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Abstract

How can we optimize for the Sharpe ratio if we only have limited training

data? Estimates of mean asset returns are noisy, and this noise hurts the out-

of-sample Sharpe ratio of current methods. The minimum-variance portfolio,

which ignores mean returns, often has a better Sharpe ratio. We develop a

parameter-free and scalable method called AlphaRob for this problem. Al-

phaRob’s portfolio is a convex combination of two prespecified portfolios. To

select the best combination, AlphaRob fuses robust optimization with a new

notion of a portfolio’s regret that accounts for the training data’s size. Our

analysis only needs mild assumptions on the distribution of asset returns. Al-

phaRob significantly outperforms competing methods on several simulated and

real-world datasets, even after adjusting for transaction costs. AlphaRob is

7.5% better on average than the nearest competitor, and 28% better than the

next-best combination portfolio method. Using our regret of regret, we are also

able to explain the performance of the minimum-variance portfolio.

Keywords: Finance, Robust optimization, Sharpe ratio, Portfolio optimization

1. Introduction

The Sharpe ratio and its derivatives are popular measures of portfolio per-

formance (Hanke & Penev, 2018; Guerreiro & Fonseca, 2020). Given the mean

and covariance of asset returns, the portfolio with the maximum Sharpe ratio

has a known form. But often, we must use noisy parameter estimates computed
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from limited training data. The optimization step amplifies estimation errors,

resulting in portfolios with poor out-of-sample performance (Jobson & Korkie,

1980; Frost & Savarino, 1986; Jorion, 1986; Michaud, 1989; Zhao et al., 2019).

This problem has attracted much attention recently (Kolm et al., 2014).

One approach is to build better estimators. Regularized covariances have

smaller mean-squared error than the sample covariance matrix (Ledoit & Wolf,

2004; Bickel & Levina, 2008; Ledoit & Wolf, 2012). Such covariances also

arise from constrained portfolios and from regularized versions of the minimum-

variance portfolio problem (Frost & Savarino, 1988; Jagannathan & Ma, 2003;

Brodie et al., 2009; Fan et al., 2012; DeMiguel et al., 2009a). To estimate the

mean vector, we can “shrink” the sample mean towards a fixed target vector (Jo-

rion, 1986; Frost & Savarino, 1986; DeMiguel et al., 2013).

Prior work using such estimators points to a surprising result: the minimum-

variance portfolio using a regularized covariance matrix often achieves the best

out-of-sample Sharpe ratio (Jagannathan & Ma, 2003; Garlappi et al., 2007;

DeMiguel et al., 2009b, 2013; Ledoit & Wolf, 2017; Zhao et al., 2019). Note

that the minimum-variance portfolio does not optimize for the Sharpe ratio and

completely ignores mean returns. Chopra & Ziemba (1993) showed that errors

in mean estimates hurt portfolio performance more than covariance estimation

errors. But this only suggests a need for better algorithms to adjust for the mean

estimation errors. These previous studies motivate our two main questions:

How can we use noisy estimates of mean asset returns to improve Sharpe ratios?

Why do minimum-variance portfolios often achieve high Sharpe ratios?

We consider these questions in the context of a popular class of portfolios

called combination portfolios. Here, the portfolio is a linear combination of two

or more prespecified portfolios, such as the equal-weight, minimum-variance, or

mean-variance portfolios. Each prespecified portfolio has some advantages (e.g.,

robustness to errors, or low standard deviation). A carefully chosen combination

portfolio can inherit the best mix of these properties to achieve a better Sharpe

ratio than any of the prespecified portfolios. Combination portfolios are optimal
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for a robust version of the mean-variance problem (Garlappi et al., 2007). They

also arise from shrinkage estimation and robust optimization (Jorion, 1986; Frost

& Savarino, 1986; DeMiguel et al., 2013; Scherer, 2007). Different combination

weights can yield portfolios with very different performance. So, choosing the

right combination weight is the main problem.

Existing methods to choose combination weights are inadequate for the

Sharpe ratio problem. There are several reasons for this. First, most prior work

focuses on the mean-variance objective (Garlappi et al., 2007; Kan & Zhou,

2007; Tu & Zhou, 2011; Kirby & Ostdiek, 2012). The mean-variance objective

has a user-specified risk aversion parameter, and this affects the combination

weight. So we must compare the Sharpe ratios for a range of combinations, one

for each risk aversion setting. But estimation errors prevent us from making

reliable comparisons. DeMiguel et al. (2013) propose several other objectives

(or “calibrations”) for choosing the combination weight. But the calibrated

combinations still depend on the risk aversion parameter. Further, there is no

theoretical justification for preferring one calibration over the others.

Another problem is that several methods make strong distributional assump-

tions. Kan & Zhou (2007) and Deng et al. (2013) assume Gaussian returns. The

uncertainty sets for Garlappi et al. (2007) are also inspired by Gaussian returns.

DeMiguel et al. (2013) consider calibrations based on Gaussian returns, but also

provide a non-parametric approach.

Finally, the minimum-variance portfolio often achieves a higher out-of-sample

Sharpe ratio than existing methods to choose the combination weight (Garlappi

et al., 2007; DeMiguel et al., 2013).

We will choose the combination weight via a robust optimization to account

for estimation errors. In robust optimization, we first construct an “uncertainty

set” of plausible values for the unknown parameters such as the mean and co-

variance. Then we select the portfolio with the best worst-case performance

over the uncertainty set. A variety of uncertainty sets have been proposed

for the mean and covariance (Goldfarb & Iyengar, 2003; Tütüncü & Koenig,

2004; Garlappi et al., 2007), for only the covariance (Qiu et al., 2015; Ceria
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& Stubbs, 2006; Zhao et al., 2019), for the distribution of returns (Ji & Leje-

une, 2020), and for the Sharpe ratio under normality assumptions (Deng et al.,

2013). Others have studied robustness for different risk measures (DeMiguel &

Nogales, 2009; Huang et al., 2010; Kakouris & Rustem, 2014), or over multiple

periods (Gülpınar & Rustem, 2007; Shen & Zhang, 2008). See Xidonas et al.

(2020) for a review and Scutellà & Recchia (2013) for connections to robust

statistics. However, existing robust approaches are sensitive to the uncertainty

set’s size and shape, and often need substantial computation, which does not

scale (Scherer, 2007).

1.1. Our Approach

We consider portfolios that are convex combinations of the minimum-variance

and maximum-Sharpe portfolios. These portfolios are created using mean and

covariance estimates computed from n training samples of asset returns. We

derive the optimal combination and show how it depends on n. For large n,

there is no estimation error, and the optimal combination converges to the

maximum-Sharpe portfolio. For small n, there is more estimation error. Since

the minimum-variance portfolio ignores the mean, it avoids this source of error.

So the optimal portfolio is close to the minimum-variance portfolio here.

We cannot find the optimal combination in practice because it depends on

unknown parameters (the mean and covariance). For these parameters, we can

only say what values are likely given the training data. So we build a robust

portfolio that is never far from optimal for any of these likely parameter values.

We formalize this as a problem of minimizing regret under uncertainty. The

regret of a portfolio is the Sharpe ratio of the optimal combination relative to

the given portfolio. Thus our notion of regret adapts to the training data size n.

We score each portfolio based on its worst-case regret, that is, the regret if the

actual parameters happen to be the worst possible instance among all reasonable

parameter values. Then, we select the portfolio with the smallest worst-case

regret. This portfolio’s Sharpe ratio is then guaranteed to be relatively close to

the optimal combination portfolio for the actual parameter values.
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Our algorithm to find the robust regret-minimizing portfolio is called Al-

phaRob. AlphaRob is based on our analysis of the regret, for which we only

need the mild assumption that the distribution of asset returns has finite mo-

ments. In particular, we do not assume a parametric form, such as Gaussian

returns. Further, we prove that estimation error affects our regret minimization

problem only through a single random variable. So AlphaRob only needs an

uncertainty set for this random variable, irrespective of the number of assets.

