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Abstract

Choosing a subgraph that can concisely rep-
resent a large real-world graph is useful in
many scenarios. The usual strategy em-
ployed is to sample nodes so that the induced
subgraph matches the original graph’s degree
distribution, clustering coefficient, etc., but
no attempt is made to preserve fine-grained
relationships between nodes, which are vital
for applications like clustering, classification,
and ranking. In this work, we model such
relationships via the notion of Personalized
PageRank Value (PPV). We show that in-
duced subgraphs output by current sampling
methods do not preserve PPVs, and propose
algorithms for creating PPV-preserving sub-
graphs on any given subset of graph nodes.
Experiments on three large real-world graphs
show that the subgraphs created by our
method improve upon induced subgraphs in
terms of preserving PPVs, clustering accu-
racy, and maintaining basic graph proper-
ties.

1. Introduction

Consider the problem of clustering a large graph
or finding communities in a social network. There
are many available methods, and their performance
varies considerably across graphs, so picking the right
method for a given graph is important. Not only
that, but each method has its own parameter settings
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that need to be tuned (e.g., the conductance threshold
for (Andersen et al., 2008), or the edge-weight trans-
form function for (van Dongen, 2000)). On a small-
sized dataset, the obvious solution is to search the
space of parameters iteratively until a good param-
eter setting is found. However, each iteration requires
running the clustering algorithm on the entire graph
and observing the quality of the solution. Moreover,
this tuning must be performed for every available clus-
tering method to pick the best one. Clearly, this does
not scale well to large graphs.

One solution is to find smaller graphs {57, So, ...} that
mimic the full graph G, and perform tuning and model
selection on these S;. For instance, if we knew the
generative model of GG, then we could generate .S; from
this model. However, real-world graphs rarely match
any generative model in all respects, and even then,
finding the model parameters might be too expensive.

Alternatively, we could build small graph samples
from G itself. There has been much recent work on
picking “representative” samples of a graph that pre-
serve degree distributions, clustering coefficients, and
so on (Leskovec & Faloutsos, 2006; Maiya & Berger-
Wolf, 2010). However, these measures might not be
relevant for the application (say, clustering), and the
measures that are critical to the application (say, pair-
wise similarities between nodes, conductance between
node subsets, etc.) might not be preserved in the sam-
ple. Thus, the challenges are twofold: (a) identify a set
of measures that are important for a wide range of ap-
plications, and (b) design a sampling method that pre-
serves these particular measures, in addition to usual
ones like degree distributions.

A CoMMON MEASURE. Random walk based algo-
rithms have been used in many common graph appli-
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cations: propagating labels in classification (Szummer
& Jaakkola, 2001), finding spam webpages (Gyongyi
et al., 2004), clustering (Andersen et al., 2008), search
in peer-to-peer networks (Gkantsidis et al., 2006), col-
laborative filtering applications (Gori & Pucci, 2007),
ranking (Haveliwala, 2003), etc. In addition, ran-
dom walks have been shown to be strictly related to
other fundamental graph quantities, such as normal-
ized cuts (Meila & Shi, 2000) and the graph spec-
trum (Orponen et al., 2008). This motivates our
goal of creating graph samples that “preserve ran-
dom walks”, that is preserve probabilities p;; of a
walk starting from node ¢ hitting node j, for all 4, j
in the sample graph. These are in fact the Person-
alized Pagerank Values or PPVs (ignoring the restart
probability), and they reflect the pairwise similarities
between nodes. Indeed, in all the applications above,
random walks are used to compute such similarities
(possibly implicitly), which are in turn used for clus-
tering, classification, ranking, etc. Thus, our goal is
to build a graph sample where the PPVs between all
pairs of nodes in the sample are preserved. Such sam-
ples are useful not only for random-walk applications,
but also for applications optimizing seemingly unre-
lated measures — as we show empirically in Section 6.

SAMPLING METHOD. Graph sampling typically con-
sists of two parts: (a) picking a subset S of nodes from
the full graph G, and (b) selecting the edges between
nodes in S. Current sampling algorithms focus almost
exclusively on part (a); for part (b), they simply retain
those edges in G both of whose endpoints fall in S (call
this the “induced” subgraph). Unfortunately, induced
subgraphs often fail to preserve PPVs. For instance,
two nodes in S that had many common neighbors in G
but were not directly linked may become unreachable
from each other in the induced subgraph, even if intu-
itively they are “close” in G and ought to be “close”
in the sample as well. Since PPV between these nodes
is likely to be high, they would remain “close” in a
PPV-preserving subgraph. This motivates us to focus
on part (b), and in particular on creating a subgraph
that preserves PPVs between all pairs of nodes in S,
whose edges might, or not, have existed in G. A ma-
jor advantage of our method is that it applies to any
subset S, so we can leverage all previous algorithms
developed for part (a).

To illustrate the above we show, in Figures 1-3, a graph
of about 2,000 nodes, the induced subgraph on a 200-
node sample, and the subgraph created by our algo-
rithm on the same sample and having the same aver-
age node degree as the full graph. Observe that the
induced subgraph only preserves edges between imme-

diate neighbors, leading to many disconnected com-
ponents. The subgraph generated by our algorithm
better preserves graph structure by creating “bridg-
ing” edges between components that are most tightly
connected (according to PPV) in the original graph.

REsuLTs. Our contributions are the following:

(1) We show that induced subgraphs do not preserve
PPVs (Section 4), and that even the simpler problem
of preserving global PageRank in induced subgraphs
is difficult.

(2) We show that, while it might not be possible in
general to preserve PPVs for a given subset, it is pos-
sible to ezactly match PPVs by adding just one ex-
tra “sink” node to this subset. We present algorithms
implementing this approach on an arbitrary subset of
nodes of a directed graph (Section 5.1). Additionally,
we show that adding an extra “source” node allows to
exactly maintain global PageRank values as well (Sec-
tion 5.3).

(3) Perfectly preserving PPVs may require weighted
edges between all pairs of nodes in the subset. To
reduce the storage requirements, we present rounding
methods that remove a large fraction of these edges
while still providing provable bounds on the distortion
of PPVs (Section 5.2).

(4) Finally, we verify via experiments on three large
real-world networks that subgraphs generated by our
algorithms outperform existing methods in terms of
preserving PPVs, improving clustering accuracy, and
preserving basic graph properties. (Section 6).

Due to space constraints, complete proofs of our claims
will appear in the full version of the paper.

2. Related Work

Sampling from large graphs while preserving graph
properties was introduced by Leskovec and Falout-
sos (2006). They proposed several criteria for “good”
graph samples and empirically evaluated several node
sampling algorithms with respect to these criteria.
They observed that different algorithms are better
at preserving some graph properties but not others,
and that there is no clear winner among the evalu-
ated algorithms. Another line of work considers sam-
pling subgraphs to optimize for one specific goal, such
as the preservation of community structures (Maiya
& Berger-Wolf, 2010), or the ability to visualize the
graph (Jia et al., 2008). Hubler et al. (2008) proposed
a generic Metropolis algorithm for sampling nodes so
as to minimize distortion of a given graph property.
However, the number of steps until convergence is not
known in advance (and may be large), and each step
requires the evaluation of the distortion function over
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Figure 1. The original graph. The

200 sampled nodes are black. the sample.

numerous subgraphs, which may be costly. Our work
deviates from all of these in that we are not concerned
with sampling of nodes, but rather, given a subset of
nodes, we consider the general problem of maintaining
multi-scale graph structure by preserving a distance
metric (personalized PageRank) between all pairs of
sampled nodes.

