pick nearest neighbors for any node i. So, the goal of The-
orem 3.1 is to show that ordering by Kij matches the order-
ing by the population quantity

∑
k 6=i,j

(
(P2)ik − (P2)jk

)2
.

The error term e is of a smaller order (Remark 3.2). Fig-
ure 1(a) shows this for a Stochastic Blockmodel (SBM) with
two communities. The y-axis shows, in log-scale, the value
of (Kij − c) and its population counterpart for a random
node i. The x-axis shows nodes grouped by their commu-
nities. The figure shows that (Kij − c) concentrates well
around the population. Varying the graph’s sparsity yields
qualitatively similar results.

Thus, given a node i ∈ [n] \ S, ordering the nodes j ∈ S
according to Kij is equivalent to ordering them accord-
ing to

∑
k 6=i,j

(
(P2)ik − (P2)jk

)2
. We find the top log(n)

nodes among S with the smallest values of Kij (call this
set topk(i)), and average their node covariates to estimate
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(a) Kij on SBM (log-scale). (b) Changing # of neighbors k.

Figure 1. Simulations.

the covariates for node i. So the W matrix in Eq. (3) can be
thought of as a binary matrix with Wij = 1, if j ∈ topk(i).
We call this algorithm CN-VEC; Algorithm 1 shows the
details. Theorem 3.1 coupled with the following theorem
shows that the CN-VEC algorithm is consistent.

Theorem 3.2. Suppose in Eq. (2) each element of the ran-
dom noise vector εi has same variance σ2, |S| = Θ(n),
and Assumptions 3.1 and 3.2 hold, then for any sequence
kn such that kn →∞, kn/n→ 0, kn-nearest-neighbors re-
gression using ‖(ei − ej)

TP2
(
I− eie

T
i − eje

T
j

)
‖ as the

distance metric yields weakly consistent estimates for node
covariates when ties occur with probability 0:

E[‖X̂i − g(zi)‖2] = o(1) for i ∈ [n] \ S.

Remark 3.5. It is possible to relax |S| to be o(n) as long
as |S| → ∞. Intuitively, to predict the covariates for node i,
we need to only consider Kij for j ∈ S. So we can apply
Theorem 3.2 by replacing n by the effective size |S|.
Remark 3.6. Theorem 3.2 suggests that we can set the num-
ber of nearest neighbors in Algorithm 1 as k = O(log n),
with the constant chosen by cross validation. Figure 1(b)
shows the RMSE of simulations of Stochastic Blockmodel
(SBM) when we change k. This shows a sweet spot for
k ∈ [10, 20].

3.2. Algorithm for Low-Rank Models

One popular class of network models assumes that the prob-
ability matrix P is low-rank. This results from a bilinear
form for f , that is, f(zi, zj) = zTi Θzj for some model pa-
rameters Θ ∈ Rd×d. For example, in the Stochastic Block-
model (SBM) (Holland et al., 1983), the d-dimensional
latent vector zi for node i is of the form zi = ea for some
a ∈ [d]. Here, we say that node i belongs to “commu-
nity” a. The probability of a link between nodes i and j is
given by Pij = ρf(zi, zj) = ρzTi Θzj = ρΘij . That is,
link probabilities are solely dependent on the community
memberships of nodes, and Θ represents the community
interconnections. The Mixed Membership Stochastic Block-
model (MMSB) (Airoldi et al., 2008) generalizes this to
allow “soft” community memberships. Here, zi is a proba-
bility vector, representing a distribution over communities

Algorithm 2 SVD-RBF: nonparametric regression for low
rank models with the RBF kernel Kθ (v1,v2)

Input: Adjacency matrix A, Set S of nodes with known
covariates, bandwidth θ, rank of matrix d

Output: Estimated node covariates X̂
1: Û← top-d eigenvector matrix for A
2: v̂i ← ith row of Û|Ê|1/2
3: for i ∈ [n] \ S do
4: dist(j)← ‖v̂i − v̂j‖ for j ∈ S

5: X̂i ←
∑
j∈S Kθ (v̂i, v̂j) Xj∑
j∈S Kθ (v̂i, v̂j)

,

where Kθ (v1,v2) = exp

(
−||v1 − v2||2

2θ2

)
6: end for

for node i.