Apart from theoretical guarantees, AlphaRob also has several practical

advantages. The simple one-dimensional uncertainty set makes AlphaRob fast

and scalable. AlphaRob also needs no parameter-fitting; we use the same

settings for all datasets. Our results are robust to small changes in these settings.

Finally, we can adapt AlphaRob to situations where shorting is not allowed.

We compare AlphaRob against competing methods on both simulated data

and 12 real-world datasets. We run tests with four choices of training sample

sizes for each dataset, from n = 15 to n = 120. For the n = 120 setting,

the Sharpe ratio of AlphaRob is, on average, 7.5% better than the next-best

method. It can be 15%−21% better for specific datasets, and the differences are

statistically significant even after adjusting for transaction costs. AlphaRob

outperforms the next-best combination portfolio by 28%, on average.

We can also explain the performance of the minimum-variance portfolio via

its regret. The percentage difference in Sharpe ratios between AlphaRob and

the minimum-variance portfolio has a Spearman correlation of around 0.95 with

the latter’s regret. We show that the regret increases with training size and

the average level of risk-adjusted excess return across assets. For significantly

correlated assets, like individual stocks, the regret is small. The minimum-

variance portfolio is difficult to beat when its regret is less than 1.05, that

is, when it is within 5% of the optimal. For less correlated assets, such as

factor-based assets, the regret is much higher (1.24 for some datasets). Here,

AlphaRob is up to 23% better than the minimum-variance portfolio.

We note that AlphaRob is not designed to counter outliers, and it assumes

that training and test data have the same distribution. If these assumptions do
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not hold, a different analysis is required.

The rest of the paper is organized as follows. We formulate our problem in

Section 2 and present our analysis in Section 3. Then, we propose our robust

optimization method and the AlphaRob algorithm in Section 4. We validate

AlphaRob on simulated data in Section 5 and on real-world datasets in Sec-

tion 6. We conclude with a discussion in Section 7. The e-companion contains

all proofs and supplementary material.

2. Formal setup

We want a policy that takes training data as input and outputs a portfolio.

Suppose we are given a dataset Dn ∈ Rn×p of n independent and identically

distributed sample returns for p assets. Then policy π constructs a portfolio

π(Dn) =: w ∈ Rp. Each component of w represents the amount allocated to

one asset. The total portfolio must sum to one: wT1 = 1, where 1 is the all-ones

vector. If we hold this portfolio for one timestep, and the asset returns in that

timestep are given by r ∈ Rp, then the return of the portfolio is wTr.

To measure the quality of π, we assume that training and test samples Dn
and r are repeatedly generated from a distribution f(.). The expected Sharpe

ratio of π under f(.) is given by

S(π|f) =
EDn,r

[
π(Dn)Tr

]√
V arDn,r [π(Dn)Tr]

where Dn ∼ f⊗n, r ∼ f. (1)

Here, f⊗n(.) is the product distribution of n independent samples drawn from

the distribution f(.). The policy π? with the highest expected Sharpe ratio is

well-known. Let µ and Σ be the mean and covariance matrix of the distribution

f(.). If 1TΣ−1µ > 0, then1

π?(Dn) := wMS =
Σ−1µ

1TΣ−1µ
. (2)

This is a fixed policy that does not depend on Dn. So the denominator of

Eq. 1 depends only on the variability of the test sample r. But, in practice,

we do not know µ and Σ, and we can only construct policies that depend on
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Dn. The variability due to Dn can dominate that due to r, especially for small

sample sizes. Thus, finding a policy with a high expected Sharpe ratio under

an unknown f(.) requires a different analysis than for a known f(.).

When f(.) is unknown, we must rely on sample estimates. The focus of this

paper is on countering the errors in estimating µ. Hence, for our analysis, we

consider portfolios constructed using the sample mean µ̂ and the true covariance

Σ. The assumption of a known Σ allows us to isolate and analyze the effect of

estimation error in µ̂. In practice, we will use a robust estimator of Σ. We will

show in Section 5 that this does not make a qualitative difference to our results.

We consider portfolios that are convex combinations of the minimum-variance

portfolio and the sample-based maximum-Sharpe portfolio:

πβ(Dn) = (1− β) ·wMV + β · ŵMS, where wMV =
Σ−11

1TΣ−11
and ŵMS =

Σ−1µ̂

1TΣ−1µ̂
.

(3)

Note that the expected Sharpe ratio S(πβ(Dn)|f) need not be monotonic in β

(Eq. 1). So the β that achieves the highest Sharpe ratio could be anywhere

in the interval [0, 1]. The best β depends on the sample size n. For small n,

‖ŵMS −wMS‖ can be large, and the expected Sharpe ratio of ŵMS may be much

lower than wMS. In this case, we can match the minimum-variance portfolio wMV

by setting β = 0. As noted earlier, wMV performs very well empirically. As n

increases, the sample mean µ̂ converges almost surely to the true mean µ, so

ŵMS → wMS. When n→∞, π(Dn) traces out the efficient frontier as β is varied

from zero to one. Here, β = 1 gives the optimal maximum-Sharpe portfolio.

We note that alternative combinations are also possible. However, the com-

bination of wMV and ŵMS has several advantages. As Kan & Zhou (2007) note,

wMV depends only on the covariance matrix Σ and not on µ̂, so it can be esti-

mated more accurately than ŵMS. Prior work also shows that wMV by itself often

performs better than alternatives, such as the equal-weighted portfolio (Ledoit

& Wolf, 2017; Zhao et al., 2019). Finally, since ŵMS → wMS as n→∞, ŵMS must

be one endpoint of the combination to guarantee asymptotic optimality.
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Notation. For ease of analysis, we define the following:

ẑ := Σ−1/2µ̂, z := Σ−1/2µ, m := Σ−1/21, s := zTm, θ :=
s

‖m‖‖z‖
=

mTz

‖m‖‖z‖
.

We will occasionally refer to a portfolio w with the vector x where w =

Σ−1/2x/(1TΣ−1/2x). For instance, x = m ⇒ w = wMV, and x = ẑ ⇒ w =

ŵMS. We will use Sw (w) and Sx (x) to refer to the expected Sharpe ratio of a

policy that constructs the portfolio w corresponding to x. We can show that

‖z‖ = Sw (wMS) , ‖m‖ =
1√

V ar(wMV)
, −1 ≤ θ =

Sw (wMV)

Sw (wMS)
≤ 1. (4)

Thus, m and z are vectors whose lengths and angles correspond to the variances

and Sharpe ratios of wMV and wMS. Since wMV often has a high Sharpe ratio on

real-world datasets, we expect θ to be a positive fraction not close to zero.

3. Analysis of the Expected Sharpe Ratio

We start our analysis with the problem of finding the optimal combination

portfolio. Observe that

Sx (m+ αẑ) = Sw
(

Σ−1/2(m+ αẑ)

1TΣ−1/2(m+ αẑ)

)
= Sw

(
wMV · (1TΣ−1/2m) + α · ŵMS · (1TΣ−1/2ẑ)

1TΣ−1/2(m+ αẑ)

)
= Sw ((1− β) ·wMV + β · ŵMS) ,

where 1− β =

(
1 + α · 1

TΣ−1/2ẑ

1TΣ−1/2m

)−1

=
(
1 + α ·

(
wT

MVµ̂
))−1

. (5)

So we will solve the following problem2:

find the optimal α? = arg max
α≥0

Sx (m+ α · ẑ) . (6)

This can be translated into the corresponding β? via Eq. 5. The next theorem

analyzes the expected Sharpe ratio Sx (x) for any x.

Theorem 1. Let x be a function of Dn such that mTx 6= 0 almost surely.