Instead of sampling, Sala et al. (2010) proposed gen-
erating synthetic graphs that have similar properties
to the original graph. While having advantages like
privacy preservation, this approach tries to solve the
harder problem of generating a small representative
graph using only few parameters, and thus needs to
assume a model of the original graph. Our sampling
based approach uses more information about the orig-
inal graph and thus is applicable to graphs that do not
accurately follow any known model.

Another related area of research is graph sparsifica-
tion. Edge sparsification only decreases the number of
edges, leaving the set of nodes unchanged. Thus it is
not applicable when the goal is to obtain a significantly
smaller representative graph. In vertex sparsification,
the number of vertices is reduced. Moitra (2009) pro-
posed an algorithm that, given a graph and a subset of
nodes, constructs a new graph on these nodes that ap-
proximately preserves minimum (unnormalized) cuts.
In many applications such as clustering or classifica-
tion, PPV-related measures like normalized cuts and
conductance are believed to be much more effective
than unnormalized cuts (Kannan et al., 2004). We
thus focus on preserving personalized PageRank which
better reflects the relative importances of nodes.

3. Preliminaries

Consider a directed graph G = (V, E) of n nodes, its
adjacency matrix A and diagonal out-degree matrix

Figure 2. The induced subgraph on

Figure 3. The subgraph produced by
our algorithm (UNWEIGHTED).

D. The PageRank of G is defined as the vector p that
solves the following system:

p=ar+ (1 —-a)A'D 'p, (1)

where 0 < « < 1 is the restart probability (typically,
a =~ 0.15) and r is the personalization vector. Uni-
form r(i) = L for all i € V results in p being the
global PageRank. If r contains 1 in the i-th coordinate
and is 0 elsewhere, the solution of Eq. 1 gives the i-
personalized PageRank p; (Haveliwala, 2003). From
such p;’s and the linearity of Eq. (1), the solution p
for arbitrary r can be easily derived. A p;(j) can also
be thought of as the probability of an a-discounted
random walk from node ¢ ending in node j:

pi(j) = Y a(l-a)ply), (2)

t=0

with pgt] (7) being defined as

pll(j) =

k1=ti,k2,....kt41=7 I=1

where dT (k¢) is the out-degree of node kg, and the
summation is over all paths of length ¢ from i to j. An

equivalent formulation is given by the decomposition
theorem (Jeh & Widom, 2003):

P
pi=ae; + (1 —a) Z d+Zi)'
j:(i.5)€EE

The decomposition theorem suggests that the “impor-
tance” that a node i gives to node j # i is proportional
to the average importance that i’s out-neighbors give
to j. All of these can be easily extended to the case
of weighted graphs by replacing inverse out-degrees by
normalized weights, i.e., 1/d* (i) = w(i, j)/ >, w(i, j),
where w(i, j) is the weight of edge (¢, j).
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4. Induced subgraphs

In this section we examine the problem of finding good
representative samples using induced subgraphs. The
quality of a subgraph is measured by how well the
PageRanks of the nodes in the subgraph are preserved.

Consider an undirected graph G = (V, E), where the
degree of node i is denoted by degq(¢), and restart
probability 0 < a < 1. Note that « induces a global
PageRank vector p® (p“(i) is the PageRank of 7).
Suppose we are given a sample of size 0 < k < |V|
and are interested in finding a subset S C V of nodes
of size k such that the PageRanks in the subgraph
G[S] induced by S are as close as possible to p“ for
all nodes in S. By looking at pCll and p% as vec-
tors, we want to minimize some notion of distance be-
tween them. Two remarks are necessary: first, p®
is |V|-dimensional, so we only consider its restric-
tion to nodes in S; second, since >,y pY(i) = 1
and ). ¢ pCl8l(i) = 1, we rescale p®; therefore we
consider the |S|-dimensional scaled vector p“, where
pe(i) := pG(i)/Zjes pY(j) for all i € S. Now our
problem is finding an induced subgraph S of G of size
k such that d(p©, p©°!) is minimized, where d is some
distance function (e.g. a norm).

We show that this problem is NP-hard for any non-
trivial distance function d: we only require that
d(a,a) = 0 and that d(a,b) > 0 if a # b.

Theorem 1. For any0 < a < 1, it is NP-hard to find
a subset S C V, |S| = k, that minimizes d(p<, p&l°)
for any (non-trivial) distance function d. The NP-
hardness holds even when restricted to cubic graphs.

Next, we show that there exists a family of graphs
where a random subset S is likely to contain a node
that has higher PageRank relative to many other nodes
in S when computed on the induced subgraph, but
lower relative PageRank when computed over the en-
tire graph G. Clearly, such induced subgraphs would
fail to preserve PPVs as well. The proof of the theo-
rem uses concentration bounds on the degrees of the
nodes in a (Erdés—Rényi) random graph G(n, p).

Theorem 2. Let 0 < p < 1 and G = (V, E) be sam-
pled from G(n,p). Let S be a random subset of V
with |S| = o(n/logn). Then, with probability at least
1/2—0(1), there exists an S" C S of size at least Q(|S]),
such that a node u* of maximum degree in G[S] has
degree smaller than every node in S" in G. Therefore,
for small enough «, every node in S’ has PageRank
higher than u* in G, and lower than u* in G[S].

5. Preserving PPV

The previous section showed that preserving even
global graph properties such as PageRank on induced
subgraphs is difficult. This is expected, since in-
duced subgraphs only preserve links between imme-
diate neighbors, ignoring multi-hop connections. In
this section we relax the problem definition by allowing
the creation of edges that did not exist in the original
graph, and show that this yields a much better ap-
proximation of node-personalized PageRank (PPV).

For the rest of this section we assume that all non-
existent edges in G have zero weight, and that outgoing
degrees are normalized, i.e., 3,y wg(i, j) = 1 for ev-
ery ¢ € V. This is without loss of generality since PPVs
depend only on the normalized weights. We first show
that PPVs can be preserved ezactly using a weighted
graph construction that adds a special “sink” node,
and present an algorithm to compute edge weights.
However, this graph can contain up to |S|? edges be-
tween all pairs of nodes in S. To alleviate this, we
present two sparsification algorithms, one of which
yields a sparse weighted graph, and the other a sparse
unweighted graph. We bound the error in PPVs in-
troduced by this sparsification. Finally, we show that
with the addition of another special “source” node, it
is possible to preserve global PageRanks in addition
to all pairwise PPVs. We stress that our subgraph
generation method can be applied to any subset of
nodes, so popular node-sampling methods in the lit-
erature (Leskovec & Faloutsos, 2006) can be used as
a first step to pick a node sample on which our algo-
rithms are applied.