The Generalized Random Dot Product Graph (GRDPG)
model (Young and Scheinerman, 2007; Rubin-Delanchy
et al., 2020) allows for more general zi and sets
Pij = ρzTi Iq,d−qzj , where Iq,d−q is a diagonal matrix with
first q elements on the diagonal as 1 and the rest as −1. Let
ÛÊÛT be the top-d eigen-decomposition of A, where Ê is
a diagonal matrix, and both Û and Ê have rank d (typically,
d� n). Then for large enough n, the latent vectors zi are
arbitrarily close to a linear transformation of the rows of
Û|Ê|1/2 (call them v̂i) (Rubin-Delanchy et al., 2020). So
if the Assumption 3.1 holds for g(zi), then it also holds
for g(v̂i). Hence, we can use v̂i as the latent positions in
place of zi. In practice, the number of eigenvectors can be
chosen via the USVT estimator (Chatterjee, 2015). For a
node i with unknown covariates, we calculate its distances
‖v̂i − v̂j‖ to other nodes j ∈ S and put them to an RBF
kernel to get the weights for nonparametric regression. The
estimated covariates X̂i is then the weighted average of the
covariates Xj . We call this algorithm SVD-RBF; Algo-
rithm 2 shows the details. We prove that Algorithm 2 gives
consistent results.

Proposition 3.1. Consider a sequence of networks gen-
erated from GRDPG with latent positions supported in
unit ball. If Assumptions 3.1 holds, |S| = Θ(n), ρn =
ω(log4ξ n) for some constant ξ > 0, d = Θ(1), and the
smallest singular value of P grows linearly with nρ, then
for bandwidth θ = Θ̃(n−

1
2d ), and X̂i returned by Algo-

rithm 2, we have, with probability tending to one,

max
i∈[n]\S

‖X̂i − g(zi)‖ = o(1).

Proof Sketch. The proof follows from an analysis of the
Nadaraya–Watson estimator using an RBF kernel. The
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bandwidth is chosen using the bound

max
i∈[n]
‖Onv̂i −

√
ρzi‖ = OP

(
(log n)ξ

n1/2

)
in (Rubin-Delanchy et al., 2020), for some full rank matrix
On ∈ Rd×d whose spectral norm is almost surely bounded.
The details are presented in the supplementary material.

Proposition 3.1 gives a guidance on choosing the bandwidth
θ for Algorithm 2, e.g., setting θ = Θ

(
(log n)

3
d /n

1
2d

)
,

while the constant can be fine-tuned by cross-validation.

Complexity: SVD-RBF needs O((n2 + E)d) time to pre-
dict the covariates for all nodes in a network with n nodes,
E edges, and rank d for P. CN-VEC needs O(nE) time
to perform three matrix-matrix multiplications involving A.
Both have a space complexity ofO(n2) to store the pairwise
node similarities.

4. Experiments
We evaluate the accuracy and speed of CN-VEC and SVD-
RBF on several simulated and real-world networks. Since
both CN-VEC and SVD-RBF are based on non-parametric
regression using our proposed similarity measures, we
mainly compare against other similarity measures. So, each
method constructs a similarity Wij between each pair of
nodes i and j. Then, given a node i, it picks the top-10
most similar nodes according to the W, and calculates the
weighted average of their node covariates, with W as the
weights. We consider the following similarity measures:

• NBR: This predicts the missing covariates for a node
using the average of covariates of the neighbors of the
node. This simply uses the adjacency matrix A as W.
We use all neighbors of a node instead of selecting top-10
neighbors.

• W-PPR: This is based on personalized pagerank, which
can be interpreted as similarity based on random
walks (Jeh and Widom, 2003; Kloumann et al., 2017; Li
et al., 2019b). The similarity weights are given by W =
(M+M′)/2, where M = (1−γ)(I−γAD−1)−1, and D
is the diagonal matrix of degrees. We set γ = exp(−.25)
as recommended in (Li et al., 2019b).

• JACCARD: Here we use the Jaccard index as the similarity
matrix W. The Jaccard score between two nodes i and j
is defined as Cij/(di + dj −Cij), where di is the degree
of node i.

• CN: Here we use the number of common neighbors C as
the similarity matrix W.

• NODE2VEC: This constructs a node embedding ui
for each node i in the graph (Grover and Leskovec,
2016). We use the default setting of the code1 pro-
vided by the authors. The similarity between i and j
is then constructed as for SVD-RBF. That is, we set
Wij = exp(−‖ui − uj‖2/(2θ2)) for a bandwidth θ.

• NOBE: This is another recent node embedding algo-
rithm (Jiang et al., 2018). We use the default setting
of the code2 provided by the authors and construct W
similar to node2vec.

We also compare with a method that is not based on similar-
ity measure: regression with network cohesion (RNC) (Li
et al., 2019a; Le and Li, 2020). Their response variables
are linear functions of observed independent variables Z
and unobserved node-wise effects that are learned from a
network-based regularizer. Unlike us, the network is fixed
and not random. To apply it to our setting, we set Z to
zero and predict the unobserved X values using their semi-
supervised method.