Then,

Sx (x) =

EDn

[
zTx

mTx

]
√
EDn

[
xTx

(mTx)2

]
+ V arDn

(
zTx

mTx

) (7)
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Recall that the expected Sharpe ratio depends on both the test sample r and

the training samples Dn (Eq. 1). The two terms in the denominator in Eq. 7

account for variance due to these two sources of randomness. For example,

consider the minimum-variance portfolio wMV. This corresponds to x = m =

Σ−1/21, which does not depend on Dn (we take Σ as given). So the second term

in the denominator vanishes. The small denominator improves the expected

Sharpe ratio of wMV. Next, we consider the case of x = m+ α · ẑ.

Theorem 2. Assume that the distribution f(.) of asset returns has finite mo-

ments. Let χ = m+ α · z. Then,

Sx (m+ α · ẑ) =

(zTχ) +
α3

n
·
(
‖m‖2‖z‖2 − s2

)
(mTχ)

2√√√√‖χ‖2 +
α2

n

[
(p− 1) +

(
‖m‖2‖z‖2 − s2

)
·
(
3α2 + ‖χ‖2

)
(mTχ)

2

] + o

(
1

n

)
,

(8)

Theorem 3. Suppose θ > 0 and α ≥ 0. If n� 1/θ2−1
‖z‖2 and p� (1−θ2)(‖z‖2+3)

θ2 ,

then Eq. 8 can be simplified to

Sx (m+ α · ẑ) ≈ zTχ√
‖χ‖2 +

α2 · p
n

=
‖z‖√

1 + q (α | ‖z‖, θ)
(9)

where q (α | ‖z‖, θ) =
‖m‖2

(
1− θ2

)
+ α2(p/n)

(‖m‖θ + α‖z‖)2 . (10)

We can use this simpler form as long as n and p are large enough. The conditions

listed in Theorem 3 are reasonable for our datasets. For example, for the Fama-

French equally-weighted dataset with 100 assets, these conditions only require

n � 2.5 and p � 4.5. We will use this simpler formula henceforth. With this

simplification, the optimal α? that achieves the highest expected Sharpe ratio

(Eq. 6) has a simple form.

Theorem 4. Suppose 0 < θ < 1. Define ∆ = Sw (wMS)
2 − Sw (wMV)

2
. For

α ≥ 0, the expected Sharpe ratio formula of Eq. 9 is unimodal, and achieves its
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maximum at

α? =
n‖m‖‖z‖

p

(
1

θ
− θ
)
, (11)

or equivalently, β? =
n

p
·∆ ·

(
wT

MVµ̂

wT
MVµ

)
.

The corresponding expected Sharpe ratio is

Sw ((1− β?) ·wMV + β? · ŵMS) =
Sw (wMS)√

1 + 1
Sw(wMV)2

∆ +n
p ·Sw(wMS)2

.

Recall that α? represents the optimal tilt away fromwMV towards ŵMS. When

the sample size n increases, we have more confidence in the estimated returns

µ̂. So α? also increases. In the limit of n→∞, we recover the optimal solution

wMS. Also, α? increases with ‖z‖ because ‖z‖ = Sw (wMS) (Eq. 4). So, a higher

value of ‖z‖ implies greater benefits in moving from wMV towards ŵMS. Similarly,

when θ = Sw (wMV) /Sw (wMS) is large, wMV is almost as good as wMS. So there

is less need to tilt towards ŵMS. Hence, α? decreases with increasing θ. Finally,

α? is inversely proportional to the number of assets p since each new asset adds

to the variance in the returns, and hence increases the variability of ŵMS.

4. Robust Optimization

To calculate the optimal α?, we need to know ‖m‖, ‖z‖, and θ. Since we

assume that Σ is known, we know ‖m‖ =
√
1TΣ−11. But we only have the

estimated quantities ẑ and θ̂. We cannot plug-in ‖ẑ‖ and θ̂ in place of ‖z‖ and

θ because the former are biased estimates of the latter.

Theorem 5. Assume that the returns distribution has finite moments. Then,

E‖ẑ‖ = ‖z‖+
p− 1

2n‖z‖
+ o

(
1

n

)
, Eθ̂ = θ

(
1− p− 1

2n‖z‖2

)
+ o

(
1

n

)
.
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So, we expect ‖ẑ‖ > ‖z‖ and θ̂ < θ. This implies that we are likely to overes-

timate α? if we plug in ‖ẑ‖ and θ̂ in Eq. 11. Even if we constructed unbiased

estimators of ‖z‖ and θ, these would still have estimation errors. Plugging

estimates into Eq. 11 does not account for these errors.

We propose a robust optimization to solve this problem. First, we construct

confidence intervals I‖z‖ = [‖z‖−, ‖z‖+] and Iθ = [θ−, θ+], with 0 ≤ ‖z‖− ≤

‖z‖+ and 0 < θ− ≤ θ+ ≤ 1. We can do this via standard techniques such as

the jackknife or the bootstrap. Then, we find a robust choice for α:

αrob = arg max
α≥0

min
‖z‖∈I‖z‖
θ∈Iθ

Sx (m+ α · ẑ)

Sx (m+ α? · ẑ)
, (12)

where α? is a function of ‖z‖ and θ (Eq. 11). The ratio in Eq. 12 is the

“normalized” expected Sharpe ratio. The inverse of this ratio represents our

regret if we use α instead of α?. Thus, for a given ‖z‖ and θ, the optimal α?

achieves a regret of one, and all other choices of α incur a higher regret. By

setting α = αrob, we incur the least regret even if the actual values of ‖z‖ and

θ are the worst possible values in I‖z‖ and Iθ.

Remark 1. Setting α = 0 yields the minimum-variance portfolio. Its regret is

1

(Regret (wMV))
2 =

1

1 + ν
· 1 +

ν

1 + ν
· θ2; ν = n ·

(
1

θ2
− 1

)
· ‖z‖

2

p

Thus, Regret(wMV) increases with ν. When n = 0 (so ν = 0), wMV is optimal (re-

gret=1). As n→∞, the regret gradually increases to 1/θ = Sw (wMS) /Sw (wMV).

We can further expand the parameter ν as

ν = n×

(
Sw (wMS)

2

Sw (wMV)
2 − 1

)
︸ ︷︷ ︸

relative difference
when n→∞

×
(∑p

i=1 γi/σ
2
εi · µi∑p

i=1 γi/σ
2
εi

)
︸ ︷︷ ︸

weighted average of
mean asset returns

×
(∑p

i=1 γi/σ
2
εi

p

)
,︸ ︷︷ ︸

average of excess return
over excess variance

where γi and σ2
εi are the excess expected returns and excess variance for asset i

left over after hedging its returns using all other assets (Stevens, 1998). The last

term measures how uncorrelated the assets are. It can be high if the assets repre-

sent different factors, since factors are designed to capture distinct information.
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(a) Different modes (b) Same mode

Figure 1: Example curves of the normalized expected Sharpe ratio for different values of ‖z‖

and θ: (a) The robust solution αrob is such that for any α 6= αrob, there is some (‖z‖, θ) for

which the normalized expected Sharpe ratio is smaller for α than for αrob. (b) When multiple

curves have the same mode, the curve with the smallest θ is the lowest curve.

So for factor-based assets, Regret(wMV) can be high, and our robust optimization

can be much better than the minimum-variance portfolio. But when the assets

are individual stocks, the minimum-variance portfolio may be close to optimal.