5.1. Constructing a PPV-preserving subgraph

Suppose we are given a weighted directed graph G =
(V,wg), where the edge weight function wg : V X
V — R7* defines the edge set, and a subset S C V
of nodes. We consider the problem of constructing a
new weighted graph H = (S,wpg) only on the subset
S that preserves PPVs between nodes in S — that is,
all values p(j) = p%(j) for i,j € S.

Observation 3. There exists a graph G = (V,E)
and a subset S C V such that no weighted graph
H = (S,wg) (with non-negative weights) preserves all
PPVs between nodes in S.

This can be shown via a linear program that reaches
an optimum with zero error if it is possible to preserve
all PPVs exactly, and a positive error otherwise. Ex-
amples of subsets with non-zero error can then easily
be found.
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Despite the negative result of Obs. 3, adding an extra
“sink” node, having only incoming edges from .S, al-
lows to preserve PPVs of nodes in H. The main result
of this section is the following.

Theorem 4. Let G = (V,wg) be a directed weighted
graphs. For any S C V, there exists a weighted di-
rected graph H on S U {SINK} where PPVs between
nodes in S are preserved: for all i,j € S, pH(j) =
p?(]) Moreover, there ezists a polynomial time algo-
rithm that computes such H given G.

The idea of the algorithm, presented in Table. 1, is to
start with the original graph G and remove nodes in
V' \ S one by one. For each node z being removed,
the algorithm identifies the set of its neighbors, N(z),
removes all edges incident to z, and creates edges be-
tween all pairs of its neighbors, and from each neighbor
to the sink. Specifically, for every j, k € N(z), directed
edges (j,k) and (k,j) are created (parallel edges are
merged). The weight of edge (j, k) captures the proba-
bility of a random walk starting at j to reach k through
z. These new edges, however, do not capture the prob-
ability of the walk stopping at z, so an edge to the sink
is created from each j € N(z).

Algorithm 1 NODEREMOVAL
Input: G = (V,wg),S C V.
Output: H = (SU{sINK}, wy) s.t. pH(j) = pS(4),
i,j€8.
Initialize H to be equal to G
Add a node SINK in H: wg(i,SINK) = 0 for all 4,
and wpy (SINK, SINK) = 1
for each z € V'\ S do
Remove z from H (and all edges incident to it)
for each node x # z such that wg(z,z) > 0 do
for each node y # z such that wg(z,y) > 0 do
Add a new edge e*(z,y) in H, and set
wr (e (2, y))+=(1 — cJwg(z, 2) - wa(z Y)
[l — gz, )
end for

Add a new edge e*(x,SINK) in H, and set
wy (e*(z, SINK) )+=
U)G(.’IJ, Z) - Zy;ﬁz:wc(z,y)>0 wH(e*(x’ y))
end for
Set G (and its weights) to be H
end for

Thm. 4 follows from the next two lemmas. Lemma 5
follows from simple algebraic manipulations.

Lemma 5. In each iteration of NODEREMOVAL, (a)
all added edges have non-negative weights, and (b) the
(weighted) out-degree of each node sums to 1.

Lemma 6. An iteration of NODEREMOVAL preserves
PPVs between all but the removed node.

Proof Sketch. The idea of the proof is to provide a
mapping between the contributions to PPVs by walks
in G and the contributions to the same PPVs by walks
in H. The proof shows that a single walk through a
newly added edge in H “summarizes” contributions of
countably infinitely many walks that pass through the
removed node z in G.

PRESERVING PPVS ON SMALL SUBSETS. While
the NODEREMOVAL algorithm can be applied to all
graphs, it can be costly for small subsets, for which
many nodes need to be removed. For this case, we
present an alternative algorithm below.

Recall that pZ(j) is the desired PPV value from node
i to j, where 4,5 € S, and we want this value to be
equal to p{(j). Let P be the matrix where p(-) is
row i. Let Wy be the edge weight matrix in H, i.e.,
wy(i,-) is row 4 in Wy. PH is known, and we want to
find Wg (or equivalently, its transpose W}, ).

Lemma 7. We have the following relation:

Wh = == (= a(P™))

This follows from manipulations of equation (1). The
existence of a solution is guaranteed by Thm. 4. This
also implies the uniqueness of the solution.

The initial computation of pairwise PPVs takes O(E+
|S|?) time (using (Sarlés et al., 2006)). This lets us
compute Wy via inversion of a matrix of size (|S|+1)
at a complexity of O(|S|?37®). For small subsets, this
can be significantly cheaper than NODEREMOVAL.

5.2. Rounding the Weighted Matrix

The weighted graph H obtained via NODEREMOVAL
or Lemma 7 could be a dense graph with up to (k +
1)2 edges. We may want a much sparser subgraph
to reduce storage requirements. Next, we present two
algorithms for sparsifying the graph, one generating
weighted, and the other unweighted graphs. Still, both
maintain weighted edges to the sink (which can be
thought of as storing one extra number per node in
S); as we will later show in Section 6, these edges are
important for maintaining PPVs.

Both algorithms are simple instances of rounding: we
set a threshold 7 and for all edges (u,v) such that
wg(u,v) < 7, we increase wp(u,SINK) by wg(u,v)
and then set wy(u,v) = 0. Edges with zero weight
can obviously be removed, thus sparsifying the graph.
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Note that this leaves the weights of the remaining
edges unchanged, and all node out-degrees still sum
to one. We call this algorithm WEIGHTED.

The second algorithm (called UNWEIGHTED) takes
the output of WEIGHTED and makes all edges un-
weighted (except for the edges to the sink). Thus,
WEIGHTED and UNWEIGHTED give sparse weighted
and unweighted graphs respectively (apart from the
weights on edges to sink).

Next, we show that the PPV matrix (as defined before
Lemma 7) for a graph rounded by WEIGHTED is close
to the PPV matrix for the unrounded graph (where the
original PPVs are preserved exactly). Let H denote
the subgraph obtained via NODEREMOVAL, and R the
subgraph after applying WEIGHTED on H. Also, for
any node j in S, let P(j) and PT(j) be the j-th
columns of P and PP respectively.

Theorem 8. For allj €S,

H(:\ _ pR(; _
IPHG) - PR, 1o
IS|+1 a

The proof follows from a coupling between the Markov
chains representing the full PPV matrix and the
rounded one. Thus, the rounded graph created by
WEIGHTED provides a good approximation to the
PPVs of the original graph, provided 7 is not too high.

We remark here that in the unlikely boundary case of
a node with extremely high out-degree, each of its out-
going edges might get a small weight and be rounded,
leading to a seeming paradox of a high-degree node
being rounded to a node of zero degree. However, this
implies a large |S| and so the bound will be weak un-
less 7 is correspondingly small as well. Also, the edges
that reflect the importance of a node are its incoming
edges, and these will still be preserved. In our exper-
iments, we pick 7 so as to ensure that the rounded
subgraph has as many edges as the induced subgraph;
this caused no extreme roundings on our graphs. How-
ever, if tighter bounds are desired, a smaller 7 must
be chosen (and hence, more edges retained).

