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ABSTRACT

Label Propagation (LP) is a popular transductive learning method
for very large datasets, in part due to its simplicity and ability to
parallelize. However, it has limited ability to handle node features,
and its accuracy can be sensitive to the number of iterations. We
propose an algorithm called LPNN that solves these problems by a
loose-coupling of LP with a feature-based classifier. We experimen-
tally establish the effectiveness of LPNN.
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1 INTRODUCTION

Label Propagation (LP) is a transductive learning method that infers
the labels of nodes in a graph, given the labels of a small subset of
the nodes [18], [17]. LP does this inference for each node based on
the aggregate labels of their neighbors until the labels for all the
nodes do not change. The attractive aspect of LP is its simplicity
leading to an efficient bulk synchronous parallel model [9]. As a
result LP has been utilized for solving industry scale problems,
such as inferring user authority [10], completing user profiles in
social media [4], devising load-balanced user-cache framework [13],
discovering machine generated emails [14], etc. However there are
two key limitations of LP that inhibits its effectiveness:

(1) Decreasing Performance: We notice that in initial itera-
tions, the performance of LP improves. However, it surpris-
ingly starts to decrease afterwards. Figure 1 shows this trend
for Flickr dataset. There is some prior theoretical work [1, 8]
that suggests that LP’s performance degrades for graphs that
do not strongly adhere to the principles of local continuity,
i.e. neighboring nodes having similar labels. Thus, while one
should theoretically run LP until convergence, the “stopping
criterion” can affect its performance significantly.

(2) Ineffective Utilization of Node Features: In most real-
world scenarios, the graph nodes have side information. Un-
fortunately, LP does not directly utilize the node features
for inferring their labels, rather it uses a kernel function to
compute pairwise similarities between the nodes. Thus, the
information present in the features gets compressed into
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Figure 1: Performance of LP over Flickr dataset.

scalar edge weights even before LP starts, limiting its ability
to leverage the features effectively.

One way to overcome LP’s ineffective utilization of node features
is to combine it with a feature-based classifier over the labeled
data. This idea is explored by several prior work, such as, LLP [6],
EmbedNN [15], etc. A common theme of these methods is to learn
a function д(·) over the node features via graph’s local continuity
based objective and the classifier based objective. We view this as a
tight coupling of the node features and the graph structure and this
makes these prior methods computationally expensive as well as
ineffective under noisy scenarios.

In this paper, we propose an extension of LP called LPNN that
overcomes the limitations of LP and yet retain LP’s simplicity and
parallelizability. We achieve this via a loose coupling of LP with a
classifier objective. The classifier allows the model to utilize the
node features directly as well as prevent LP from accumulating the
errors while it aggregates labels from the neighborhoods. Our main
contributions are as follows:

(1) We propose a joint loss function that combines LP with a
classifier. The classifier, utilizing the node features directly,
prevents LP’s error accumulation over iterations.

(2) We provide an inference algorithm for LPNN that retains
parallelizability of LP and its complexity is only linear in the
number of edges in the graph. s

(3) We empirically demonstrate the effectiveness of LPNN over
several popular baselines.

2 NOTATIONS

We consider as input a weighted directed graph with n = l + u
nodes, of which the first l nodes are labeled with a binary vector
yi ∈ {0, 1}c , and nodes l+1 ton are unlabeled. The edge weights are
indicated by the matrixW ∈ Rn×n+ , s.t.,Wi j indicates the weight of
edge from i to j . The function nnz(W ) indicates the number of non-
zero elements inW . Optionally, all nodes have features xi :1≤i≤n .
Our goal is to infer yi :l+1≤i≤n for the unlabeled nodes.
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3 BACKGROUND AND RELATEDWORK

LP algorithm was originally proposed by [18]. The original algo-
rithm clamps the labeled nodes to their input labels and propagates
their labels to the unlabeled nodes. Clamping ensures a constant
push from the labeled nodes ensuring that the class boundaries are
pushed through high density data filaments and settle in the low
density gaps. One downside of clamping is that if the initial labels
are noisy then the model would perform poorly.