Figure 1(a) plots the normalized expected Sharpe ratio against α for sev-

eral choices of (‖z‖, θ). The curves are unimodal, by Theorem 4. Each curve

attains a maximum value of one due to the normalization. Intuitively, αrob is

at the intersection of two curves such that all other curves lie above the in-

tersection point. We find αrob in two steps. First, in Section 4.1, we simplify

the robust optimization. We prove that many (‖z‖, θ) are redundant for the

robust optimization (see Figure 1(b)). By pruning these from I‖z‖×Iθ, we get

a one-dimensional uncertainty interval. Then, in Section 4.2, we present our

AlphaRob algorithm to solve the robust optimization of Eq. 12. AlphaRob

generates a sequence of α values. We prove that this sequence converges to αrob.
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4.1. Simplification of the robust optimization

We will first apply a monotonic transform to the normalized expected Sharpe

ratio, to simplify analysis. Define

h (α | ‖z‖, θ) = 2 · log

(
Sx (m+ α · ẑ)

Sx (m+ α? · ẑ)

)
= log(1 + q (α? | ‖z‖, θ))− log(1 + q (α | ‖z‖, θ)), (13)

with q (α | ‖z‖, θ) as defined in Eq. 10. Note that α? is a function of (‖z‖, θ),

and h (α | ‖z‖, θ) ≤ 0 everywhere. The, Eq. 12 is equivalent to

αrob = arg max
α≥0

min
‖z‖∈I‖z‖
θ∈Iθ

h (α | ‖z‖, θ) . (14)

Now, consider the set of (‖z‖, θ) pairs for which the curves h (α | ‖z‖, θ) have

their mode at a given location α? = γ:

Γγ :=
{

(‖z‖, θ) | ‖z‖ ∈ I‖z‖, θ ∈ Iθ, α?(‖z‖, θ) = γ
}
, (15)

where the notation emphasizes that α? is a function of ‖z‖ and θ. We now prove

that among all such curves, the one with the smallest θ is the lowest curve.

Theorem 6. Let θγ = min
{
θ ∈ Iθ | ∃‖z‖ ∈ I‖z‖ such that (‖z‖, θ) ∈ Γγ

}
. Then,

• The set {‖z‖ | (‖z‖, θγ) ∈ Γγ} has only one element; call it ‖z‖γ .

• For any α ≥ 0, h (α | ‖z‖γ , θγ) ≤ h (α | ‖z‖, θ) for all (‖z‖, θ) ∈ Γγ .

Now, define h (α | γ) = h (α | ‖z‖γ , θγ), where ‖z‖γ and θγ are uniquely

defined by Theorem 6. So h (α | γ) represents the lowest curve among all

curves whose mode is at α? = γ. Recall that α? is monotonically increas-

ing in ‖z‖ and decreasing in θ (Eq. 11). So γ takes values in the interval

Iγ = [α? (‖z‖−, θ+) , α? (‖z‖+, θ−)]. By Theorem 6, for any α ≥ 0,

min
‖z‖∈I‖z‖
θ∈Iθ

h (α | ‖z‖, θ) = min
γ∈Iγ

h (α | γ) .

So, the robust optimization problem of Eq. 14 simplifies to

αrob = arg max
α≥0

min
γ∈Iγ

h (α | γ) . (16)
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4.2. Algorithm

We now present our algorithm, called AlphaRob, to solve Eq. 16 and find

αrob. Intuitively, αrob is the value of α at which two curves intersect, and all

other curves lie above that intersection point. AlphaRob starts with an initial

guess about these two curves and then iteratively refines them. Now the curves

h (α | γ) are indexed by their mode γ. We initialize AlphaRob with two curves

whose modes are at the ends of the interval Iγ . Then we iterate over two steps

(see Figure 2). First, we find the intersection α(t) of the curves. Then we find

two curves with modes γ
(t+1)
lo ≤ α(t) and γ

(t+1)
hi ≥ α(t), that incur the largest

regret at α(t). These become our guesses for the next iteration. Both steps only

need a grid search on the interval Iγ . We repeat these steps until the sequence

α(t) converges. Algorithm 1 shows these steps. The next theorem shows that

AlphaRob converges to the solution αrob of Eq. 16.

Theorem 7. Suppose θ− > 0 and ‖z‖+ < ∞. Let κrob = minγ∈Iγ h (αrob | γ)

and κ(t) = h
(
α(t) | γ(t)

lo

)
. Then, for all t′ ≥ 1, κrob ≤ κ(t′) ≤ κ(1) < 0 unless

the interval Iγ is degenerate. Further, the iterates κ(t) converge towards κrob as

κ(t) − κrob ≤
(
κ(1) − κrob

)
·
(

1 + C · |κ(1)|
)−(t−1)

,

for some constant C > 0 that depends on I‖z‖ and Iθ.

AlphaRob needs the interval Iγ as input. Iγ is a function of I‖z‖ and

Iθ. We use 3σ confidence intervals for both I‖z‖ and Iθ. We estimate the

standard deviation σ via the jackknife, using only the training samples. We

center the interval I‖z‖ at
√
‖ẑ‖2 − p/n since E[‖ẑ‖2] = ‖z‖ + p/n. For Iθ,

we center it at an unbiased estimate of θ, again computed by the jackknife.

Note that confidence intervals can also be built using other methods, and can

incorporate any prior beliefs. The choice of confidence intervals is orthogonal

to our algorithm.

Remark 2. Algorithm 1 is designed for the simplified expected Sharpe ratio

formula (Eq. 9). In rare cases, this can lead to α(t) values that are too large. So
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Figure 2: Description of AlphaRob: Iteration t starts with two curves whose modes are at

γ
(t)
lo and γ

(t)
hi . They intersect at α(t), where both curves have a value κ(t). Then, we find new

curves with modes γ
(t+1)
lo ≤ α(t) and γ

(t+1)
hi ≥ α(t) that have the lowest values at α(t). This

is shown by u(t) and v(t). In the next iteration, we find the intersection of these curves at

α(t+1), with value κ(t+1). We repeat until convergence.

Algorithm 1 Solution to the Robust Optimization

1: function AlphaRob(n, p, ‖m‖, Iγ)‘

2: t← 1

3: γ
(1)
lo ← min(Iγ)

4: γ
(1)
hi ← max(Iγ)

5: repeat

6: α(t) ← α ∈
[
γ

(t)
lo , γ

(t)
hi

]
s.t. h

(
α | γ(t)

lo

)
= h

(
α | γ(t)

hi

)
. Find

intersection of curves

7: γ
(t+1)
lo ← arg minγ≤α(t) h

(
α(t) | γ

)
. Update curves

8: γ
(t+1)
hi ← arg minγ≥α(t) h

(
α(t) | γ

)
9: t← t+ 1

10: until the sequence α(t) converges

11: return α(t)

12: end function

we do a post-processing step where we consider the full formula for the variance

of the combination portfolio (Eq. 8). We use this to recalculate the intersections

α(t) and also to choose the best αrob among the α(t).

15



Remark 3. As n increases, we expect I‖z‖ and Iθ to shrink as O(
√
n) by the

Central Limit Theorem. Surprisingly, Iγ may become wider with n. This is

because the formula for α? grows linearly with n (Eq. 11). So the interval Iγ is

of the form n · O(1 ± 1/
√
n)). Note that as n → ∞, both ends of the interval

Iγ grow with n. So, αrob → ∞ and we recover the optimal maximum-Sharpe

portfolio in the limit.

5. Experiments on Simulated Datasets

We will now test AlphaRob on simulated data where the optimal α? is

known. We will vary the training length n, the number of assets p, and the

distribution of returns. We will also connect the performance of the minimum-

variance portfolio to its regret, and explore no-shorting variants of AlphaRob.

Experiment setup: We generate n i.i.d. sample returns from either a Gaussian

distribution or a heavy-tailed t-distribution with a given mean µ and covariance

Σ. We run AlphaRob over these n samples to calculate αrob. We repeat this

1000 times. This gives the empirical distribution for αrob. We report the Sharpe

ratio for combination portfolios with α drawn from this empirical distribution.

To set (µ,Σ) to realistic values, we compute them from Fama-French datasets.

These have monthly asset returns from July 1963 until July 2015. Each asset is

a portfolio of firms either weighted equally or by value. For example, the dataset

10FFEW has ten assets built from equally-weighted portfolios of firms grouped by

industry. Similarly, each asset in 10FFVW is a value-weighted portfolio of firms.

