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MODELING NODE INCENTIVES IN DIRECTED NETWORKS

BY DEEPAYAN CHAKRABARTI

University of Texas, Austin

Twitter is a popular medium for individuals to gather information and
express opinions on topics of interest to them. By understanding who is inter-
ested in what topics, we can gauge the public mood, especially during periods
of polarization such as elections. However, while the total volume of tweets
may be huge, many people tweet rarely, and tweets are short and often noisy.
Hence, directly inferring topics from tweets is both complicated and difficult
to scale. Instead, the network structure of Twitter (who tweets at whom, who
follows whom) can telegraph the interests of Twitter users. We propose the
Producer-Consumer Model (PCM) to link latent topical interests of individu-
als to the directed structure of the network. A key component of PCM is the
modeling of incentives of Twitter users. In particular, for a user to attract more
followers and become popular, she must strive to be perceived as an expert
on some topic. We use this to reduce the parameter space of PCM, greatly in-
creasing its scalability. We apply PCM to track the evolution of Twitter topics
during the Italian Elections of 2013, and also to interpret those topics using
hashtags. A secondary application of PCM to a citation network of machine
learning papers is also shown. Extensive simulations and experiments with
large real-world datasets demonstrate the accuracy and scalability of PCM.

1. Introduction. On directed social networks such as Twitter, there are two
common modes of communication between individuals. A person can choose to
“follow” another, so that any tweets posted by the latter are immediately routed to
the former. A person can also choose to manually route their tweets by “tweeting
at” another person. Both modes of directed communication express one person’s
belief about the preferences or interests of another. When A follows B , A clearly
believes that the tweets of B will be of interest to A. When A tweets at B , it often
implies that A follows B and is responding to previous tweets by B on the same
topic. Thus, the directed structure of the social network reflects broad topics of
interest to individuals in the network.

We are interested in inferring these latent topics, and also the degree to which
each individual on Twitter is interested in them. This is important for several rea-
sons. Personalization of recommendations depends heavily on modeling user at-
tributes such as demographics and interests [Koren (2008)]. The results of user-
initiated searches can also be ranked so that results matching the user’s topics of
interest are on top. Such topics are also useful from a sociological perspective,
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since they succinctly summarize the vast number of conversations between indi-
viduals into a few broad themes. Indeed, we focus on the problem of understanding
Twitter topics in the polarized setting of an election campaign.

Twitter topics during the Italian elections (2013). We look at tweets over sev-
eral months around the Italian elections of 2013 [Caldarelli et al. (2014)]. Each
tweet in the dataset represents a user’s comments directed at one or more users.
While the text of the tweets is hidden for privacy reasons, the hashtags in the
tweets are available. We seek to answer three questions. What were the topics of
interest to Italian Twitter users over this period? How did they change over the
election period, if at all? Can the topics be automatically tagged with the most
relevant hashtags?

One approach would be to infer topics from the text of the tweets. However, such
text can be hidden for reasons of confidentiality, as in our case. In addition, tweets
are short and noisy, making text analysis difficult. The text analysis method needs
to handle a large volume of tweets, and may require significant computational
resources. For these reasons, topic extraction directly from the text of tweets is
difficult.

We avoid these issues by inferring topics from the structure of the directed net-
work between Twitter users. For instance, consider a person who tweets rarely. If
she follows others, we can infer her interests from the topical interests of the people
she follows. Computational requirements are also lower, since network structure
data can be represented more concisely than tweet data. Hence, topic inference
from network structure can be more scalable. Finally, the text and hashtags in
tweets can be used in a post-processing step to label the inferred topics. In fact,
we shall show that the same model that extracts topics from the directed network
can also be used to interpret these topics using hashtags. Hence, there are strong
advantages in using the network to infer topical interests of Twitter users.

The main difficulty is in relating the hidden interests of individual nodes to
the observed structure of a directed network. We identify two important charac-
teristics of directed social networks that guide the design of our model. First, the
content that a person wishes to consume may differ from the content he or she
produces. For instance, a wedding photographer may tweet mostly about photog-
raphy, but may wish to follow sports-related personalities and journalists. Thus,
the model must differentiate between the topics a person likes to tweet about (her
“production” interests) and the topics she wishes to read about (her “consumption”
interests). Second, Twitter makes it easy to find and follow experts on any topic.
Hence, a Twitter user interested in, say, sports and music, will follow experts on
each topic, rather than someone who tweets on both topics but is not an expert on
either. This suggests that those who are perceived to be experts in their fields are
likely to gain the most followers. Thus, for a Twitter user who wants to become
popular and attract more followers, there is a strong incentive to focus on a single
topic in her tweets and become known as an expert on that topic. We shall use
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this observation to reduce the number of parameters needed to model production
interests. This model parsimony, in turn, allows our inference algorithm to scale to
large graphs, where inference for more general-purpose models often fails.

It is clear that the above discussion generalizes beyond Twitter to other directed
social networks such as Instagram. More interesting is its applicability to networks
that are by-products of social activities but are not themselves social networks.
Consider the following example.

Topics of papers in machine learning. What are the main areas of research
in machine learning? How can these areas be tagged using words used in paper
titles? We seek to answer these questions using the paper citation network, where
each node is a paper, and a directed edge exists from paper A to B iff A cites B .
While this is not a social network, paper authors have similar incentives as Twitter
users. In particular, researchers want to write papers that will be highly cited, and
such papers are typically the “top” papers in one particular area of research. Thus,
while an author might write papers on different topics, the content of each paper
is focused on a single narrow topic (i.e., a single “production” interest). However,
a paper could cite many other papers, possibly from other relevant research areas
(i.e., multiple “consumption” interests). The parallels to the Twitter example are
clear.

We shall show that the same model can be used for inferring topics from Twitter
as well as the citation network. In addition, we shall reuse this model to label the
topics with keywords as well.

1.1. Our contributions. We propose the Producer-Consumer Model (PCM)
for directed social networks. Contributions to modeling, algorithms, and appli-
cations are discussed below.

Model: PCM has several important characteristics. First, it models the idea that
everyone wants to be popular, and popularity on social media comes from per-
ceived topical expertise. This incentivizes people to tweet primarily on a single
topic where their expertise is greatest. To the best of our knowledge, this aspect of
network structure has not been studied previously.