We consider a noise-robust variant of LP [17] as our starting
point. It estimates a label distribution matrix f whose columns
fi ∈ Rc represent the label distribution for each node i . The matrix
f is picked to minimize

Tr {fT (In − S)f} + µ
l∑
i=1

∥fi − yi ∥22 + µ
n∑

i=l+1
∥fi ∥22 , (1)

where In is n × n identity matrix, S = D−1/2WD−1/2 is the normal-
ized graph Laplacian with Dii =

∑
jWi j being a diagonal matrix

of node degrees. The first term fits a smooth f over all nodes, the
second term encourages consistency with known labels and the
last term is a regularizer.

Another key component of our algorithm is combining the clas-
sification objective along with LP. Collective classification using
both node features and the links connecting the nodes has been
widely explored in genral [5], [7]. A typical approach is to infer a
function д over the node features xi that minimizes

n∑
i, j=1

LG (д(xi ),д(xj ),Wi j ) +

l∑
i=1

LL(yi ,д(xi )).

This combines a graph-based loss (LG ), as in LP, with the loss of a
node-specific classifier (LL). The functional form of д(xi ) leads to
different methods: logistic regression in LLP [6], SVM with Hinge
Loss in LapSVM [2], neural network in EmbedNN [15].

Recent work on this problem has focused on representing a node
via latent embeddings to infer their labels [3], [16]. The following
loss function captures the essence of these models.

n∑
i, j=1

LG (h(xi ),h(xj ),Wi j ) +

l∑
i=1

LL (yi ,д(h(xi ))) ,

where h(x) can be viewed as semi-supervised node embedding.
One drawback of these approaches is that in a noisy settings,

the noise from the graph and the features can get amplified due
to the tight coupling of the two sources as x are subject to both
the classifier objective as well as the graph objective. Our proposed
LPNN model complements these approaches by performing a joint
optimization of the LP objective and a classifier-based loss.

4 OUR APPROACH

LPNN model is aimed at satisfying the following three key proper-
ties that are not adequately addressed by LP:

(1) Stability: The model accuracy should improve and then sta-
bilize after a number of iterations.

(2) Adaptivity: The model should adaptively weigh the graph
and the features based on their predictive power.

(3) Flexibility: For a wider applicability, model should work even
when only the graph or the graph + features are available.

Stability. An intuitive explanation for the decline in LP’s ac-
curacy is that the errors accumulating over the initial iterations
overwhelm the propagation of informative labels in the subsequent
iterations. This suggests coupling LP’s label updates with a noise
reducer. This noise reducer could be a post-processing classifier that
is trained to correct LP’s output using the labeled set as training
data. However, a better option is to jointly optimize LP and the
noise reducer. In general, this idea is encapsulated as follows:

n∑
i, j=1

LG (fi , fj ,Wi j ) +

l∑
i=1

LL(fi , gi , yi ) +
n∑

i=l+1
LU (fi , gi ), (2)

where fi is a vector representation for node i and gi is the output of
the noise reducer for node i . The last two terms reconciles label dis-
tribution fi with the classifier (g) for the labeled and the unlabeled
nodes respectively.

Adaptivity. In order for the model to be adaptive, it is desirable
for g to pivot on f and/or x depending on their predictive power.
To achieve this, we set gi = д(fi , xi ), where д is a probability
distribution over the labels. In contrast, most prior work consider
fi = f (xi ) and gi = д(f (xi )), which can under perform if x is
noisy or the noisy graph leads to noisy fi . On the other hand, loose
coupling via the choice gi = д(fi , xi ) ensures that the noise in either
fi or xi is not amplified.

While any д can be used, we choose a feed-forward neural net-
work where given an input vector z, stage ℓ of the neural network
is denoted as hℓ(z) = ReLU(Aℓhℓ−1(z) + bℓ). Taking the learnings
from the Planetoid model [16], we set

дk (f , x) =
exp[ha (f)T ,hb (x)T ]ak∑
k ′ exp[h

a (f)T ,hb (x)T ]ak ′
,

where [·, ·] denotes the concatenation of two vectors, дk (.) is the k-
th component of the output of д(.), and ak , A, b are neural network
parameters.