The list of all datasets is in the supplementary material. For each dataset, we

find the mean µ and covariance Σ of the monthly returns, and use this (µ,Σ)

to simulate sample returns for our experiment.

AlphaRob also needs a covariance matrix as input. We run tests with both

the true Σ and a robust covariance estimate ΣNLS (Ledoit & Wolf, 2017).

Sharpe Ratio Results: Figure 3 plots the Sharpe ratios of AlphaRob, the

minimum-variance portfolio, and the estimated maximum-Sharpe portfolio for

five datasets. Results on another five datasets are similar, and are presented in
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Figure 3: Sharpe ratios after simulating returns for different number of assets. AlphaRob is

comparable or better than other methods given n ≥ 30 training samples.
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n=15 n=30 n=60 n=120

ΣNLS , Gaussian 0.83 3.70 7.60 12.44

ΣNLS , t dist. 0.82 3.70 7.72 12.38

true Σ, Gaussian -26.51 2.99 8.36 12.67

true Σ, t dist. -10.03 5.09 9.02 12.94

(a) Percentage difference in Sharpe (AlphaRob ver-

sus minimum-variance)

(b) Sharpe difference versus regret (n ≥ 30)

Figure 4: Sharpe Ratio of AlphaRob versus minimum-variance on simulated data: (a) The

percent difference, averaged over 10 datasets, grows with the training size n. AlphaRob is

better for n ≥ 30. (b) The percent difference is positively correlated with the regret of the

minimum-variance portfolio. Each point corresponds to one dataset and one training size.

the supplementary material. The Sharpe ratio for AlphaRob is always better

than the estimated maximum-Sharpe portfolio. Apart from the smallest training

size (n = 15), AlphaRob is comparable or better than the minimum-variance

portfolio. When n = 120, AlphaRob is 12% better; even for n = 30 training

samples, AlphaRob is 3%− 5% better (Table 4(a)).

The predictive power of regret: Figure 4(b) shows a strong positive correla-

tion (Spearman rank correlation > 0.93, p-value < 10−13) between the outper-

formance of AlphaRob and the regret of the minimum-variance portfolio (see

Remark 1). Thus, for any dataset and training size, a single number — the re-

gret of the minimum-variance portfolio — tells us how well the latter performs,

and how far AlphaRob can improve upon it.

When the regret is small (close to 1), the minimum-variance portfolio is

nearly optimal. So even small errors can make AlphaRob’s Sharpe ratio worse

than the minimum-variance portfolio. We see that AlphaRob is comparable

or slightly worse (by up to 3%) compared to the minimum-variance portfolio

when the latter’s regret is less than 1.05. In other words, the minimum-variance

portfolio is hard to beat if it is within 5% of the optimal combination portfolio

for a given training size. But as its regret grows (up to 1.24 in some settings),

AlphaRob outperforms by a wider margin (up to 23% better).

Note that to calculate the regret, we need the true mean and covariance. So
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we cannot assume the regret is known while building our portfolio. But Al-

phaRob automatically captures the benefits (when regret is high) while avoiding

the pitfalls (when regret is low).

Robustness of results: Figure 3 also shows that results are similar whether

sample returns follow a Gaussian or t-distribution. This is because our analy-

sis only made modest moment assumptions, which hold for many distributions.

Also, the Sharpe ratios using the estimated covariance ΣNLS are usually worse

than using the true covariance Σ, as expected. But when AlphaRob outper-

forms the minimum-variance portfolio under Σ, it often does so under ΣNLS .

Imposing a no-shorting constraint: We first find the minimum-variance

and maximum-Sharpe portfolios under the no-shorting constraint. Any convex

combination of the two constrained portfolios also satisfies the constraint. So

we extend AlphaRob to find the best convex combination.

We can do this by a simple pre-processing step. Jagannathan & Ma (2003)

showed that the minimum-variance portfolio under the no-shorting constraint

corresponds to an unconstrained portfolio using a modified covariance matrix.

Similarly, constrained mean-variance portfolios correspond to a modification of

the vector of mean asset returns. We now run AlphaRob using this modified

covariance matrix and mean vector.

With these modifications, AlphaRob has a 4% higher Sharpe ratio than the

minimum-variance portfolio for 6FFEW. But Sharpe ratios are nearly identical

for all other datasets. The reason is that the modifications reduce the regret

of the minimum-variance portfolio. Jagannathan & Ma (2003) show that the

modifications tend to reduce any large positive correlations between assets and

increase mean returns that are too low. So there are fewer opportunities to

exploit differences between stocks while hedging risk. We find a regret of 1.06 for

6FFEW and less than 1.03 on all the other Fama-French datasets. As mentioned

earlier, when the regret is below 1.05, AlphaRob becomes comparable to the

minimum-variance portfolio. But when shorting is allowed, the regret can be

much larger, and AlphaRob outperforms much more (Figure 4(b)).
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6. Experiments on Real-World Datasets

We will first compare the Sharpe ratio of AlphaRob against competing

methods on 12 real-world datasets for four training sizes. Then we compare

other performance measures, and show a sensitivity analysis.

Experiment setup: In addition to the Fama-French datasets used in Section 5,

we construct two monthly-return datasets with p = 200 and p = 500 stocks. We

use the method of Zhao et al. (2019) to select the top stocks by market value

over eleven years. This lets us train over n = 120 months and test over the next

12 months. We repeat this process until our datasets have as many periods as

the Fama-French datasets.

Now, for any dataset of monthly asset returns, we start with the first n

months as the training set. From this training set, each competing method

constructs a portfolio. The portfolio’s returns are calculated on month n + 1.

Then, we shift the training “window” by one month, i.e., from months 2 to n+1.

We repeat this process until we cover the entire time series.

Note that we use the monthly return data directly, instead of calculating an

overall (µ,Σ) and then simulating returns as in Section 5. Hence, the results

here are not comparable to those in Section 5. Also, we can only use robust

covariance estimates (such as ΣNLS) since the actual covariance is unknown and

may vary over time.

Evaluation metrics: We calculate Sharpe ratios in two ways. The overall

Sharpe calculates the mean and standard deviation of portfolio returns over all

windows and takes their ratio. The average one-year Sharpe splits the portfolio

returns into one-year periods, calculate the Sharpe ratio for each period, and

then take the average of the Sharpe ratios over all periods. The overall Sharpe

is intuitive for stationary time series. The average one-year Sharpe may be more

useful if financial conditions change significantly over the course of the dataset.

Experimental Details: We run AlphaRob with 3σ confidence intervals, and

set the minimum θ to θ− = 0.2. These settings were chosen from the sensitiv-

ity analysis presented later. We compare against the minimum-variance (Min
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Var) and the estimated maximum-Sharpe (Est. Max Sharpe) portfolios built

using the NLS and L2 covariance estimators (Ledoit & Wolf, 2004, 2012). We

also compare against three combination portfolio methods (AA, EQL MV-min,

and TZ), a robust portfolio (CS), and a method based on conjugate descent

(PARR) (Garlappi et al., 2007; DeMiguel et al., 2013; Tu & Zhou, 2011; Ceria

& Stubbs, 2006; DeMiguel et al., 2009a)3. For some methods, their authors do

not present any parameter tuning method to optimize for Sharpe ratio. So we

report best-case results using parameters picked from out-of-sample data. Note

that AlphaRob needs no parameter tuning.

Comparison of Sharpe Ratios: We compare methods based on the relative

difference between their Sharpe ratios. Since Sharpe ratios measure returns per

unit of risk, the relative difference between two Sharpe ratios corresponds to the

relative difference in returns for the same amount of risk4. Table 1(a) and 1(b)

show the overall Sharpe ratio and the average one-year Sharpe ratio when the

training set is n = 120 months. We separate the CS and PARR methods since

they are optimized with out-of-sample data.