Second, PCM allows individuals to have multiple (but not too many) consump-
tion interests. Consumption interests may be unrelated to their production interest.
This allows for production and consumption to be handled differently in PCM.

Finally, we show that networks generated by PCM exhibit commonly observed
network properties. PCM networks can match any desired in-degree distribution,
including commonly observed power laws [Chakrabarti and Faloutsos (2006)]. We
prove that they also exhibit reciprocity, whereby an edge from A to B makes the
opposite edge more likely.

Algorithm: We present a fast and scalable algorithm to infer user interests. The
algorithm alternates between finding the maximum-likelihood production interests
given current estimates of consumption interests, and vice versa. We prove that
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each step of this procedure achieves its optimum; however, as is usual for alter-
nating optimization methods, the final result could be only a local optimum of the
overall objective. The computational complexity scales linearly with the number
of topics and the maximum degree of the network, and we show empirically that it
scales to large networks and is faster than competing methods.

Accuracy and scalability: We show the effectiveness of PCM both via simu-
lations as well as experiments on several large citation networks from computer
science and physics, and a who-trusts-whom social network. Using link prediction
as a measure of model accuracy, we show that PCM is significantly more accurate
than competing methods, while also scaling to large networks.

Applications: We show how PCM can be used not only to find topics, but also to
find the most descriptive keywords (e.g., hashtags) for each topic. Thus, the topics
found by PCM can be interpreted easily as well.

We use PCM to analyze the evolution of Twitter topics over the course of the
2013 Italian elections. While we expected topics to be arranged along party lines,
we found this to be only partially true. Instead, recent political events, such as
rallies, book releases, and current slogans, often dominate the conversation. Even
seemingly party-line topics can focus on leadership struggles within parties. Our
results also demonstrate the importance of TV talk shows in the Internet age. Sev-
eral topics reference such talk shows, which appear to drive the conversation about
politicians and parties on Twitter.

We also apply PCM to find the main research topics in machine learning from
the citation network of papers. Each topic is tagged with the most relevant words
from paper titles, again using PCM. We find the topics to be intuitive and reason-
able.

The rest of this paper is organized as follows. We review prior work in Sec-
tion 2. We present our model in Section 3. Inference of model parameters and
properties of the generated networks are explored in Section 4. We present results
on simulated datasets in Section 5 and on real-world datasets in Section 6. We
discuss the results of PCM on the Twitter and citation networks in Section 7, fol-
lowed by conclusions in Section 8. All proofs are deferred to the Supplementary
Material [Chakrabarti (2017)].

2. Related work. The simplest and perhaps most well-explored network
model is the random graph model [Erdős and Rényi (1959), Gilbert (1959)]. Under
this model, a pair of nodes (a “dyad”) can be connected by an undirected edge with
probability p, and all dyads are considered independently. The properties of this
model has been widely analyzed, and extensions have been proposed to overcome
deficiencies such as its Poisson degree distribution [Aiello, Chung and Lu (2000)].
The p1 model of Holland and Leinhardt (1981) merges the idea of dyadic inde-
pendence with node-specific parameters to generate directed graphs. In particular,
connections between node pairs depend on parameters reflecting expansiveness
and attractiveness, which affect their out-degree and in-degree, respectively, as
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well as the level of reciprocity among nodes. The p2 model of Duijn, Snijders and
Zijlstra (2004) extends this to allow for edge directionality. The p� model [Frank
and Strauss (1986), Wasserman and Pattison (1996)] dispenses with dyadic inde-
pendence altogether; the probability of observing a particular network is modeled
via an exponential family whose sufficient statistics are any set of network statis-
tics chosen by the user. However, parameter estimation can be difficult, and is an
active area of research [Caimo and Friel (2011), Hunter and Handcock (2006)].

The above models do not account for topical interests of nodes, and how they
can affect the network structure. One simple approach is to extend the p1 model
with extra latent attributes for each node, representing the topical interests of the
nodes. Then linkages between nodes can be driven by these attributes. There are
two popular instantiations of this idea. Hoff, Raftery and Handcock (2002) pro-
pose assigning to each node a “position” in some latent space, such that the prob-
ability of an edge between two nodes increases as the pairwise distance between
them decreases. This model can capture higher-order effects such as transitivity.
However, scaling such models can be difficult. Raftery et al. (2012) develop a fast
inference algorithm, but the largest network they consider has only 2716 nodes.
Salter-Townshend and Murphy (2013) present a variational inference method, but
they only demonstrate results on a network with 604 nodes.

A second approach is the “Stochastic blockmodel,” under which the probability
of linkage depends solely on a node’s latent cluster [Holland et al. (1983), Snijders
and Nowicki (1997), Wang and Wong (1987)]: P(i ∼ j | {zu | u ∈ U},B) = Bzi,zj

,
where zi and zj represent the latent “clusters” of node i and j , and U is the set of
all nodes. The matrix B represents the connection strength between clusters, with
within-cluster connections (the diagonal entries of B) being typically higher than
across-cluster connections. The number of clusters is typically picked manually.

The stochastic blockmodel has proven to be particularly fruitful, and has
led to much follow-up work. The extensions mainly target two aspects of the
stochastic blockmodel: edge directionality and cluster structure. Vu, Hunter and
Schweinberger (2013) allow the conditional dyadic probabilities to depend on the
type of dyad (reciprocal or not), its directionality, and even its sign (e.g., when
edges represent positive or negative sentiments). However, it is still limited by
the fact that each node must belong to a single cluster. Greater flexibility can
be achieved by hierarchical clusters, or via distributions over clusters. For in-
stance, the stochastic blockmodel leads to a block-structured matrix of linkage
probabilities between nodes; this has been extended to recursive block structures
such as R-MAT [Chakrabarti, Zhan and Faloutsos (2004)] and Kronecker prod-
uct graphs [Leskovec et al. (2010)]. These model the idea of communities within
communities, instead of a flat clustering of nodes. On the other hand, the mixed-
membership stochastic blockmodels (MMSB) allows each node to have a distribu-
tion over clusters instead of belonging to a single cluster [Airoldi et al. (2008)]. The
infinite relational model (IRM) extends the stochastic blockmodel by inferring the
number of clusters automatically [Kemp et al. (2006)]. The idea of a latent cluster
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has also been extended to a larger set of latent features and attributes [Miller, Grif-
fiths and Jordan (2009), Palla, Knowles and Ghahramani (2012), Xu et al. (2006)],
to evolving graphs [Fu, Song and Xing (2009)], and to bipartite graphs [Blei, Ng
and Jordan (2003) and Hofmann (1999, 2004)].