Flexibility. For our model to retain the flexibility of LP, we let
fi ’s be label distributions of nodes (∥fi ∥1 = 1, fi ≥ 0). This allows
the model to default to LP in the worst case of a random/missing x.
Most prior models, such as LLP [6], EmbedNN [15], NGM [3]), set
fi = f (xi ), which can perform poorly for noisy/missing features.

With the above design choices, LPNN model minimizes the fol-
lowing loss:

LLP + λL

l∑
i=1

KL(yi ∥gi ) + λU
n∑

i=l+1
KL(fi ∥gi ), (3)

where the first term is LP loss (Eq. 1) and the next two terms con-
nects the noise reducer with the LP objective. Parameter λL , λU
are the regularization parameter for the noise reducer. It is easy to
note that Eq. 3 is a specific instance of Eq. 2.

Matching the Desired Properties. The first KL-divergence term
trains g close to y on the labeled nodes. The next KL term pulls
f for the unlabeled nodes towards the error-free g. This prevents
error accumulation in the LP part of the loss function satisfying our
stability requirement. Since g is a function of both node features x
and the label distribution f , it can adaptively combine the two in
a way that gives the best prediction for the class labels, matching
the adaptivity requirement. Finally, when node features are absent,



Algorithm 1 LPNN
Require: GraphW , Features x1:n , Labels y1:l ; Regularization pa-

rameters µ, λL , λU .
1: Estimate f via LP (Eq. 1)
2: Normalize f to a probability distribution
3: repeat
4: Learn g via mini-batch gradient step (f fixed in Eq. 3)
5: Learn f via Eq. 3 (keep g fixed)
6: Normalize f to a probability distribution
7: until convergence
8: return gl+1:n

Table 1: Dataset Statistics.

Dataset c n nnz(W ) has x
Pubmed 3 19,717 44,338 ✓

Citeseer 6 3,327 4,732 ✓

Cora 7 2,708 5,429 ✓

Dblp 31 1,241,210 11,274,954 ✓

BlogCatalog 39 10,312 333,983 ✗

Flickr 195 80,513 5,899,882 ✗

then g is simply a function of f . Conversely, when the graph is
absent, the loss reduces to a form of transductive learning with a
prior. This matches the flexibility requirement.
Model Training. To train our model, we adopt an alternating
minimization technique (See Algorithm 1). Initially, f is set via LP.
After that, in each iteration, we first update the noise reducer g
keeping f fixed. Then, f is updated while keeping g fixed. We note
here that f can be updated in parallel similar to LP. Also, g can be
updated on a single machine as its cost is linear in number of nodes.

Convergence. The individual loss is convex in g or f but is not
jointly convex. Hence the algorithm may not converge in theory;
however, it converges in practice to a local minimum.

Time Complexity. The time complexity for computing f is
O(nnz(W )), which uses updates similar to LP. The time complexity
for learning g is O(n). For most large datasets, O(nnz(W )) domi-
nates O(n), and hence, the bottleneck of our model is the LP step
which can be effectively addressed via parallelization.

5 EXPERIMENTS

Datasets. We selected four publicly available academic citation
datasets and two social media datasets for our experiments. See
Table 1 for statistics of the selected datasets.

LPNN Setup. As in EmbedNN [15], we choose g to be a 2-layer
neural network with 128 and 64 hidden units in the first and the
second layer respectively. We use 10% dropout to avoid over-fitting
in neural networks. We set LP parameter µ = 0.99 as suggested in
[17]. The LPNN parameters λL , λU are tuned using a 10% hold-out
set from the training data.

Baseline Methods

We selected the following baselines.

Table 2: Micro F1 for multi-class classification task using 10-

fold cross validation with 10% data per fold for training. The

best models are shown in bold if they are statistically signif-

icantly better than the second best).

DNN EmbedNN LLP LP LPNN
Dblp 0.44 0.81 0.78 0.53 0.87

Pubmed 0.43 0.76 0.71 0.63 0.85

Citeseer 0.37 0.64 0.58 0.45 0.68

Cora 0.66 0.76 0.74 0.68 0.78

BlogCatalog 0.11 0.26 0.29 0.28 0.35

Flickr 0.14 0.30 0.27 0.26 0.34

Table 3: Micro F1 of LPNN for different choices of λ.