5.3. Preserving Global PageRanks

In this section we show that it is possible to preserve
the global PageRank of each node in S by adding to
H (computed in Section 5, without rounding) a single
“source” node and edges from it to all nodes in S, or
equivalently, storing one extra number per node in S.

The following corollary shows that as long as the nodes
removed by NODEREMOVAL have same “weight” in the
personalization vector r, which is the case for global

PageRank, a single value per each node in S can sum-
marize the contributions of PPVs from V' \ S to the
node in S. Let v be an |S|-dimensional vector contain-
ing these contributions: v(i) = > v\ p§ (i), i€ S.
From the linearity of PageRank (Equation (1)) we get:

Corollary 9. Suppose we are given H, constructed
from G by algorithm NODEREMOVAL, and the vector
v. Then, for every personalization vector r such that
r(j) =r(y’) for j,j/ € V\S, r-personalized PageRank

p& (i) can be computed for all i € S.

The information contained in v can be naturally inte-
grated into the subgraph by adding a single node we
call SOURCE. Let H' be the graph obtained from H
by adding a node SOURCE, and weighted edges from
SOURCE to other nodes in H (including SINK). Then,
standard techniques on H’ can be used to compute the
global PageRank.

To compute the weights of the new edges from SOURCE,
we use an auxiliary graph G’ capturing the partial
PPV contributions of random walks in G that start
outside S and end in S, without ever hitting S in the
middle. Intuitively, this accounts for the PPV “mass”
that flows into S; the distribution of this mass within
S and the loss of mass from S to V'\ S is already han-
dled by our subgraph on S U {sINk}. In particular,
G’ is obtained from G by (a) removing all edges from
S to V\ S, (b) collapsing all the nodes in S into a
single node, (¢) summing up weights of parallel edges,
and (d) adding a self-loop of weight 1 to the collapsed
node. Then, for ¢ € S, edge weights are set to:

1 1

VS| Yo pf (k) we (k. 0).

7,keVA\S

wp (SOURCE, £) =

It can be shown that the weighted out-degree of
SOURCE sums to one or less. To normalize it we
add an edge to SINK: wpg/(SOURCE,SINK) = 1 —
> ics Wa'(SOURCE, 7). Now, in a manner similar to
Thm. 4, we may prove:

Theorem 10. H' preserves all PPVs between nodes
in S. Moreover, for any 0 < p < 1 and any personal-
ization vector r such that v(j) = p for all j € V\ S,
p& (i) = pH (i), for alli € S, where

r(k), keSS
r'(k)=1< p|V\S|, k=SOURCE
0, k = SINK

6. Experiments

Given a graph G and a subset S of its nodes we
compare the subgraphs WEIGHTED and UNWEIGHTED
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to the baseline INDUCED. As described in Sec-
tion 5.2, WEIGHTED is obtained by retaining a subset
of weighted edges from our PPV-preserving subgraph,
and UNWEIGHTED removes the weights from the edges
in WEIGHTED though edges to sink are still weighted.
(Our rounding process ensures that WEIGHTED and
UNWEIGHTED have the same number of edges as IN-
DUCED.) We empirically determine how well each of
these subgraphs preserves PPVs, and the usefulness of
our subgraphs for applications like graph clustering.

Data. We present results on three large real-world
social networks. EPINIONS is a trust-based social net-
work between the users of epinions. com website, with
75K nodes and 508K edges. SLASHDOT is a February
2009 snapshot of the friendship network between users
of slashdot.org website, with 82K nodes and 948K
edges. FACEBOOK is a snapshot, as of September 2005,
of Facebook social network of the University of Okla-
homa, with 17K nodes and 1.78 M edges.

SAMPLING SUBSETS. Even though our algorithms can
work on any subset of nodes, we show results for sub-
sets generated according to prior work on graph sam-
pling. We generated node samples using five tech-
niques defined in (Leskovec & Faloutsos, 2006): (1)
RN: select nodes uniformly at random; (2) RNN: se-
lect a node uniformly at random together with all
its outneighbors; (3) RNE: select a node uniformly
at random together with its random outneighbor; (4)
RW: select a node uniformly at random and simulate
a random walk with restart to the initial node (with
probability 0.15), pick all traversed nodes; (5) RJ:
identical to RW but with restart to a random node.
For each generator, we experimented with subsets of
size 100, 1000, and 10, 000, though we only present re-
sults for subsets of size 1000 for lack of space. Results
with other sizes are similar.

PRrRESERVING PPV. We compute the PPV from node
i to node j for all i, j € S, once using the entire graph
and once restricted to just the subgraph under consid-
eration. Figure 4 shows the Frobenius norm of the
differences between these values, normalized by the
Frobenius norm of the original PPV matrix. Observe
that for all datasets and subset sampling methods,
WEIGHTED improves over UNWEIGHTED by a factor
of 3 on average, and both significantly outperform IN-
DUCED. This agrees with our intuition: WEIGHTED
is a closer approximation of our subgraphs which per-
fectly preserve PPVs; hence it performs better. UN-
WEIGHTED induces additional error since it loses the
information encoded in the weights. The poor perfor-
mance of INDUCED is in part due to the lack of a sink
node. When most of a node’s neighbors in G are not

in S, the sink node allows us to better preserve PPV
by absorbing the probability mass that was going to
these neighbors. In fact, INDUCED and UNWEIGHTED
share only 50% of their edges on average, showing that
significant changes must be made to INDUCED to prop-
erly preserve PPVs.

15 @Induced
0.9 - B Unweighted
B Weighted

Normallized PPV error

Epinions Slashdot Facebook

Figure 4. Preserving PPV: WEIGHTED is better than UN-
WEIGHTED by a factor of 3, and UNWEIGHTED in turn is
better than INDUCED by a factor of 10 on average.

CLUSTERING ON SUBGRAPHS. We evaluate three hi-
erarchical clustering algorithms on the INDUCED and
UNWEIGHTED subgraphs: Metis (Karypis & Kumar,
1999), Planted (Condon & Karp, 1999), and Lo-
cal (Andersen et al., 2008). The first two perform
recursive graph bisection, while the third performs lo-
cal clustering based on PageRank vectors. Note that
the first two have no obvious relationship with ran-
dom walks. For a sample S and a seed node u € S,
we order all the other nodes in S by their “cluster-
ing distance® from w, i.e., the length of the path in
the hierarchy tree between the nodes. Intuitively, if
the ordering in a subgraph is similar to that in G,
then the clustering algorithm gets equivalent results
when run on the subgraph or on G, and so any pa-
rameter tuning or model selection performed on the
subgraph will also hold for G. To measure the similar-
ity of two orderings we consider their prefixes of length
k = 10 (that is the ten nodes closest to the seed) and
compute the Kendall’s tau correlation coefficient. The
experiment was run with each node in S as the seed
node, and the results averaged. Fig. 5 shows, for each
dataset and sampling method, the relative improve-
ment of UNWEIGHTED over INDUCED (edges to sink
were discarded, so UNWEIGHTED requires the same
space as INDUCED here). We see that UNWEIGHTED
yields a 50% improvement over INDUCED on average,
demonstrating the usefulness of preserving PPVs, even
approximately. More improvement is observed with
Metis w.r.t. Planted because the latter uses unnor-
malized cuts; but also w.r.t. Local which uses PPVs.
A possible explanation is that Metis uses a BFS and
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(implicitly) shortest path distances, which are likely to
be composed of a few important edges, whereas a PPV
is an average over all paths between two nodes. Since
rounding retains the most important edges, it is likely
to preserve shortest paths (and hence, Metis) better
than PPVs (and hence, Local). Finally, the RN sub-
sets consistently yield the least improvement. This is
because the induced subgraph for RN is typically ex-
tremely sparse (since nodes are picked randomly), and
since UNWEIGHTED is allowed no more edges than IN-
DUCED, there is little room for improvement.
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Figure 5. Reduction of error in preserving the clustering
hierarchy, for UNWEIGHTED relative to INDUCED.