While these are related to our work, we identify some characteristics of social
networks that are not easily modeled by the above approaches. First, individuals in
a social network like Twitter may express their interests by following others, and
by tweeting (for which they are in turn followed by others). However, one may
have wide-ranging reading interests but may not necessarily tweet about the same
topics. Second, none of the above models consider the incentives of the actors in
the network. Scaling to large graphs is also an issue: in our experiments, none of
the MCMC-based inference methods finished for the larger real-world datasets we
considered. While faster approximate inference methods may scale better, they are
not always available for all models. Finally, as shown later in Section 6, PCM is
often more accurate than most competing models, when they did complete.

3. Modeling directed social networks. Directed social networks have spe-
cial characteristics that differentiate them from undirected networks. These form
the basis of our proposed model.

Separation of production and consumption. An individual on Twitter may
tweet primarily about politics, but could follow sports and music celebrities. Thus,
our model must distinguish between the topic(s) of tweets written by a person
from the topic(s) she is interested in reading about. We call these an individual’s
production and consumption interests, respectively.

Incentives of producers. Twitter users can easily follow experts on each topic
that they are interested in consuming. Thus, if a Twitter user wants to gain many
followers, the best way to do so is to be recognized as an expert on some topic.
Assuming that most (if not all) individuals wish to be popular, we expect Twitter
users to focus their tweets on primarily a single topic, in the hopes of being per-
ceived as an expert on it. We model this by assuming that each user has a single
production interest. This greatly reduces the number of parameters that need to be
estimated, and makes the model highly scalable. Even if the assumption of a single
production topic does not hold for all users, it is still a reasonable approximation
that yields significant benefits in scalability.

Multiple consumption topics per person. We allow each individual to have
different degrees of interest in the topics they wish to consume. We represent this
as an unnormalized vector of topical interests for each individual. This is different
from modeling consumption interests as a (normalized) distribution over topics,
where information about the total degree of interest is lost. Also, each individual
has limited attention and cannot be interested in too many topics. We model this
by a prior over the vectors mentioned above.
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Unlinking topic associations and node popularity. A generative network
model must account for two very different aspects of the nodes: their popular-
ity (or, degree), and their topic associations. Some models, such as the Stochas-
tic Blockmodel, try to capture both aspects using the set of parameters. In such
cases, matching node degrees might acquire outsized importance in model-fitting
computations, hurting the inference of the latent topics. We focus solely on topic
inference, which we believe is more important in real-world applications such as
recommendation systems, where matching user and product topics is of primary
importance. Hence, our generative model uses separate parameters for node popu-
larity and topics. This is similar in spirit to degree-corrected stochastic blockmod-
els, which separate node degrees and latent topics [Karrer and Newman (2011)].

3.1. Model specification. Let A be the adjacency matrix representing a di-
rected graph, with Auv = 1 if a directed edge exists from u to v, and Auv = 0 oth-
erwise. Rows and columns of A represent consumers and producers, respectively.
Note that every Twitter user is both a producer and a consumer, and is represented
as both a row and a column. However, the model allows arbitrary sets of producers
and consumers. We denote the set of consumers and producers by U and V , respec-
tively, with N = |U | being the number of consumers, and Iv = {u ∈ U | Auv = 1}
being the set of followers of v ∈ V (the in-links of v). Let T represent the set
of topics, with K = |T |. The model has four sets of parameters that capture the
characteristics of directed networks mentioned earlier.

Consumption interests: The probability that a person u ∈ U is interested in con-
suming tweets on topic t ∈ T is denoted by θut . Thus, the set {θut | t ∈ T } represent
all the consumption interests of u. Note that we do not require that

∑
t θut = 1.

Production interests: A content producer on Twitter is incentivized to tweet on
a single topic, to enhance the perception that she is an expert on that topic, and
hence gain followers interested in consuming that topic. For each producer v ∈ V ,
we use tv ∈ T to denote this single topic on which v tweets.

Popularity: Two producers who tweet on the same topic may still have differ-
ences in the quality of their tweets, and hence different popularities. The popularity
of a producer v is represented by a parameter nv . We shall present its precise defi-
nition shortly, but intuitively, for large N , this is the number of followers of v.

Purity: Finally, for each v ∈ V , we shall need a parameter αv ∈R>0 to represent
the degree to which the followers of v are actually interested in the topic tv of her
tweets, as against their following v due to other extraneous factors. For instance,
a celebrity who tweets about music may have some followers who are interested
in music, and also other followers who simply wish to follow celebrities. Another
example is that of people following others simply because they are friends in real
life, and not because of any particular shared interest. High values of αv will mean
that topical match is the driving factor behind whether one follows v or not. Hence,
we will refer to αv as the “purity” of v. We shall require αv < (N − Ntv )/Ntv ,
where Nt = ∑

u θut denotes the total “weight” of topic t .
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Given the model parameters ({θut | u ∈ U, t ∈ T }, {tv, nv,αv | v ∈ V }), the net-
work is created by independently generating the nv followers for each producer v.
The followers are drawn from a multinomial distribution over the set of consumers
U , where the multinomial probability ηv(u) that u follows v depends on the con-
sumption interest θu,tv of u in the production interest tv of v. Specifically, let

ηv(u) = θu,tv · pv + (1 − θu,tv ) · qv,(3.1)

where

pv = (1 + αv)/N,(3.2)

qv = (
1 − αv · Nt/(N − Ntv)

)
/N.(3.3)

Then draw nv samples with replacement from the multinomial distribution given
by {ηv(u) | u ∈ U} [note that

∑
u ηv(u) = 1 by construction]. Let sv(u) denote

the number of times u is drawn among these nv samples. These samples, after
duplicate removal, become the followers of v. In other words, Auv = I {sv(u) ≥ 1}.
This process is repeated independently for each producer to generate the entire
network. We call this model the Producer-Consumer Model (PCM).