All experiments are performed with Matlab R2018b on
servers with 24-core Intel Xeon X5675 and 99GB RAM.

4.1. Simulations

We generate networks from Latent Space Model, Stochastic
Blockmodel, Mixed-membership Stochastic Blockmodel,
and Random Dot Product Graph model. Each network has
n = 2, 500 nodes and latent dimension d = 5 by default.
The node covariates are generated byXi = βT zi+N (0, .1),
where β is sampled uniformly from the surface of a unit
sphere and zi ∈ Rd is the latent vector of node i.

For each network, we vary the fraction of nodes with un-
known covariates from 0.5 to 0.9. For each fraction, we
randomly select the nodes with unknown covariates and pre-
dict their covariates using the various algorithms. We report
the mean and variance of root mean square error (RMSE)
of the predictions over 10 runs.

Latent Space Model (LSM): The latent vectors zi are sam-
pled independently and uniformly between 0 and 1, and
Pij = ρ · (1 + exp(2.5 × (‖zi − zj‖)))−1 with ρ = 1.
Figure 2(a) shows that CN-VEC, node2vec and NOBE
outperform the other methods. Under LSM, the probability
matrix P has full rank, so SVD-RBF is not suited for this
model. Indeed, we find that SVD-RBF performs similarly
to CN.

Stochastic Blockmodel (SBM): We split the set of n nodes
into d = 5 equal-sized communities; zi = ej for j ∈ [5].
The probability of forming a link between i and j is given

1
https://github.com/aditya-grover/node2vec

2
https://github.com/Jafree/NOnBacktrackingEmbedding

https://github.com/aditya-grover/node2vec
https://github.com/Jafree/NOnBacktrackingEmbedding
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Figure 2. RMSE on recovering hidden node covariates.

by Pij = ρ · zTi Θzj with ρ = 0.1, where we sample each
cell of Θ uniformly from 0 to 1, and then symmetrize Θ
by Θ = (Θ + ΘT + 2 · I)/4. Since this is a low-rank
model, we expect SVD-RBF to perform well. Indeed,
Figure 2(b) shows that CN-VEC perform best, followed by
SVD-RBF, node2vec and NOBE. The remaining methods
are significantly worse.

Mixed-membership Stochastic Blockmodel (MMSB):
Here, each zi is a 5-dimensional probability vector where
the `th component is the probability that node i belongs to
community `. The latent variables zi are sampled from a
Dirichlet distribution that gives equal weight 1/5 to each
of the 5 communities. The link probabilities are given by
Pij = ρ·zTi Θzj with ρ = 0.1, where Θ has a unit diagonal
and 0.1 on all off-diagonals. Thus, within-community links
are preferred to across-community links. By construction,
MMSB leads to a low-rank P, so we expect SVD-RBF
to do well. Figure 2(c) shows that CN-VEC, SVD-RBF,
node2vec and NOBE are best.

Random Dot Product Graph model (RDPG): We sample
the latent variables zi from a mixture of d-dimensional Gaus-
sians with means e` (` = 1, . . . , 5) and covariance 0.1 · I.
The link probabilities are Pij = min(1,max(0, ρ · zTi zj))
with ρ = 0.1. Since Pij is clipped to [0, 1], P need not be
low-rank. Figure 2(d) shows that CN-VEC significantly

outperforms all other methods. Since P need not be low-
rank, SVD-RBF is worse than CN-VEC, and is compara-
ble to W-PPR and CN.

(a) Increasing n with nρ fixed. (b) Increasing ρ with n fixed.

Figure 3. Running time (log scale).

To summarize, we find that CN-VEC, node2vec, NOBE
and SVD-RBF perform better than the other methods.
Among them, SVD-RBF works very well for low-rank
models, as expected. The model-agnostic CN-VEC algo-
rithm works well in most cases – it outperforms SVD-RBF
by all but the MMSB model, NOBE on SBM and RDPG
models, and performs comparably with node22ec on all
models. However, node2vec and NOBE have no conver-
gence guarantees and takes 10x longer time than CN-VEC,
as can be seen from the wall-clock timing results in Figure 3.
The timing results are for the SBM graph using Matlab im-
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Figure 4. RMSE on recovering hidden topic distributions for each node.

plementations of all algorithms except node2vec, which is
implemented in Python. For the first example, we increase
n and set ρ such that nρ = 250. In the second plot, we fix n
and increase ρ. The same pattern is seen for other network
models as well. Thus, for large networks, CN-VEC is more
computationally feasible than node2vec and NOBE.