Conclusions

The PPVs of a graph are important for many appli-
cations such as clustering, classification, etc. Meth-
ods for representative subgraph construction typically
consider only induced subgraphs and fail to preserve
PPVs. We show how to build PPV-preserving sub-
graphs and how to sparsify them while still provably
approximating the original PPVs. Experiments on
three large real-world graphs show significant improve-
ments of our method in maintaining PPVs, cluster-
ing accuracy, as well as in matching degree distribu-
tions and clustering coefficients (not shown for lack of
space).
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A. Induced subgraph
A.1. NP-hardness

For proving Thm. 7?7, we will use a reduction from
the problem of finding a 2-regular induced subgraph
of maximum size in cubic! graphs. This problem is
known to be NP-hard for general graphs (Moser &
Thilikos, 2009). The next two lemmas prove that the
problem remains hard even when restricted to cubic
graphs. We will start showing the hardness for graphs
with nodes of degree at most three.

Lemma 11. Finding a 2-reqular induced subgraph of
maximum size is NP-hard even in graphs of degree at
most three.

Proof. The reduction is from vertex cover which is
known to be NP-hard even for cubic graphs (Garey
et al., 1974). Given a cubic graph G of n nodes, we
construct a graph G’ as follows: we replace each node
uw in G with the gadget H,, (see fig. 6) and we distribute
the 3 edges incident to u in G to the nodes uy, us, ug
in H, so that ui,us,us have degree exactly 3 in the
obtained graph G’ (also note that every other node in
G’ has degree at most 3). We want to show that there
is a vertex cover S of size k in G if and only if there is
subset S’ of nodes in G’ with |S’| = 6k + 3(n — k) such
that removing S’ from G’ makes the graph 2-regular.

For one direction of the reduction, given a vertex
cover S of size k we define S’ in the following way:
for each node u € S, we add to S’ the nodes
{u1,us,us, ay,as,as} of H,, and for each node u ¢ S,
we add to S’ the nodes {b1,bs,b3} of H,. Note that

1A graph is cubic if all its nodes have degree exactly 3.

|S| = 6k+3(n—k). Observe that if u € S, then H,\ S’
is 2-regular in G'\ S’ (it forms a cycle). If u ¢ S then
all its neighbors must be in S: therefore, the “outside”
edges incident to the nodes uq, us, ug of H, are not
present in G’\ S’ which implies that H,\ S’ is 2-regular
(as a collection of three disjoint cycles).

For the other direction, let S’ be any subset of nodes
of G’ of size |S’| = 6k + 3(n — k) such that G’ \ S’ is
2-regular. We make the following three claims for any
H,:

(i) "N ({c1,¢2,¢3,d1,d2,d3} U P UPosU Psp) = 0.

(i) If u; € S’ for some i € {1,2,3}, then
S'N H, = {uy,us,us,a1,as,a3}; in this case we
say that H,, is selected.

(iii) If w has neighbors v, w, z in G and H, is not
selected in G, then S’ N H,, = {b1,bs, b3} and all
H,, H,, H, are selected.

Note that the claim (iii) implies that S =
{u | H, is selected} is a vertex cover of G, and claims
(ii)-(iii) implies that |S| = k. It remains to prove the
claims.

To prove (i) assume ¢; € S’. Then its neighbor in Pjy
has to be in S’ too otherwise it would have degree one
in G\S’, and recursively all the nodes in P2 have to be
in S’. However, this is impossible since | P3| > 10 - n,
while |S'| = 6k—3(n—k) < 10-n. The same reasoning
applies to the d’s nodes and to any of the nodes in the
paths P127 P23, P31.

For (ii), suppose wlog u; € S’. We make the following
chain of observations: by ¢ S’ (if not, d; has degree-
one in G\ §'); a; € S (if not, by has degree 3 in
G'\ §'); az € S’ (if not, ¢; has degree 3 in G'\ S').
Note that either by or uy are in S’ otherwise dy would
have degree 3 in G’ \ S’. If by € S’ then we know that
all nodes C3, Pgl, d1, bl, C1, P12, dg, U are in G’ \ S’ and
are part of the same cycle which necessarily contains
uz and bz, which is impossible since it would leave ds
of degree 3. Therefore, we can conclude that us € 5.
Applying the same argument, we obtain that a3 and
ug are the only other nodes in S’ N H,.

As for (iii), observe that claim (ii) implies that if u; ¢
S’ then S'N{uy, us, us} = 0. This in turn implies that
b1,ba,bs are all in S’ (if not, dy,ds, ds have degree 3).
Also, note that no more nodes of H, can be in S,
otherwise some node of H, would have degree 1 in
G’ \ S'. Therefore, uj,us,us have degree 2 in G’ \
{b1,ba,b3} only if all H,, H,,, H, are selected. O

We now extend the hardness to cubic graphs.
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Lemma 12. Finding a 2-reqular induced subgraph of
maximum size is NP-hard even in cubic graphs.

Proof. We reduce from the problem of finding a 2-
regular induced subgraph in graphs of degree at most
3 (Lemma 11). Let G be any such graph and construct
a cubic graph G’ from G as follows: to each node u
append (3 —deg(u)) copies of the gadget T depicted in
fig. 7. Let t be the number of added gadgets. We claim
that there is a 2-regular induced subgraph G[U] with
|U| > k if and only if there is a 2-regular induced sub-
graph G'[U’] with U’ > k+ 8t: for one direction of the
reduction, given U of size at least k and such that G[U]
is 2-regular, we obtain U’ by adding to U the nodes
in the two 4-cycles (aq,b1,c1,d1) and (ag, ba, ca,ds) of
each gadget T added to G’. Clearly, |U’| > k + 8t and
G'[U’] is 2-regular. For the other direction, let U’ be
of size at least k+ 8¢ and such that G'[U’] is 2-regular.
Then, every single cycle in G’[U’] is all contained ei-
ther in G or in one of the added gadgets T. Let U be
the nodes of U’ contained in G. Then, since each gad-
get T can have at most 8 nodes inducing a 2-regular
subgraph, we conclude that |U| > |U'| -8 > k. O

We are now ready to prove Thm ?7.