Compared to the remaining methods, AlphaRob is the best on eleven out

of twelve datasets for overall Sharpe, and on ten datasets for average one-year

Sharpe. The next-best method is Min Var (NLS), which is 7.5% worse on

average in terms of overall Sharpe ratio, and 5.5% worse for the average one-

year Sharpe ratio. For some datasets, AlphaRob is 21% better than Min

Var (NLS). Further, the difference between AlphaRob and Min Var (NLS) is

statistically significant for five datasets.

Against competing combination portfolios, AlphaRob is 28% better on av-

erage than the next-best algorithm (AA). Even when compared to CS and PARR

under their optimal settings, AlphaRob fares well. AlphaRob is, on average,

3% better than PARR in terms of the overall Sharpe ratio, and roughly compa-

rable in terms of the average one-year Sharpe ratio. The CS method works well

when the number of assets is small (p = 6 or 10). But for large p, the Sharpe

ratio of CS is usually worse.
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48FFVW 200Stocks 10FFVW 500Stocks 10FFEW 48FFEW 6FFVW 100FFVW 25FFVW 100FFEW 6FFEW 25FFEW

AlphaRob 0.24 0.26 0.27** 0.28 0.33 0.33 0.35 0.38 0.40 0.42 0.45 0.48

Min Var (NLS) 0.24 0.26 0.29 0.28 0.27* 0.27 0.32** 0.36 0.36** 0.40 0.39*** 0.43*

Min Var (L2) 0.23*** 0.22*** 0.30 0.27 0.29 0.28 0.29*** 0.34** 0.34** 0.38* 0.33*** 0.40**

AA (γ=1) 0.18*** 0.21 0.29 0.27 0.28* 0.26** 0.34 0.17*** 0.38 0.21*** 0.41** 0.46

AA (γ=3) 0.17*** 0.22 0.29 0.28 0.27* 0.24** 0.33* 0.19*** 0.37* 0.21*** 0.40*** 0.45*

EQL MV-min (γ=1) 0.18*** 0.08** 0.15*** 0.06*** 0.25** 0.26** 0.30* 0.17*** 0.36 0.20*** 0.39** 0.44*

EQL MV-min (γ=3) 0.14** 0.04*** 0.08*** −0.01*** 0.21*** 0.24** 0.27** 0.17*** 0.27*** 0.20*** 0.37** 0.35**

TZ (γ=1) 0.10** x 0.12*** x 0.20* 0.07** 0.29** 0.02*** 0.22*** 0.10*** 0.37** 0.37**

TZ (γ=3) 0.08*** x 0.10** x 0.17 0.03*** 0.29** 0.07*** 0.20*** 0.06** 0.37** 0.36***

Est. Max Sharpe (NLS) 0.11** 0.01*** 0.10** −0.02*** 0.18 0.19* 0.29** 0.21*** 0.25** 0.24*** 0.37** 0.37**

Est. Max Sharpe (L2) 0.09*** 0.02*** 0.11** −0.02*** 0.17 0.12 0.26*** −0.00** 0.26** 0.18*** 0.35*** 0.39**

Equal Weight 0.22 0.22 0.24* 0.23 0.23* 0.23 0.23*** 0.24*** 0.23*** 0.24*** 0.23*** 0.23***

AlphaRob 0.24 0.26 0.27 0.28 0.33 0.33 0.35* 0.38 0.40 0.42 0.45 0.48

CS (best) 0.18*** x 0.29 x 0.31 0.27** 0.35 0.18*** 0.39 0.21*** 0.46 0.47

PARR (best) 0.27 0.29 0.30 0.28 0.30 0.30 0.33 0.36 0.36* 0.40 0.41** 0.45

(a) Overall Sharpe ratios. Note that CS and PARR are optimized with out-of-sample data.

48FFVW 200Stocks 10FFVW 500Stocks 10FFEW 48FFEW 6FFVW 100FFVW 25FFVW 100FFEW 6FFEW 25FFEW

AlphaRob 0.31 0.32 0.34** 0.38 0.38 0.42 0.42 0.49 0.47 0.50 0.55 0.57

Min Var (NLS) 0.31 0.32 0.35* 0.38 0.33* 0.35** 0.41 0.45* 0.44* 0.48 0.51 0.54*

Min Var (L2) 0.29 0.28 0.36 0.35 0.37 0.37* 0.38* 0.44* 0.44 0.48 0.45*** 0.52**

AA (γ=1) 0.23*** 0.26 0.35 0.36 0.34* 0.32*** 0.42 0.18*** 0.47 0.26*** 0.53 0.57

AA (γ=3) 0.23*** 0.26* 0.35 0.37 0.33** 0.29*** 0.41 0.20*** 0.45 0.25*** 0.53 0.56

EQL MV-min (γ=1) 0.22*** 0.15*** 0.22*** 0.11*** 0.29*** 0.32*** 0.34** 0.18*** 0.42** 0.23*** 0.46** 0.52**

EQL MV-min (γ=3) 0.16*** 0.11*** 0.17*** 0.04*** 0.25*** 0.33** 0.31** 0.18*** 0.31*** 0.23*** 0.44** 0.42***

TZ (γ=1) 0.13*** x 0.20*** x 0.27*** 0.20*** 0.34** 0.06*** 0.28*** 0.13*** 0.45** 0.44***

TZ (γ=3) 0.12*** x 0.19*** x 0.26*** 0.14*** 0.34** 0.12*** 0.26*** 0.11*** 0.45** 0.43***

Est. Max Sharpe (NLS) 0.16*** 0.05*** 0.20*** 0.01*** 0.27*** 0.29*** 0.34** 0.31*** 0.32*** 0.34*** 0.45** 0.44***

Est. Max Sharpe (L2) 0.15*** 0.04*** 0.22*** 0.01*** 0.27*** 0.29*** 0.33** 0.21*** 0.33*** 0.28*** 0.46* 0.47**

Equal Weight 0.32 0.30 0.33 0.32** 0.31 0.30* 0.34*** 0.34** 0.34** 0.34** 0.33*** 0.34***

AlphaRob 0.31 0.32 0.34 0.38 0.38 0.42 0.42 0.49 0.47 0.50 0.55 0.57

CS (best) 0.23*** x 0.35 x 0.36 0.33*** 0.42 0.19*** 0.47 0.25*** 0.56 0.57

PARR (best) 0.34 0.36 0.37 0.38 0.38 0.40 0.41 0.45* 0.44 0.49 0.53 0.56

(b) Average one-year Sharpe ratios. CS and PARR are optimized with out-of-sample data.

48FFVW 200Stocks 10FFVW 500Stocks 10FFEW 48FFEW 6FFVW 100FFVW 25FFVW 100FFEW 6FFEW 25FFEW

AlphaRob 0.18 0.17 0.25** 0.19 0.29 0.26 0.32 0.29 0.32 0.33 0.41 0.40

Min Var (NLS) 0.20 0.18 0.28 0.19 0.24* 0.21 0.30* 0.28 0.29** 0.32 0.37*** 0.37**

Min Var (L2) 0.18 0.09 0.29 0.14 0.28 0.24 0.28*** 0.23** 0.30** 0.28* 0.32*** 0.37**

AA (γ=1) 0.09 −0.07 0.27 0.12 0.25* 0.16** 0.31 −0.25*** 0.29 −0.21*** 0.39** 0.37

AA (γ=3) 0.09 −0.06 0.28 0.13 0.24* 0.14** 0.31 −0.23*** 0.28 −0.21*** 0.38** 0.36

EQL MV-min (γ=1) 0.08 −0.16* 0.09*** −0.11*** 0.17** 0.15** 0.18* −0.28*** 0.18 −0.26*** 0.31** 0.28

EQL MV-min (γ=3) −0.10 −0.19** 0.02*** −0.14*** 0.09** 0.03** 0.12** −0.34*** −0.17*** −0.36*** 0.27** 0.00**