The intuition is as follows. Consider a consumer u who is extremely interested
in a topic t , and producer v tweets on that very topic, that is, tv = t and θu,tv = 1.
Then the multinomial probability of selecting u in one draw is ηv(u) = pv = (1 +
αv)/N . In other words, the chances of selecting u in one draw are elevated by
αv/N over the uniform distribution. On the other hand, if u had no interest in tv
(θu,tv = 0), then the chances of selecting u in one draw would be ηv(u) = qv <

1/N . Note that θut = 1 does not imply that u follows every producer of topic t ;
even among the latter, there will be differences in the quality of tweets, which
will be reflected in the number of followers for these producers. The node purity
parameter αv controls the degree to which followers of v are actually interested
in tv . At its maximum value of αv = (N − Ntv )/Ntv , we have qv = 0, and interest
match is the sole reason for following v.

The use of latent interests combined with directionality has been explored in
the literature [Duijn, Snijders and Zijlstra (2004), Fosdick and Hoff (2015), Hoff
(2005), Krivitsky et al. (2009), Vu, Hunter and Schweinberger (2013)]. However,
to the best of our knowledge, the ideas of people following experts, and of produc-
ers having different “purities,” have not been explored in prior work. For instance,
consider the popular Mixed Membership Stochastic Blockmodel (MMSB), which
sets P(Auv = 1 | {zi},B) = zt

uBzv for some multinomial distribution zi of inter-
ests for each node i, and a matrix B ∈ [0,1]K×K . Both MMSB and PCM use latent
topic vectors for each node. However, MMSB does not differentiate between the
production and consumption interests of a node (though other models do so, as
mentioned above). Also, the probability of u following v is based on measuring
similarity over all topics, weighted by the matrix B . In contrast, PCM models the
idea that consumers follow experts on each topic. In the MMSB notation, this
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would roughly correspond to the requirement that P(Auv = 1 | {zi}) be an increas-
ing function of, say,

∑
t zu(t) · I {zv(t) > τ }, for some threshold τ that is close to 1.

We believe that PCM achieves this effect more naturally. Finally, the node purity
parameter of PCM has no direct counterpart in MMSB.

A related model [Hoff (2009)] sets log odds (P (Auv = 1 | β,Z,B,W,E)) =
xt
uvβ + zt

uBwv + εuv , where xuv represents features of the ordered dyad (u, v),
Z and W represent latent features of nodes, and E is a matrix of standard normal
noise. This model does differentiate between producers and consumers. However,
like the Mixed Membership Stochastic Blockmodel, the similarity of topical inter-
ests is computed via a weighted dot-product (zt

uBW), which does not model the
idea of following experts. There is also no notion of node purity.

These differences also hold between PCM and latent distance models. For in-
stance, ignoring covariates, the model of Hoff, Raftery and Handcock (2002) sets
P(Auv = 1 | {zi}) = f (|zu − zv|), where zi is the latent node positions of node i,
and f (·) is a monotonically decreasing function. In such a model, the notion of
“expertise” on a given topic is unclear. Also, there is no concept of node purity. In-
deed, the probability of a link from u to v in PCM depends not only on the topical
match (like the |zu − zv| term) but also on node v itself (via its purity αv); a single
f (·) for all nodes cannot model this.

Likelihood: To write down the likelihood of PCM, we first define the set Qv(nv)

of all possible multinomial draws that, after duplicate removal, yield the observed
set of followers Iv of v. Letting W represent the set of whole numbers, we find

(3.4) Qv(nv) = {
w ∈W

|Iv | | w(u) = 0 ∀u /∈ Iv,w(u) ≥ 1 ∀u ∈ Iv, |w|1 = nv

}
.

Qv(nv) is defined to be the empty set if nv < |Iv|. Then the likelihood of the
parameters ({θut }, {tv, nv,αv}) is given by

(3.5)

L
({θut }, {tv, nv,αv} | A)

= ∏
v∈V

[
I
{
nv ≥ |Iv|} · nv! ·

∑
w∈Qv(nv)

∏
u∈Iv

ηv(u)w(u)

w(u)!
]
.

Prior: As it stands, the model allows a user to be extremely interested in all
topics (θut = 1 for all t). Clearly, this is unlikely. Hence, we add a prior to express
our belief that consumers tend to be interested in only a few topics. We will model
this as two constraints on the total consumption interest

∑
t θut for any consumer u.

First, we place a hard constraint:
∑

t θut ≤ τ for some τ > 1. Second, we place a
penalty that increases as

∑
t θut grows greater than 1. More precisely, we set

(3.6)

P
({θut | u ∈ U, t ∈ T })

= ∏
u∈U

[
1

Z
· I

{
0 ≤ θut ≤ 1 ∀t,

∑
t

θut ≤ τ

}
· e−λ·max{0,

∑
t θut−1}

]
.
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The constant of proportionality Z will not be needed henceforth, but the Supple-
mentary Material [Chakrabarti (2017)] (Proposition A.5) provides a formula for
when τ is integral.

Now, combining equations (3.5) and (3.6) and ignoring constants, we can write
the posterior as

(3.7)

P
({θut }, {tv, nv,αv} | A)

∝ ∏
v∈V

[
I
{
nv ≥ |Iv|} · nv! ·

∑
w∈Qv(nv)

∏
u∈Iv

ηv(u)w(u)

w(u)!
]

× ∏
u∈U

[
I

{
0 ≤ θut ≤ 1 ∀t,

∑
t

θut ≤ τ

}
· e−λ·max{0,

∑
t θut−1}

]
.

Simplifying the posterior. The above formula can be simplified via the next
proposition.

PROPOSITION 3.1. If nv <
√

N
1+αv

, the MAP estimate of ηv is |Iv|.

We shall henceforth assume that the condition of Proposition 3.1 is true (see
remarks below). Thus, the MAP estimate of ηv is simply |Iv|, for any producer v.
After plugging this into the log-posterior, parameter inference reduces to solving
the following optimization:

(3.8)

Maximize
∑
v∈V

∑
u∈Iv

log
(
θu,tv · pv + (1 − θu,tv ) · qv

)

− λ
∑
u∈U

max
{

0,
∑
t

θut − 1
}

subject to
∑
t

θut ≤ τ ∀u ∈ U

and 0 ≤ θut ≤ 1 ∀u ∈ U and t ∈ T ,

where pv and qv are defined in equations (3.2) and (3.3).