0.1 0.5 1
Dblp 0.81 0.85 0.85
Pubmed 0.85 0.83 0.84
Citeseer 0.63 0.64 0.62
Cora 0.70 0.72 0.74
BlogCatalog 0.34 0.35 0.35
Flickr 0.33 0.34 0.34

LP extensions: We consider the normalized variant of LP [17]
and its feature based extension Logistic label propagation (LLP) [6].

We also report the performance of a neural network classifier
(DNN) over the node features and also consider a popular trans-
ductive classifier EmbedNN [15]. Note, we do not report the results
for traditional classifiers such as SVM, Decision Trees, or Logistic
regression since they have been shown to under-perform in the
transductive setting [15], [16].

5.1 Multi-Class Classification

Table 2 shows the Micro F1 of different methods in a 10-fold cross
validation setting with each fold using 10% of the labeled nodes
for training and 90% for testing. We note that LPNN performs
significantly better than the baselines on all datasets.

In a direct comparison with LP and its extensions (LLP and
EmbedNN), we note that LPNN is consistently better across all
datasets with a performance gain of 5-30%.We note here that neither
the DNN classifier nor LP performs good. However LPNN that
combines both LP and DNN not only outperforms these methods
but also other state-of-art methods.

Intuitively, the effectiveness of LPNN is due to its coupling of LP
with the feature-based classifier. The label distributions f is effective
at encoding local continuity arising from the underlying graph and
then g learns a non-linear decision surface utilizing the information
encoded by f alongside node features x. This loose coupling of the
two objectives mitigates the noise coming from either the graph or
the features.

5.2 Parameter Sensitivity

LPNN model has two key parameters: λL , λU that control the label
consistency of the labeled data and the unlabeled data, respectively.
So far in our experiments, these two parameters are tuned based on



Figure 2: Classification accuracy against number of iterations: The accuracy of LP decreases beyond a point, instead of stabi-

lizing at its maximum. LPNN is both more accurate and more stable.

Table 4: Micro-F1 of LPNN variants.

Dblp Pubmed Citeseer Cora
LP 0.53 0.63 0.45 0.68
NoFeatures 0.59 0.65 0.46 0.71
NoIter 0.80 0.74 0.52 0.73
LPNN 0.87 0.85 0.68 0.78

their performance over a hold-out set. Here we test the sensitivity
of the model to the choice of these two parameters. To make the
exposition simpler due to space constraints, we set λL = λU =
λ and report the performance of the model for different choices
of λ in Table 3. We note that even with the restricted choice of
parameters, model performs within a margin of 1-2% w.r.t. to the
best performance of LPNN from Table 2.

5.3 Comparison with LPNN Variants

To test the effectiveness of different aspects of LPNN, we consider
its two variants: (a) NoFeatures, which runs LPNN without any
node features, and (b) NoIter, which runs LPNN for only one round.
Table 4 shows that these two variants of LPNN perform better than
LP, but are much worse than LPNN. Overall this result justifies our
choice of combining x and f in the classifier, as well as running
LPNN for multiple rounds until convergence.

5.4 Convergence and Time Taken

Figure 2 shows that LPNN converges quickly and its accuracy never
decreases, in contrast to LP. We note that LPNN converges quickly
and less than 3 rounds of training are required in practice.

Finally, we compare the wall-clock time for our model with LP.
We only report the time taken to run the models ignoring the time
taken to load the data files in memory. Table 5 shows the time taken
on a single processor by the models written in python to converge.
Since LPNN runs few iterations of LP only, and it converges much
faster, so the overall increase in time is only 10-20%.

6 CONCLUSIONS

In this paper, we proposed the LPNN algorithm to classify objects
using both their features and the graph between them. LPNN syn-
thesizes two commonly-held assumptions: that of global patterns,
linking object features to class labels in a way that applies globally

Table 5: Time taken (in seconds).

Dblp Pubmed Citeseer Cora
LP 7.9 4.7 1.2 1.1
LPNN 9.4 6.5 3.1 2.9

to all objects, and local continuity, the idea that similar objects
tend to have the same label. We showed how LPNN operationalizes
these assumptions and avoids the accuracy issues that afflict LP,
while remaining computationally feasible, easy to implement, and
significantly better than several popular baselines.
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