TZ (γ=1) −0.03* x 0.08*** x 0.14 −0.02** 0.24** −0.47*** 0.07** −0.88*** 0.32** 0.22**

TZ (γ=3) −0.05** x 0.06** x 0.11 −0.12*** 0.24** −0.82*** 0.04** −0.96** 0.31** 0.21**

Est. Max Sharpe (NLS) 0.03* −0.09*** 0.06** −0.11*** 0.13 0.11* 0.24** −0.06*** 0.12** 0.07*** 0.32** 0.24**

Est. Max Sharpe (L2) 0.01** −0.12*** 0.08** −0.16*** 0.14 0.07 0.22*** −0.20** 0.17** −0.23*** 0.33** 0.30**

Equal Weight 0.22 0.22 0.24* 0.23 0.23* 0.23 0.23*** 0.24*** 0.23*** 0.24*** 0.23*** 0.23***

AlphaRob 0.18 0.17 0.25 0.19 0.29 0.26 0.32* 0.29 0.32 0.33 0.41 0.40

CS (best) 0.09** x 0.27 x 0.27 0.16 0.32 −0.24*** 0.30 −0.22*** 0.42 0.38

PARR (best) 0.26 0.26 0.29 0.26 0.29 0.30 0.31 0.25 0.27* 0.30 0.39** 0.38

(c) Overall Sharpe Ratio adjusted for transaction costs (50 basis points).

Table 1: Comparison of Sharpe ratios on real-world datasets for training size n = 120 months.

A cross denotes that the method does not apply or it did not finish with a feasible portfolio.

Significance levels at 0.1, 0.05, and 0.01 are indicated by one, two, and three stars respectively.

Significance is checked following Ledoit & Wolf (2008) for the overall Sharpe ratio, and by

paired t-tests for the average one-year Sharpe ratio.
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48FFVW 200Stocks 10FFVW 500Stocks 10FFEW 48FFEW 6FFVW 100FFVW 25FFVW 100FFEW 6FFEW 25FFEW

AlphaRob 3.85*** 3.34 3.73*** 3.04 3.82** 4.13*** 4.28*** 3.85** 4.02*** 3.85 4.81** 3.99***

Min Var (NLS) 3.65 3.32 3.58** 3.04 3.54 3.69** 4.05 3.65 3.72 3.72 4.46 3.68

Min Var (L2) 3.69 3.49*** 3.53 3.08 3.49 3.63 4.05 3.86*** 3.67 3.85*** 4.50 3.67

AA (γ=1) 4.27*** 4.62*** 3.62*** 3.53*** 3.53 4.29*** 4.08 10.01*** 3.91*** 10.15*** 4.48 3.91**

AA (γ=3) 4.20*** 4.34*** 3.61*** 3.49*** 3.54 4.20*** 4.07 7.76*** 3.88*** 7.71*** 4.47 3.86**

EQL MV-min (γ=1) 4.35*** 9.33 5.68* 6.85*** 6.87*** 4.34*** 6.21*** 7.51*** 5.15*** 7.49*** 6.61*** 5.09***

EQL MV-min (γ=3) 7.33*** 14.39 8.42 14.85 9.67*** 7.17*** 7.07*** 8.61*** 11.33*** 9.52*** 7.41*** 10.70***

TZ (γ=1) 10.23*** x 6.60 x 9.76*** 42.51** 5.98*** 159.91 8.81*** 72.61*** 6.68* 6.70***

TZ (γ=3) 12.26*** x 7.29 x 11.25* 599.86* 6.08*** 63.52*** 9.89** 103.27*** 6.79* 6.99***

Est. Max Sharpe (NLS) 9.51*** 9.82*** 7.50 10.20** 10.35** 13.04** 6.00*** 11.22* 8.35*** 7.34*** 6.72** 6.25***

Est. Max Sharpe (L2) 10.05*** 9.91*** 7.01 8.57*** 10.15 18.27 6.12*** 66.45** 7.24** 11.02*** 6.11* 5.45***

Equal Weight 4.89*** 4.57*** 4.31*** 4.79*** 5.73*** 5.69*** 4.92*** 5.20*** 5.11*** 5.41*** 5.42*** 5.35***

CS (best) 4.34*** x 3.62*** x 3.88*** 4.38*** 4.32*** 7.50*** 3.96*** 8.02*** 4.98*** 3.98**

PARR (best) 3.87** 3.56*** 3.60 3.51*** 4.10** 4.38*** 4.09 3.87*** 3.87*** 3.87*** 4.47 3.71

(a) Standard deviation (n = 120).

48FFVW 200Stocks 10FFVW 500Stocks 10FFEW 48FFEW 6FFVW 100FFVW 25FFVW 100FFEW 6FFEW 25FFEW

AlphaRob 3.30 2.33 1.24 2.46 2.60 2.79 1.69 2.25 1.97 2.02 3.56 1.44

Min Var (NLS) 3.56 2.44 1.10 2.46 2.79 3.11 1.64 2.32 1.52 2.53 2.40 2.18

Min Var (L2) 3.60 1.95 1.19 2.19 3.42 3.28 2.02 3.19 1.98 2.88 2.95 2.48

AA (γ=1) 2.88 5.00 1.16 3.64 2.81 2.47 1.72 2.61 1.84 1.02 2.41 2.12

AA (γ=3) 2.76 3.71 1.11 3.23 2.81 1.95 1.72 0.79 1.73 0.49 2.36 2.18

EQL MV-min (γ=1) 3.22 64.89 19.71 24.85 7.46 2.97 2.49 0.83 2.17 0.57 8.64 2.41

EQL MV-min (γ=3) 4.67 131.79 68.15 144.97 12.30 5.04 3.53 1.36 3.34 8.00 11.23 3.35

TZ (γ=1) 6.24 x 49.36 x 53.90 196.07 4.61 271.94 20.03 54.39 15.88 4.48

TZ (γ=3) 12.08 x 67.02 x 84.48 396.92 4.68 44.27 26.22 62.42 16.15 4.68

Est. Max Sharpe (NLS) 11.66 51.38 78.29 81.16 67.75 53.16 4.69 69.09 21.57 12.73 15.35 4.25

Est. Max Sharpe (L2) 13.95 35.19 68.51 24.86 90.52 170.78 7.60 351.71 22.99 23.02 17.00 6.43

Equal Weight 3.12 2.09 2.28 2.79 3.35 3.89 2.90 3.07 2.96 3.35 3.28 3.30

CS (best) 2.91 x 1.13 x 2.30 2.79 1.59 0.82 1.94 0.47 2.58 2.06

PARR (best) 3.27 2.63 1.25 2.82 3.79 4.29 1.72 2.34 1.62 2.24 2.52 2.00

(b) Average kurtosis of portfolios (n = 120).

Table 2: Alternate performance measures.

AlphaRob is best on eight datasets even after adjusting for transaction

costs (Table 1(c)). Following DeMiguel et al. (2009b), we impose a 50 basis

point penalty on transactions. AlphaRob is statistically significantly better

than Min Var (NLS) on five datasets. These are the same five datasets where

AlphaRob outperforms Min Var (NLS) significantly even without transaction

costs (Table 1(a)). So, the inclusion of transaction costs does not change the

comparative advantage of AlphaRob over Min Var (NLS). The Equal Weight

portfolios improves relative to others because it has zero transaction costs. Sev-

eral competing methods have a negative Sharpe ratio after transaction costs.

Overall, AlphaRob is comparable or better than Min Var (NLS) on most

Fama-French datasets. For 200Stocks and 500Stocks, the regret of Min Var is

only 1.03 due to high correlations5. So AlphaRob is comparable to Min Var

(NLS) here. While the above results are for a training size of n = 120, the

supplementary material shows similar results for other training sizes too.
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(a) Sharpe ratio vs. Std. dev. multiplier for n = 15 (left) and n = 120 (right).

(b) Sharpe ratio vs. minimum θ for n = 15 (left) and n = 120 (right).