Proof of Thm ?7?. We will prove the hardness of decid-
ing whether there exists a strict subset S C V of size
at least k such that d(p%, p®l%)) = 0. Then, the the-
orem easily follows. The proof is via a reduction from
the problem of finding a 2-regular induced subgraph of
maximum cardinality in cubic graphs which we proved
to be NP-hard in Lemma 12. Given a cubic graph G on
n nodes, we obtain another cubic graph G’ by adding
t = 10 - n disconnected tetrahedrons to G. We claim
that there is a 2-regular induced subgraph G[U] with
|U| > k if and only if there is a subset S" C V(G’) of
size at least k + 3t such that d(p<,p¢15) = 0.

For one direction of the reduction, given a set U of size
at least k and such that G[U] is 2-regular, we obtain
S’ by adding to U three nodes from each tetrahedron.
Note that G'[S’] is 2-regular as well and |S'| > k + 3¢
(and S" C V(G")). Since G'[S’] and G’ are both reg-
ular graphs, the PageRanks in each of the graphs are
the same for all nodes — i.e., p¢ (i) = 1/|V(G")| for
any i € V(G') and p&'191(3) = 1/V/(G'[8"))] = 1/|9'
for any i € S’ which implies d(p°,p% %) = 0.
For the other direction of the reduction, consider
any S’ C V(G') of size at least k + 3t such that
d(f)G/,pG/[S/]) = 0. Since d(f)Gl,pGl[S/]) = 0, then
p¢ = p%ISl or equivalently pG'[SI](i) = 1/|9]
for every i € S’. Given that all PageRanks in the
graph G’[S’] are equal, it must be the case that the
G'[9’] is regular (this fact follows from equation (1)).

Since S" C V(@) and G’ is cubic, G’[S’] can be 0-
regular (an independent set), 1-regular (a matching),
or 2-regular. However, G'[S’] cannot be 0-regular be-
cause each tetrahedron can contribute only one node
to S’, which means |S’| < n+t < k + 3t. Simi-
larly, G'[S’] cannot be 1-regular because each tetrahe-
dron can contribute only 2 nodes to S’, which means
|| < n+ 2t < k+ 3t. We conclude that G’[S’] is
2-regular. Defining U = S’ N V(G), we have that
G[U] is 2-regular as well. Also, since each tetrahe-
dron can contribute only 3 nodes to S’, it must be
that |U| > |S’| — 3t > k which concludes the proof. [

A.2. Proof of Theorem 2

Proof. Rather than sampling a graph G from G(n,p)
and choosing a random subset S of G of size k, we con-
sider the following equivalent 2-phase process: in the
first phase, sample a graph H = (S, F) from G(k,p);
for the second phase, let Hy = H, and for i > 0 let H;
be the graph obtained by H;_;1 by adding a new node
u; and adding each edge {u;,v} independently with
probability p for all v € H;_;. By letting G = H,,_,
we can consider the graph H as the graph G[S].

We claim that, for any ¢ > 0, with probability at least
1 — O(k=(¢=1), every node in H has degree at most

gle,pk) ==p-(k=1)+/c-p-(k—1)-logk.

Observe that, for a fixed node v € S, we have that
degy (u) ~ Bin(k — 1,p). Therefore, from Chernoff’s
bound, we have that

Prdeg(u) > (1+8)p(k — 1)] < exp(—p(k — 1)5%/2).

Thus, with probability at least 1 — O(k~¢), we have
degy(u) < g(c,p, k). A union bound over the nodes
in H concludes the proof of the claim. For the rest of
the proof we condition on the event that every node
in H has degree at most g(c,p, k).

Let u* be a node of maximum degree in H. To prove
the theorem it is enough to show that, assuming k =
o(n/logn), the degree of v* in G is at most the average
degree of G (i.e., p- (n — 1)) with probability at least
1/2 —o(1). We will do so by finding a lower bound for
the probability that the number of edges X added to
u* in the second phase is at most p-t—e/p- (1 — p) - t,
where t = n — k. Note that X ~ Bin(¢,p). By the
central limit theorem we have that

PriX<p-t—ce p-(l—p)~t] > &(—e€) — o(1),

where ®(z) is the cumulative distribution of the nor-
mal distribution N (0, 1). By Taylor expansion we have
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Figure 6. The gadget H,: the paths Pi2, P23 and P3; are of

length more than 10 - n.

that ®(e) > (1 —€(2/v/2m))/2. Therefore, with proba-
bility at least 1/2 — ¢/v/2m — O(1/k°1), the degree of
u* in G is

degg(u™) < gle,p, k) +p-t—ey/-p- (1 —p)-t.

This implies that, with the same probability,
dego(u*) < p-(k—14+1t) =p-(n—1) when ¢t >
Wip)(k— 1) log k. The theorem follows since, for any

€ > 0, this condition on ¢ is satisfied for k = o(n/logn)
and n large enough. O

B. Preserving PPVs

B.1. Constructing a PPVs-preserving
subgraph

Proof of Theorem 4. The proof follows from Lem-
mas 5 and 6.

Proof of Lemma 5. The weights of the edges e*(z,y)
are sums of non-negative components and are thus
non-negative.

It remains to show that the weights on the edges to the
sink (e*(x, SINK)) are non-negative. By construction of
the algorithm and by the geometric series we have that

Zy¢z:wG(z7y)>0 wg(e*(xz,y)) is equal to

we(z,y)

1l -«
wc(%Z)l — (1 = a)wg(z,2) Z

y#zwa (2,y)>0

wg(x, 2) = _1 ;)Zc(z,z) (1 —wg(z,2))
— wala, 2) 1—(1-a)we(z,2) — < wols, 2)

Figure 7. The gadget T.

The second equality holds since we assume the weights
in G are normalized: ), we(i,j) =1 for all i.

The fact that weighted out-degree sums to 1 is easily
seen algebraically. O

Proof of Lemma 6. Let z € V \ S be the node re-
moved by the algorithm so that the new graph is
H = (V\ {z}) U{siNk}, Eg,wp) Let ~ be an in-
neighbor of z and 2™ be an out-neighbor of z such that
wg(x™,z) > 0 and wg(z,27) > 0 respectively. We
denote by e*(z~,zT) the new directed edge (x~,zT)
added by the algorithm in H.

Recall that we assume > .. w(i,j) = 1 for every
1 € V. By equations (2), the i-personalized PageR-
ank p{(j) with respect to node j in G is defined as
follows:

S al-a) > [T we ke, ki)

t=0 i=kq ko, kiy1=j I=1

110 = e)we ki, kiga)

t=0 i=ky ,ka,....kep1=j I=1

Define M as the set of all walks from i to j in G,
and hC(s) = an=1(1 — a)wg(e,), where s is a walk
composed of the edges ey, es,...,e;. Then, we can

write pZG(j) = aZserj hY(s).