REMARK 1. There are two reasons for assuming the condition of Proposi-
tion 3.1. First, the in-degree distribution of many networks follow heavy-tailed
distributions [Chakrabarti and Faloutsos (2006), Handcock and Jones (2004)], so
the bulk of producers will satisfy this condition. Second, we expect individuals
with extremely high in-degree to have many followers who are merely interested
in following celebrities (we will show this later in Figure 4). Thus, their purity will
be low (αv ≈ 0, so pv ≈ qv), which implies that their contribution to the likelihood
will be nearly constant. Hence, we can safely remove any nodes with extremely
high in-degrees in a preprocessing step. We note that such removal has been shown
to be useful in graph search as well [Sarkar and Moore (2010)].
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4. Analysis and inference. In this section, we will find the MAP estimates
θ̂ut , t̂v , and α̂v . Then we will discuss related issues such as identifiability and the
properties of networks generated by PCM.

Node purity (αv). The MAP estimate of αv is given by the root of a function,
but has no closed form.

THEOREM 4.1. The MAP estimate of αv is given by α̂v = max(0, y), where y

satisfies

∑
u∈Iv

1

1/ru,t̂v
+ y

= 0 with rut = θ̂ut − Nt/N

1 − Nt/N
,(4.1)

where θ̂ut and t̂v are the MAP estimates of θut and tv , respectively, and Nt =∑
u θ̂ut .

The left-hand side of equation (4.1) is a monotonic function of y, so its solution
can be found quickly via binary search.

To gain intuition, consider the term f (θ̂ut )� (1/rut + y)−1 as a function of θ̂ut

for a fixed y. This can be shown to be a concave function of θ̂ut , and which is
nearly linear for small y. This suggests approximating the function by a straight
line between its end-points (θ̂ut = 0 and 1), yielding

f (x) ≈ f (0) + x
(
f (1) − f (0)

) = 1

N/Nt − 1 − y

(
−1 + x · N/Nt

(1 + y)

)
.

Using this approximation in equation (4.1) yields

α̂v = max
{

0,

∑
u∈Iv

θu,t̂v
/nv∑

u∈U θu,t̂v
/N

− 1
}
.

Thus, α̂v can be interpreted as the average interest of the followers of v in the topic
on which v tweets, normalized against a baseline popularity of that topic among
all consumers. This matches our intuition that, for a “pure” producer v, a large
fraction of her followers are actually interested in consuming topic tv .

Producer topic (tv). The production interest tv of a producer v can be com-
puted from the consumption interests of her followers Iv .

PROPOSITION 4.2. The MAP estimate of tv is given by

t̂v = arg max
t

∏
vt

with
∏
vt

= ∏
u∈Iv

(
θ̂ut · p̂v + (1 − θ̂ut ) · q̂v

)
,

where θ̂ut is the MAP estimate of θut , and p̂v and q̂v are obtained from equations
(3.2) and (3.3) with the MAP estimate α̂v plugged in for αv .
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Computationally, both α̂v and t̂v can be computed from the parameters of the
followers of v, and this scales linearly with the number of followers and the num-
ber of topics. The number of followers (i.e., the in-degrees) of the producer nodes
are often heavy-tailed, with most nodes having low degrees. In addition, the max-
imum in-degree is limited (see Remark 1). Hence, fitting these parameters is fast
and can scale to large real-world networks.

Consumer interests (θut ). Given α̂v and t̂v , the problem of finding the MAP
estimate of θu = {θut | t ∈ T } corresponds to

(4.2)

maximizing
∑

v∈Ou

log
(
θu,t̂v

· p̂v + (1 − θu,t̂v
) · q̂v

) − λmax
{

0,
∑
t

θut − 1
}

subject to
∑
t

θut ≤ τ and 0 ≤ θut ≤ 1,

where Ou = {v ∈ V | Auv = 1} is the set of producers who are followed by u (i.e.,
the out-links of u).

Now, we state our algorithm to infer θu. Define κv = q̂v/(p̂v − q̂v). Note
that κv > 0 since p̂v > q̂v . Define 
u = ⋃

v∈Ou
{t̂v} to be the set of topics of

the producers Ou followed by u. For each pair (u, t) such that t ∈ 
u, define
yut = min{κv | v ∈ Ou, t̂v = t} and the function hut : (−yut ,∞) →R

+ as hut (x) =∑
v∈Ou

I {t̂v = t}/(x + κv). Note that hut (x) is a monotonically decreasing bijec-

tive function, and its inverse exists. Define wut(�) = max(min(h−1
ut (�),1),0); this

takes the inverse of hut and clips the result to between 0 and 1 (the allowable range
of θut ).

THEOREM 4.3. Given {α̂v, t̂v}, Algorithm 1 finds the MAP estimates {θ̂ut } for
any u ∈ U .

Summary of inference algorithm. Starting from a random initialization, we it-
erate between producers and consumers until convergence. Given consumer inter-
ests θ̂ut , we infer the unique production interest t̂v and the node purity α̂v of each
producer using Proposition 4.2 and Theorem 4.1, respectively. Then, armed with
the producer-specific parameters, the interests θ̂ut of the consumers on various top-
ics values are updated via Algorithm 1. Convergence is guaranteed since each step
increases the value of the objective (Proposition 4.2 and Theorem 4.3); however, it
might be a local optimum.

Combining production and consumption interests. We have so far kept produc-
tion and consumption interests separate, even when they are for the same Twitter
user. This is appropriate when a Twitter user has many in-links as well as out-
links, since there is enough information to infer her production and consumption
interests separately. However, inference can be more difficult in sparser settings.
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Algorithm 1 Inferring θu

Require: Set Ou of producers followed by u; MAP estimates {α̂v, t̂v} for all pro-
ducers v ∈ Ou

1: if
∑

t wut (λ) < 1 then
2: Find � ∈ [mint hut (1), λ) such that

∑
t wut (�) = 1 via binary search.

3: else if 1 ≤ ∑
t wut (λ) ≤ τ then

4: � = λ.
5: else if

∑
t wut (λ) > τ then

6: Find � ∈ (λ,maxt hut (0)] such that
∑

t wut (�) = τ via binary search.
7: end if
8: θ̂ut = wut(�)

9: return {θ̂ut}

In particular, estimates of production interests can be noisy for Twitter users who
have few followers.