Figure 5: Sensitivity analysis for the parameters of AlphaRob. We set the standard deviation

multiplier to 3 and the minimum θ to 0.2 by default.

Other Performance Measures: Table 2 shows the standard deviation and

kurtosis of all methods. The standard deviation of AlphaRob is lower than

other competing methods, except Min Var (NLS). Between AlphaRob and

Min Var (NLS), the greatest percentage differences are for 48FFEW, 25FFVW, and

25FFEW. For all these datasets, the Sharpe ratio of AlphaRob is significantly

better than Min Var (NLS). Thus, AlphaRob is assuming extra variability only

when it helps the Sharpe ratio. The kurtosis of AlphaRob is comparable to

the minimum-variance portfolios and better than the other methods.

Sensitivity Analysis: By default, AlphaRob uses 3σ confidence intervals for

both ‖z‖ and θ. In other words, we set the standard deviation multiplier to a

default of 3. Plot 5(a) shows that the Sharpe ratio can fall if the standard devi-

ation multiplier is smaller than 2. A small multiplier means smaller confidence

intervals I‖z‖ and Iθ. These are less likely to contain the actual parameters ‖z‖

and θ. Hence, AlphaRob may choose a poor αrob. The Sharpe ratio can also

fall if the multiplier is greater than 4 when the training sample size n is small.

The reason is that for small n, the estimates of ‖z‖ and θ have a substantial

error. So the standard deviations are often significant. A large multiplier makes

the robust solution too conservative in such cases. Any multiplier between two

and four works well.
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AlphaRob also sets the minimum value of θ to θ− = 0.2. This implies

a constraint on the best achievable Sharpe ratio: Sw (wMS) ≤ Sw (wMV) /θ− by

Eq. 4. Plot 5(b) shows the results for varying θ−. If θ− is too large, we downplay

the benefits of the maximum-Sharpe portfolio. So AlphaRob chooses an αrob

that is too small. But if θ− is too small, we may be too optimistic and choose

large values for αrob. This is especially true for small n, where the estimate θ̂

may be far from the true θ. We see that θ− ∈ [0.1, 0.2] works well in all settings.

7. Discussion

We showed how noisy estimates of mean returns can be fruitfully used in

the maximum-Sharpe portfolio problem. To account for the estimation errors,

our algorithm (AlphaRob) uses a robust optimization, with two important

details. First, we only consider a limited set of portfolios, called combination

portfolios. This restriction allows us to capture uncertainty about mean returns

with an interval. We need not create an uncertainty set for the entire mean

returns vector. The simple uncertainty set lets AlphaRob scale to problems

with many assets. Second, our robust objective is to minimize worst-case regret.

We determine a portfolio’s regret by comparing its Sharpe ratio to the optimal

combination portfolio adjusted for the training sample size. AlphaRob is fast

and needs no parameter tuning. It performs as well or better than competing

methods on both simulated and real-world datasets.

We also show that the performance of the minimum-variance portfolio is

negatively correlated with its regret. The regret increases with training size

and the average level of risk-adjusted excess return across assets. The latter

term can be high for uncorrelated assets, such as those based on factors. Then,

the regret of the minimum-variance portfolio is high, and AlphaRob achieves a

significantly better Sharpe ratio. However, when the assets are individual stocks,

their high correlations reduce the regret of the minimum-variance portfolio. If

this regret is within 5% of the optimal, the minimum-variance portfolio is hard

to beat. AlphaRob automatically captures the benefits (when regret is high)

25



while avoiding the pitfalls (when regret is low). So, investors and portfolio

managers can use AlphaRob for all regret levels.

Several extensions of our work are possible. We could extend the analysis

from Sharpe ratios to general utility functions. The supplementary material

presents some results for the mean-variance utility function. But, for each utility

function, we need a bespoke algorithm to find a robust portfolio. A second

extension would be to impose uncertainty sets on the covariance matrix as well.

Our analysis shows that the covariance affects the expected Sharpe ratio only

via a few functions of the return distribution. A careful analysis would be

needed to characterize the behavior of these functions under the uncertainty

set. Finally, the analysis of the expected Sharpe ratio can be extended to

include the variance of the robust portfolio. The robust portfolio depends on a

confidence interval estimated from data. So we need to consider the variability

of confidence intervals constructed by the jackknife.

Endnotes

1This condition holds for all our datasets.

2An alternative is to seek the best constant β with the highest expected Sharpe

ratio. We can show that the optimal expected Sharpe ratio is the same as for

our formulation. However, Thm. 6 no longer holds, and we need it to have a

simple regret-minimization algorithm.

3The details are presented in the supplementary material. We do not compare

against the no-shorting portfolio (Jagannathan & Ma, 2003), the L1-regularized

minimum-variance portfolio (Brodie et al., 2009), Bayesian methods, and the

method of Kan & Zhou (2007), since Min Var (NLS) and the Equal Weight

portfolio perform as well or better (DeMiguel et al., 2009b; Zhao et al., 2019).

4A portfolio manager may invest in a portfolio of assets until the standard

deviation hits a maximum threshold. So if two portfolios are available, then the

relative difference in returns is given by the relative difference in Sharpe ratios.

The portfolio manager may strongly prefer one portfolio to another if relative

differences in Sharpe ratio are high, even if absolute differences are modest.
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5We calculate the regret from estimates of the mean and covariance from the

full dataset, assuming stationarity.

References

Bickel, P. J., & Levina, E. (2008). Regularized estimation of large covariance

matrices. The Annals of Statistics, 36 , 199–227.

Brodie, J., Daubechies, I., De Mol, C., Giannone, D., & Loris, I. (2009). Sparse

and stable Markowitz portfolios. Proceedings of the National Academy of

Sciences, 106 , 12267–12272.

Ceria, S., & Stubbs, R. A. (2006). Incorporating estimation errors into portfo-

lio selection: Robust portfolio construction. Journal of Asset Management;

London, 7 , 109–127.

Chopra, V. K., & Ziemba, W. T. (1993). The effect of errors in means, vari-

ances, and covariances on optimal portfolio choice. The Journal of Portfolio

Management , 19 , 249–257.

DeMiguel, V., Garlappi, L., Nogales, F. J., & Uppal, R. (2009a). A generalized

approach to portfolio optimization: Improving performance by constraining

portfolio norms. Management Science, 55 , 798–812.

DeMiguel, V., Garlappi, L., & Uppal, R. (2009b). Optimal versus näıve diver-
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Kolm, P. N., Tütüncü, R., & Fabozzi, F. J. (2014). 60 Years of portfolio op-

timization: Practical challenges and current trends. European Journal of

Operational Research, 234 , 356–371.

Ledoit, O., & Wolf, M. (2004). A well-conditioned estimator for large-

dimensional covariance matrices. Journal of Multivariate Analysis, 88 , 365–

411.

Ledoit, O., & Wolf, M. (2008). Robust performance hypothesis testing with the

Sharpe ratio. Journal of Empirical Finance, 15 , 850–859.

Ledoit, O., & Wolf, M. (2012). Nonlinear shrinkage estimation of large-

dimensional covariance matrices. The Annals of Statistics, 40 , 1024–1060.

29



Ledoit, O., & Wolf, M. (2017). Nonlinear shrinkage of the covariance matrix

for portfolio selection: Markowitz meets goldilocks. The Review of Financial

Studies, 30 , 4349–4388.

Michaud, R. O. (1989). The Markowitz optimization enigma: is ‘optimized’

optimal? Financial Analysts Journal , 45 , 31–42.

Qiu, H., Han, F., Liu, H., & Caffo, B. (2015). Robust Portfolio Optimization.

In Advances in Neural Information Processing Systems 28 (pp. 46–54).

Scherer, B. (2007). Can robust portfolio optimisation help to build better port-

folios? Journal of Asset Management; London, 7 , 374–387.
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