In order to prove the lemma, it suffices to show that,
for all 4,5 € V\ {z}, ZSEJ\/IiGj hG(s) = ZSeMiHj R (s).
Henceforth, we interpret walks as sequences of edges.
For two walks s; ending in ¢ and so starting from i, we
define s10s5 to be the concatenation of the two. We say
that a walk s € M, is an (i, j)-basis (or simply basis
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when clear from the context) if edge (z,z) does not
appear in s, and we define B} ; to be the set of (i, j)-
bases that pass through the node z exactly r times.
For a basis b € B, with r > 1, we let el (resp.
) be the I-th edge in b directed to (resp. directed
out of) z and x%ﬂ ylb be the corresponding nodes (i.e.
b= — (ab (2,4?)). We define the closure

e a?,2) and e/t =
ofabasisb € B jascl(b) = U, ;5o b(titr) swhere

b(titr) s the Walk obtained from b by injecting t;
edges (z,z) between the edges e?_ and ei’*‘, for 1 <
I <r. Forbe BY;, weset cl(b) = {b}. Observe that
for any walk s € M; G , there exists exactly one basis
b€ U,>o Bi; such that s € cl(b).

We define a mapping ¢ from bases in G to walks in

H as follows: for b € B, gb( ) is obtained from b by

replacing the edges e? o el in b with the new edge

e*(z?,y?) added in the graph H, for 1 <1 < r (note
that ¢(b) = b for b € B};). Observe that for every

walk s € M, fg there ex1sts exactly one basis b € B; ;
(for some r) such that s = ¢(b), so the function (b 1s
bijective.

We claim that for every 4,5 € S, for every r» > 0 and
b € B}, Zsed(b) h%(s) = hH (¢(b)). Before proving
the claim we show how the lemma follows from it:

Y Y Y )

r=0beB] ; secl(b)

=> > W)

r=0 bEB;j

Y k)

sEMinj

which is equivalent to > _,,n h*(s) since ¢; ; is bi-
57
jective.

It remains to prove the claim. We use induction on
r. For r = 0, the equality holds since for every b €

0 _ _ G _
B?;, we have cl(b) = {b}, ¢(b) = b, and h"(b) =
hH (b) because b uses only edges existing in G. Now
consider any r > 1 and suppose the claim holds for

r—1. Consider any b € By ; and let b’ (resp. b”) be the

sequence of edges of b bcforo b
have that b”

(resp. after e}t). We
€ B;b_jl.. Note that cl(b) contains exactly
10

the walks of the form b’ oe} ™ o(z,2)0---0(z,2)0el T os,
where s € cl(b”) and the sequence (z,2) o --- 0 (z,2)
is of length zero or more. We observe that b’ = ¢(b')
and hC(b') = R (V). Also, by construction of the

algorithm for any | we have

W (e (af yf) = h9(e;™) - h9(ert) Y [h (=, 2))"

t>0

Therefore, 3 i) h€(s) is equal to

REW) - kS

)Y _[h(z ) - ) S KGs
t>0 secl (')
=hEW') h (e I IC
secl(b’)
= W (o(1) - BT (o(eh™ o elt)) D hC(s)
secl(b’)
=hf (g och 0 el)) > h(s)
secl(b)
= W (g 0 €} 0 e} ™)) - h (p(b"))

xlayl

= n"(¢(b)),

where the last two steps follow by induction and by
the definitions of h¥ and ¢ respectively. |

Proof of Lemma 7. From Theorem 4, we know that
there exists some setting of weights Wx such that (a)
> Wi, j) = 1for all 4, and (b) the PPV matrix is
identical to the desired matrix P. Let P () be the
j-th column of P, From equation (1), we must have:

P (j) = ae; + (1 - a)iW} PH (j)
= [(1—a)Wj —I] P(j) = —ae;
= [(1 - a)Wh — 1] P¥ = a1 @)
= Wi = (T a(P") )

where the inverse in the last step exists because each
factor in the LHS of Eq. 3 must be full rank (since the
RHS is full rank). O

B.2. Rounding the Weighted Matrix

Proof of Theorem 8. The proof is similar to that of
Theorem 3 of (Ng et al., 2001). Given a node j € S,
we construct a coupled Markov chain {(X¢, Y;)[t > 0}
on the set of nodes S U {SINK} as follows. Initially we
set Xg = Yy = j. At any step ¢, with probability «,
we “reset” both chains to node j, otherwise we draw
a node ¢ according to the weight matrix wpy, and set
Xi41 = L. Now, if X; =Y; = k and the edge (k, ¢) was
not rounded by WEIGHTED, then we also set Y11 = /.
If either condition is not satisfied, we draw a node ¢

according to the rounded weight matrix wgr and set
Yipr = 2.

Now, we compute the probability diy; = Pr(Xiy1 #
Yi+1). This event occurs only if there was no reset at
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step t + 1. Thus,
diy1

1—«
<Pr(X; # V)

+ ZPr(Xt
k
< PI‘(Xt 7é }/t)

+ZPr (X, =

<d, + ZPr X,
k

= Pr(X¢41 # Yiy1|no reset at ¢ + 1)

=Y; = k) Pr((k, Xt+1) was rounded)

Vi =k)> Pr(Xppq = Lowy (kL) <)
4

=Y, =k) Z

{lwy (kL)<T}

—Y, = k) wir (k, 0)
{lwg (kL)<T}

(S| + 1)

Pr(Xt+1 = é)
<d, + Z Pr(X;
k

<d, + ZPr(Xt
k
<d; + (S| +1)

Yi=k)

Using this recurrence and the fact that dyp = 0, we
find that doo < 7|S|(1 — @)/a. Now, the stationary
distributions of the X and Y Markov chains are just
the PPV vectors P (j) and P%(j). By the Coupling
Lemma, ||P2(j) — PE(j)||1 < 2ds, which yields the
theorem statement.

B.3. Preserving Global Pageranks

Proof of Corollary 9. Using the linearity of equa-
tion (1), we decompose p& (i) for any i € S into two
components: one summarizes all contributions from
nodes in S and another one from all nodes in V'\ S:

pe (i) =Y r(pd () = > r()p @)+ Y r(H)p§ (D).

jev jes JEV\S

The first sum can be simply computed as

Zjesr(j)pg‘c(i) Zjesr(j)pf(i) by Lemma 6.
As for the second sum, by the assumption on r we
have that

> r()p§ )

JEV\S

=x(j") D () = (i) (i)

JEV\S

for any j € V'\ S. The corollary follows since r(j’) is
a constant: r(j') = (1 —32;c51(4)/[V\ S| O

Proof of Thm. 10. For every i,j5 € S, no walk from
1 to j passes through SOURCE in H’, therefore PPVs
between nodes in S are still preserved.

For the remaining part of the theorem, we recall
that the personalized PageRank corresponding to any
vector r can be computed as a linear combination

of the personalized PageRank vectors of individual
nodes (Haveliwala, 2003; Jeh & Widom, 2003).

pr = > _r(j) - p;-

JEV

(4)

By equation (4), we have that

p(i) = > r@Gp{E)+ Y r(i)p§),
jes JEV\S

pl (i) = Y Gl o+ D, rEpl ).
JjES JE€{SOURCE,SINK }

By the definition of r’ and the fact that p]G(z) = pf'(i)

for 4,5 € 9, it suffices to show that

VA S| pg)URCE(i) = Z pJG(Z>
jev\s

As in the proof of Lemma 6, we define M to be
the set of walks from j to ¢ in G, and for s € Mﬁ,
we define h¥(s) = HeES(l a)wg(e). Therefore, by
equations (2) and (3), p§ (i G(i) = aZéeMc h(s). Since
j eV \Sandie€ S, each walk in MG has an edge
(k,l) where k € V\ S and € 5, and first part of
the walk does not go through any node in S before
reaching (k,1). Thus, we can rewrite p§ (i) as

Gliy=a > 3 3 > G (se)-hC(k,1)-h(s1).
keVASIES soe My, s1eM,
SOF‘IS.Z"Z‘
Observe that aZSOGMc sonS= o h€(s0) = p{ "(4), and
that a 32, cyro hG(sl) = p{(i), Therefore, by rear-
ranging the tefms7 we get

> P

keV\S

) - hE (K, 1).