For such cases, we shall assume that the consumption interests of an individual
also reflect her production interest. In particular, the chance that v has produc-
tion interest tv is proportional to θu,tv . Thus, the contribution to the log-posterior
[equation (3.8)] for each producer v now becomes

(4.3) log
(∑

t

θvt∑
t ′ θvt ′

∏
u∈Iv

(
θut · pv + (1 − θut ) · qv

))
,

instead of log(
∏

u∈Iv
(θu,tv · pv + (1 − θu,tv ) · qv)).

Note that this posterior still differentiates between production and consumption.
This is because the normalized value θvt/

∑
t ′ θvt ′ is used in determining the pro-

duction interest of v, while the unnormalized θvt represent her consumption inter-
ests. For inference, proximal gradient descent methods initialized with the results
of Proposition 4.2 and Algorithm 1 can be used.

Parameter selection. PCM has three user-specified parameters: the number of
topics K , the hard threshold τ on the total consumption interest for any consumer,
and a corresponding soft penalty parameter λ. We can select all three automat-
ically, via a link-prediction task. Specifically, we randomly remove some frac-
tion of links from the given network, train PCM on the remaining network, and
then use the inferred parameters to predict the edges that were most likely to have
been removed. We compare the accuracy of this link-prediction task for a range of
(K, τ, λ) tuples, replicating each experiment multiple times with different edges
being removed each time. The tuple that gives the best link-prediction accuracy can
now be used to infer PCM parameters over the entire network. When the desired
number of topic K is fixed by the user, the other two parameters can be chosen in
this fashion. Empirical results shown later in Section 6 validate this approach.
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Identifiability. Consider two parameter settings ({θut }, {tv, αv}) and ({θ ′
ut }, {t ′v,

α′
v}). Both yield the same likelihood for any generated network if θu,tv · pv + (1 −

θu,tv ) ·qv = θ ′
ut ′v ·p′

v + (1− θ ′
ut ′v ) ·q ′

v for all (u, v). The conditions under which this
happens is given by the following theorem.

THEOREM 4.4 (Identifiability). Given two feasible parameter settings ({θut },
{tv, αv}) and ({θ ′

ut }, {t ′v, α′
v}), we have θu,tv ·pv + (1 − θu,tv ) · qv = θ ′

ut ′v ·p′
v + (1 −

θ ′
ut ′v ) · q ′

v for all (u, v) iff there exist {at , bt } such that

θ ′
ut = at · θut + bt ,

α′
v = αv

at

·
(

1 − bt − at · Nt/N

1 − Nt/N

)
.

Thus, the model is not identifiable if θ ′
ut is a feasible scaled and translated ver-

sion of θut , that is, θ ′
ut = at · θut + bt for some feasible (at , bt ). However, it is

identifiable up to a permutation of topics under the following condition.

COROLLARY 4.5. There exists at most one solution (up to permutation of
topics) where, for each topic t , the sets {u ∈ U | θut = 1} and {u ∈ U | θut = 0} are
nonempty.

The proof follows from observing that only at = 1 and bt = 0 satisfies the con-
ditions of Theorem 4.4 while ensuring α′

v ≥ 0. A sufficient condition for Corol-
lary 4.5 is that there must be a “pure node” for each topic, that is, a consumer who is
extremely interested in that topic, and in nothing else. This mirrors conditions used
to prove consistency in stochastic blockmodel variants [see, for instance, Zhang,
Levina and Zhu (2014)].

Using this identifiability condition, we can prove the existence of a MAP solu-
tion for the posterior of equation (3.8).

THEOREM 4.6 (Existence of MAP). Under the conditions of Corollary 4.5,
the MAP solution exists.

4.1. Network properties. Several patterns observed in real-world networks are
exhibited by PCM networks. We look at two important properties: degree distribu-
tions, and reciprocity.

Degree distributions. Any desired in-degree distribution can be modeled by
placing the corresponding prior on the parameters nv representing the number of
consumers interested in producer v. Note that a node’s popularity (nv) is separate
from her production interest (tv) or her consumption interests (θut ), and this is an
important aspect of PCM.
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Reciprocity. This refers to the phenomenon of a person v, on being followed
by another person u, “returning the favor” by following u in turn. This can be
expressed as increased chances of the “reciprocal” link, i.e., P(Avu = 1 | Auv =
1) ≥ P(Avu = 1). Such a relationship can be shown to exist under PCM as well.

Suppose each node is both a producer and a consumer. First, let us consider the
case where interests are binary: θut ∈ {0,1} for all (u, t). Then, the next theorem
shows that reciprocity is guaranteed if the production interest tv of every node v

is also one of her consumption interests (e.g., someone who tweets about “nature”
photographs will also be interested in following other “nature” photographers).

THEOREM 4.7 [Reciprocity (binary interests)]. Suppose all nodes are both
producers and consumers. Let Ctv = {u | θu,tv = 1} be the set of consumers in-
terested in topic tv of tweets written by v. If v ∈ Ctv for all nodes v, then
P(Avu = 1 | Auv = 1) ≥ P(Avu = 1).

For intuition, consider an edge from u to v. This suggests that u is probably
interested in consuming tv (the production interest of v). But u is interested in
consuming tu as well, by the condition of the theorem. This implies a greater than
random chance that tu = tv , with the chances being higher if people have few con-
sumption interests. Since v is interested in tv (again, by the theorem’s condition),
we find that v has an elevated chance of being interested in tu, and hence being a
follower of u. Thus, the model exhibits reciprocity.

In the general case, θut ∈ [0,1]. Following the earlier intuition, we may expect
reciprocity if a greater consumption interest in topic t implies greater chances of
t being the production topic of that user as well. Formally, let T = {tv} be drawn
from some distribution instead of being fixed parameters. Let � = {θut | u ∈ U,

t ∈ T }.

THEOREM 4.8 [Reciprocity (general case)]. Suppose all nodes are both pro-
ducers and consumers. If P(T | �) = ∏

u gu(θu,tu) for some monotonically nonde-
creasing functions gu, then P(Avu = 1 | Auv = 1) ≥ P(Avu = 1).

5. Simulations. In this section, we will test the inference procedure for PCM.
We simulate directed networks generated by PCM with varying number of top-
ics, node degrees, node purities, and number of consumption interests. Then we
recover these topics from the networks, and compare our inferences to the ground
truth.