4.2. Real networks

We evaluated our method on two citation networks, namely
Cora (McCallum et al., 2000) and CiteSeer (Giles et al.,
1998)3, and one social network, namely Sinanet (Jia et al.,
2017)4. The citation networks have roughly 3,000 nodes,
with average degree 2-4. The nodes in citation networks
represent publications and directed edges represents a who-
cites-whom relationship. By training a topic model on the
words associated with each publication, we obtain a topic
distribution for each node, which are then used as node
covariates. The number of topics range between 6-7. For
this experiment, we remove the directionality of the edges
to create an undirected network. Sinanet is a social network
extracted from a microblog website5 (Jia et al., 2017). The
nodes are users of the website, and the node covariates are
the topic distributions published by Jia et al. (2017). It
has roughly 3500 nodes, 10 topics and average degree 16.
Table 1 shows the number of nodes, average degree and
number of topics for all three datasets.

Table 1. Network statistics.

DATASET n AVG. DEGREE d

CORA 2,708 3.90 7
CITESEER 3,312 2.75 6
SINANET 3,490 16.4 10

For all three datasets, the covariate for a node i is the
3
https://linqs.soe.ucsc.edu/data

4
https://github.com/smileyan448/Sinanet

5
http://www.weibo.com

topic distribution vector Xi. So, our evaluation met-
ric is the RMSE of our estimates X̂i, measured as
RMSE =

√
1
|U |
∑
i∈U ‖X̂i −Xi‖2, where U is the set of

unlabeled nodes.

In Figure 4, we see that CN-VEC, node2vec and NOBE
are the best on all three datasets. SVD-RBF is comparable
for Cora and CiteSeer, but much worse for Sinanet. Since
real-world datasets may not follow low-rank models, it is
not surprising that SVD-RBF fails in some cases. However,
the model-agnostic CN-VEC works well everywhere.

Among the other methods, we find that CN and JACCARD
have similar accuracies in all cases. For the citation net-
works, W-PPR is better than them. But for Sinanet, CN
and JACCARD are better than W-PPR, and also SVD-RBF.

5. Conclusion
In this paper, we study the problem of estimating covari-
ates for some nodes in a network, given the covariates for
other nodes and the full network structure. This problem
has applications in ad targeting and content recommenda-
tions, among others. We propose two provably consistent
and computationally efficient algorithms. The first, called
CN-VEC, applies without knowledge of the underlying
model, which is the main contribution of our paper. The
second, called SVD-RBF, is aimed at low-rank latent vari-
able models, and works for a more flexible sparsity regime
than CN-VEC. Both outperform several popular network
statistics in simulated and real-world experiments, with CN-
VEC being better overall. CN-VEC is also comparable or
better than using a recent node-embedding methods while
being 10x-100x faster.

Acknowledgements
P.S. gratefully acknowledges support from NSF (DMS
1713082 and 1934932). D.C. thanks Facebook’s Research
and Academic Relations Program for a faculty award.

https://linqs.soe.ucsc.edu/data
https://github.com/smileyan448/Sinanet
http://www.weibo.com


Consistent Nonparametric Methods for Network Assisted Covariate Estimation

References
Emmanuel Abbe. Community detection and stochastic

block models: recent developments. Journal of Machine
Learning Research, 18(1):6446–6531, 2017.

Lada A Adamic and Eytan Adar. Friends and neighbors on
the web. Social networks, 25(3):211–230, 2003.

Edo M Airoldi, Thiago B Costa, and Stanley H Chan.
Stochastic blockmodel approximation of a graphon: The-
ory and consistent estimation. In Advances in Neural
Information Processing Systems, pages 692–700, 2013.

Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and
Eric P Xing. Mixed membership stochastic blockmodels.
Journal of Machine Learning Research, 9:1981–2014,
2008.

Ernesto Araya Valdivia and De Castro Yohann. Latent
distance estimation for random geometric graphs. In Ad-
vances in Neural Information Processing Systems, pages
8721–8731, 2019.

Ery Arias-Castro, Antoine Channarond, Bruno Pelletier, and
Nicolas Verzelen. On the estimation of latent distances
using graph distances. Electronic Journal of Statistics, 15
(1):722–747, 2021.

Avanti Athreya, Donniell E Fishkind, Minh Tang, Carey E
Priebe, Youngser Park, Joshua T Vogelstein, Keith Levin,
Vince Lyzinski, and Yichen Qin. Statistical inference on
random dot product graphs: a survey. Journal of Machine
Learning Research, 18(1):8393–8484, 2017.
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