(k) > pf (i)

les

P (i) =

By summing over j € V'\ S and rearranging the sums
we obtain

S pf(i) = (1-0) Y pf

JEV\S les

(= Y B (walhD).

§kEV\S

Now, since pf, (i) = 0 for all i € S, and pf’" = p{ for
all [ € S, the decomposition theorem (Jeh & Widom,
2003) implies

(1-a) Zpl

les

pSOURCE ’U)H' SOURCE, l)

The theorem follows by substituting wg(SOURCE, [).
]



Number of Nodes

Number of Nodes

Preserving Pairwise Relationships in Subgraphs

100000

T 100000
Slashdot0902 ——
induced-RJ --------
rounded-RJ ——
induced-BNE --------- 4
rounded-RNE ——
induced-RNN ---------
rounded-RNN ———
igduced-RW --------- i
QW

10000 10000 -

1000 | 1000 |

100 frosr . 4 100 F

T 1 T T
Slashdot0902 —— Slashdot0902 ——
induced-RJ --------- 09
rounded-RJ ——

induced-RNE --------- 4

rounded-RNE ——

induced-RNN ---------
rounded-RNN ———

induced-RW --------- i

-RW

rounded-RJ ——
081 rounded-RNE ——
07y rounded-RNN ———

06 | induced-RW. ---------

05 |
04 r
03

Average Clustering Coefficient

02
01

induced-RJ --------- i
induced-RNE  --------- 1
induced-RNN - |

rounded-RW ——

10000

10000 + Epinions1
induced-RJ ===+
rounded-RJ ——

induced-RNE ---------

rounded-RNE ——

induced-RNN --------- i

rounded-RNN ———

induced-RW -
rounded-RW ———

1000 L 1000 |

' Epinions*
induced-RJ -+

foOklahoma97 ——
induced-RJ ===+
rounded-RJ ——
induced-RN
rounded-RN
induced-RNE --------- E|
rounded-RNE ——
induced-RNN --------
rounded-RNN ———

induced-RNN
rounded-RNN ———

induced-RW ---------
04 r

03

02

Average Clustering Coefficient

0.1 |

rounded-RJ —— |

rounded-RW —— -

0

10 10 0 2 4 6 8 10
Figure 8. In-degree (1-st column), out-degree (2-nd column) distributions, and binned clustering coefficients (3-rd column)

of original graphs and subgraphs.

C. Experiments

GRAPH STRUCTURE. As another application, we show
that our method can be used to augment the induced
graph with “long-distance” edges in order to preserve
high-level graph structure. For ease of visualization,
we used an HB/bcsstk26 graph?, and made it un-
weighted and undirected by discarding edge weights
and directions, obtaining 1,922 nodes and 14K undi-
rected edges. The graph, visualized using Graphviz?,
is shown in Figure 1. We sampled 200 nodes (~ 10%)
using the RJ method. The sampled nodes are shown
by black points. The induced subgraph on the sam-
ple nodes is shown in Figure 2. Obviously, the in-
duced subgraph preserves only connectivity between
the immediate neighbors, failing to preserve the high-
level graph structure and leading to many discon-
nected components. Clearly, this induced subgraph
is useless for any further processing relying on graph
manifold structure, such as classification with random
walks (Szummer & Jaakkola, 2001), or learning on
manifolds (Belkin & Niyogi, 2004). The rounded graph
(the sink node and all edge weights discarded, average
node degree is as in the original graph) is shown in Fig-
ure 3. Observe that all but two components are merged
into a single connected component. The “bridging”
edges are created between components that were most
tightly connected (according to PPV) in the original
graph. We conclude that our rounding algorithm can

2 . .
www.cise.ufl.edu/research/sparse/matrices

3http://www.graphviz.org/

be used for preserving graph structure for small sample
sizes where induced subgraphs fail.

DEGREE DISTRIBUTIONS AND CLUSTERING COEFFI-
CIENTS. In this section, we consider the fraction
of nodes with a given out- or in-degree in the sub-
graph. Degree distributions in real-world graphs typ-
ically follow power laws (Clauset et al.). The first
two plots in Figure 8 (from left to right) depict the
in- and out-degree distributions of all generated sub-
graphs for SLASHDOT. The degree distributions of the
original SLASHDOT graph are depicted in these plots
as well. We observe that for any sampling method,
the distributions of UNWEIGHTED and the correspond-
ing INDUCED are very similar to each other, and have
about the same shape (slope) as the true degree dis-
tribution (in general, RJ and RW seem to approxi-
mate the true shape slightly better)*. Similar behav-
iors can be observed for the degree distributions of
the other datasets: for presentation purposes we only
show the in-degree distributions for EPINIONS and the
(undirected-) degree distributions for FACEBOOK (first
two plots of second row of Figure 8). We conclude that
UNWEIGHTED preserves degree distributions as much
as INDUCED, while outperforming INDUCED in terms
of PPVs.

The clustering coefficient of a directed graph measures

the probability that for any pair of directed edges (u, v)

4We ignore weights, so WEIGHTED and UNWEIGHTED
have the same degree distributions and clustering coeffi-
cients.
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and (v,w) sharing a node v, there is a third edge
(u, w) (Opsahl & Panzarasa, 2009). This is a measure
of transitivity of link structure in the graph, and is typ-
ically high for social networks. Instead of presenting
just one number for the entire graph, we plot the clus-
tering coeflicient as a function of degree, after grouping
degrees into bins of logarithmic sizes so that each bin
has enough nodes to compute the clustering coefficient
for that bin reliably. We only measure the clustering
coefficient on unweighted graphs. The last column of
Figure 8 depicts the binned distribution of clustering
coeflicients of INDUCED, UNWEIGHTED, as well as the
true clustering coefficients, for SLASHDOT and EPIN-
IONS. We observe that, for SLASHDOT, all subgraphs
(except for the RNN sampling method) closely ap-
proximate the true clustering coefficient. In addition,
for any given sampling method, UNWEIGHTED and IN-
DUCED are very similar to each other. For EPINIONS,
UNWEIGHTED is still substantially preserving the true
shape (except for the first bins), while INDUCED fol-
lows a different trend by increasing and then decreas-
ing. One possible explanation of the high clustering
coefficient of nodes of low degree in UNWEIGHTED is
the fact that these nodes might have outgoing edges
to their “important” nodes in UNWEIGHTED that com-
pensate for the paths that were present in the original
graph. In INDUCED this rectification is not present
and only a few edges are induced between low degree
nodes, therefore the clustering coefficient is low.