Setup. We generate graphs with N = 300 nodes, and 2 to 5 topics. The in-
degrees of nodes are drawn from a power-law distribution to match the commonly
observed heavy-tailed nature of degree distributions [Chakrabarti and Faloutsos
(2006)]:

P(node i has degree di) ∝ d
−γdeg
i .
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We vary the parameter γdeg in our simulations, with larger values implying greater
probability of low degrees. We set the minimum degree to 4, since inference of
production interests with too few followers is unrealistic.

We assign binary consumption interests to each node (θut ∈ {0,1}) as follows.
First, the number of interests of a node is picked via a power-law with parameter
γint. This ensures that most nodes exhibit only a few interests, but there are also
some nodes have many interests. Then these many consumption interests are se-
lected uniformly from among all possible topics. Once the consumption interests
of a node are drawn, its production interest is selected uniformly at random from
among its consumption interests. This follows the intuition that people tweet about
topics they care about, and hence are also interested in reading others’ tweets on the
same topic. This also matches the reciprocity condition outlined in Theorem 4.8.

Evaluation. For each topic, we first rank nodes in order of their estimated con-
sumption interest for that topic. Then we measure the Spearman rank correlation
between this ranking and the ground truth ranking based on the true consumption
interests. We report the average Spearman correlation over all topics. Since the
estimated topics can be a permutation of the ground truth topics, we search for the
best-fit permutation before computing the above measure.

We note that the Spearman rank correlation is a particularly stringent measure
of accuracy, for two reasons. First, the ground truth ranking has ties (since true
consumption interests are binary), but inferred interests will rarely have ties. This
mismatch hurts the rank correlation. Second, for applications such as link predic-
tion or recommendations, we only need to identify people whose interest in a topic
is above a given threshold. The precise ranking of individuals is unnecessary for
this purpose. We choose to report the Spearman rank coefficient only because it
magnifies the differences between parameter settings, and makes trends obvious.

Results. Figure 1(a) shows the dependence of rank correlation on node in-
degrees (γint is set to 3.0). As γdeg increases, smaller degrees become more likely.
However, the rank correlation measure is unaffected, showing that PCM is robust
to the degree distribution of the network.

Figure 1(b) shows the dependence of rank correlation on the distribution of
the number of consumption interests of nodes (γdeg is set to 2.0). Increasing γint

leads to fewer interests on average. We see that rank correlation improves when
consumers have fewer interests on average. This is because a consumer with few
interests makes it easier to disambiguate the production interests of everyone she
follows. Better estimates of production interests in turn leads to improved estimates
of consumption interests.

Figure 1(c) shows how the rank correlation varies with the network size. The
networks were generated using γint = 3, γdeg = 3, and K = 2 topics. Inference is
more accurate for larger networks, while smaller networks show low average rank
correlation and greater variations in accuracy.
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(a) Varying γdeg (b) Varying γint

(c) Varying number of nodes (d) Varying number of topics

FIG. 1. Spearman rank correlation as a function of simulation parameters.

Figure 1(d) shows how the rank correlation varies with number of topics. We
also vary the node purity, which we report as a fraction of the maximum possi-
ble purity αmax = (N − Nt)/Nt . The average Spearman correlation increases with
fewer topics and purer producers, as expected.

In summary, we find that inference under PCM is robust to changes in the dis-
tribution of node degrees, and performs the best when there are few topics, purer
nodes, and fewer consumption interests. The number of topics K has the greatest
impact on performance. This is expected, since the number of parameters depends
linearly on K . We note that our alternative minimization procedure for parame-
ter inference can get stuck in local minima, and may not actually find the MAP
estimate. However, the simulations show that inference is reasonable, especially
for high node purities. Indeed, our inference yields better results in link-prediction
tasks than competing methods (to be discussed next in Section 6). Additionally,
we shall show that inferred node purities are indeed high in our applications (Sec-
tion 7), suggesting that PCM inference is appropriate there.

6. Experiments with real datasets. We now turn to experiments with real-
world datasets. Since the ground truth is unknown, we will judge the accuracy of
PCM using a link prediction task. We will show that PCM is more accurate than
competing methods, suggesting that it finds better topics. These experiments will
also showcase the scalability of PCM. We will also demonstrate its robustness with
respect to parameter settings.
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Data. We report results on multiple citation and social network datasets. As
noted earlier, citation networks reflect the underlying incentives of the authors;
a paper may cite multiple papers in its own field as well as related fields to
demonstrate broad scope, yet the paper may contribute to, and be known as an
exemplar of, its primary topic. Our datasets consist of citation networks in (a)
Machine Learning (ML), (b) Robotics/AI (AI/ROBOTICS), (c) Computer Sci-
ence Theory (THEORY), (d) High-energy physics theory (HEP-TH), and (e) High-
energy physics Phenomenology (HEP-PH). The first three are derived from Cite-
seer [Caragea et al. (2014)], and the next two from Gehrke, Ginsparg and Klein-
berg (2003). We also use (f) the Epinions who-trusts-whom social network
(EPINIONS) [Richardson, Agrawal and Domingos (2003)], where one user may
trust another primarily for her reviews and ratings of one product type (say, the
electronics “topic”). Network statistics are presented in Table 1.

Models. In addition to PCM, we ran experiments with three popular methods:
the Mixed Membership Stochastic Blockmodel (MMSB) [Airoldi et al. (2008)],
the Infinite Relational Model (IRM) [Kemp et al. (2006)], and the SVI variant of
MMSB [Gopalan and Blei (2013)]. IRM assigns each node to a latent cluster and
predicts the probability of an edge from u to v based on the clusters of the cor-
responding nodes (i.e., the “stochastic blockmodel” approximation); IRM selects
the number of blocks automatically. MMSB also uses a block model, but it asso-
ciates a distribution over topics for each node, and predicts the link from u to v by
drawing from the topic vectors of u and v. We used the MCMC-based inference
method of Chang (2012). SVI is a fast variational inference method for MMSB
that has been used in finding overlapping communities. We could not compare
against the Infinite Latent Attribute model (ILA) [Palla, Knowles and Ghahramani
(2012)] since it failed with even our smallest dataset.

Evaluation via link prediction. Since the actual node clusters or topics are un-
known in our datasets, the accuracy of the models must be measured indirectly.
To gauge model quality, we compare the accuracies of the various models on a
link prediction task, which is a common approach for evaluating such models.
In particular, 10% of directed edges are selected at random from the full net-
work to create a test set E(test), while the remaining links form the training net-
work A(train). Each model is trained on A(train), and then required to predict the
missing followers of each producer in E(test), that is, the missing followers of
V (test) = {v | u → v ∈ E(test)}.

More precisely, for each v ∈ V (test), let S = {u | A(train)
uv = 0} be the set of nodes

who do not follow v in A(train). For each u ∈ S, consider the augmented network
A′(u) that is identical to A(train) except it has an extra link from u to v. We mea-
sure the probability of observing A′(u) using the parameters {θut , tv, αv} inferred
from A(train). We then order all nodes u ∈ S in decreasing order of the probability
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TABLE 1
Average AUC of link prediction: (a) PCM outperforms other models when K = 10 topics are

allowed (except IRM, which picks K automatically). The closest competitor is SVI, which performs
better for HEP-PH. (b) When the optimal parameter settings are used, PCM always outperforms

SVI. The “×” symbol is used when the method failed for the given dataset; for example, the size of
HEP-TH, HEP-PH, and EPINIONS overwhelmed IRM and MMSB. The ILA model did not finish

even with our smallest dataset

ML AI/ROBOTICS THEORY

Nodes 2328 3417 1385
Edges 3708 3788 1140

Model K

PCM 10 0.71 ± 0.02 0.70 ± 0.02 0.75 ± 0.05
IRM (auto) 0.59 ± 0.03 0.57 ± 0.03 0.59 ± 0.04
MMSB 10 0.50 ± 0.01 0.49 ± 0.03 0.50 ± 0.04
SVI 10 0.68 ± 0.01 0.67 ± 0.01 0.72 ± 0.04

PCM (opt) 0.75 ± 0.02 0.73 ± 0.02 0.77 ± 0.05
SVI (opt) 0.69 ± 0.01 0.67 ± 0.01 0.73 ± 0.04

HEP-TH HEP-PH EPINIONS

Nodes 27,770 34,546 75,879
Edges 352,807 421,578 508,837

Model K

PCM 10 0.85 ± 0.001 0.88 ± 0.001 0.86 ± 0.001
IRM (auto) × × ×
MMSB 10 × × ×
SVI 10 × 0.89 ± 0.001 0.81 ± 0.001

PCM (opt) 0.93 ± 0.001 0.94 ± 0.001 0.88 ± 0.001
SVI (opt) × 0.93 ± 0.001 0.87 ± 0.001

of A′(u). Ideally, the actual followers of v in E(test) would be ranked at the top
of this list. We test this by computing the AUC score of the ranked list of predic-
tions against the ground truth list which ranks the actual followers of v in E(test)

at the top. This AUC score is averaged over all v ∈ V (test) to yield a single score
for PCM, with higher values indicating better link prediction accuracy, and hence
better model fit. This test is then repeated with 30 train-test splits to get confi-
dence bounds. This entire process is performed for all competing models, using
the likelihood functions and parameters specific to those models.

Note that predicting the followers of a given producer (i.e., this test) is far more
challenging than predicting the nodes followed by a given consumer, since the
latter is strongly influenced by the popularity of producers (which can be easily
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inferred from their degree), while our test is not. Hence, it is a much more stringent
test of the quality of topics found by the model.

We also note that while link prediction tasks are common for comparing net-
work models, the goal of our paper is inferring the latent topics and not link pre-
diction per se. Alternative methods of link prediction (e.g., by counting common
neighbors between nodes, and variants [Adamic and Adar (2003), Katz (1953)]
may be used when the node topics or clusters themselves are not desired.

Accuracy. We conducted two experiments. In the first experiment, we set all
methods to use 10 topics/clusters (except for IRM, which automatically picks the
number of topics); a limited number of clusters is important in situations where
the topics or node interests must be visualized or processed further by an analyst.
For PCM, we set the parameters as follows: (a) a hard constraint

∑
θut ≤ 3 of no

more than 3 expected topics per node, and (b) a soft constraint of λ = 0.5 (for the
sparser networks ML, AI/ROBOTICS, and THEORY) or λ = 2.0 (for the remaining
denser networks). We note that these settings are not optimized; for example, the
optimum settings for ML are λ = 6 with 25 topics, as shown later. This shows the
outperformance of PCM for any reasonable parameters.

Table 1 shows the average AUC scores for all the models with 10 clusters. We
observe that (a) PCM is better than all competing models for all datasets, except
for HEP-PH where SVI is better, (b) the accuracy improvements are consistent
over a wide variety of citation networks, and (c) PCM is able to scale to the larger
datasets while several others either crashed or did not finish. Notice that the Mixed
Membership Stochastic Blockmodel (MMSB) with MCMC inference performs
quite poorly on these link prediction tasks.

In the second experiment, we take the two best methods from the previous ex-
periment (PCM and SVI) and compare them on their optimal settings. These re-
sults mirror those of the previous experiment; PCM consistently does better.

Figure 2(a) shows a more detailed analysis: it counts the number of times the
actual follower of a node v ∈ V (test) was among the top-k% of the predicted fol-
lowers of v, for the ML dataset. We see that (a) PCM has higher recall than the
other models over a broad range, and (b) the greatest improvements are within the
top-10% bucket, which consists of other nodes believed to have the same topic
as v; this again points to the accuracy of the topics found by PCM.

Parameter selection. Figure 2(b) shows the effect of changing the number of
topics and the penalty coefficient λ on the accuracy of link prediction for ML. We
see that accuracy is robust with respect to both parameters as long as λ > 0 (AUC is
always between 0.7 and 0.75). For λ = 0, all consumers use the maximum allowed
number of topics, which leads to a loss of accuracy. Hence, the soft constraint
imposed by a positive λ is necessary.

Another parameter of PCM is the maximum number of interests τ for any con-
sumer (the hard constraint). Varying τ within a reasonable range of values tends to



MODELING NODE INCENTIVES 2323

(a) Recall (b) Effect of parameters on AUC

FIG. 2. (a) For each test node v in ML, all consumers are rank-ordered according to the probability
of being a follower of v. The size of each bar represents the fraction of times the true followers of v

fall in the rank-ordered buckets. The true followers are in the top buckets significantly more often for
PCM. (b) PCM is robust to parameter settings as long as λ > 0 (shown for ML).

affect AUC scores by ≈0.01, implying that a properly picked parameter for the soft
constraint is good enough. The hard constraint can still be useful for robustness to
outliers.

The above results show that the results of PCM are robust to the choice of pa-
rameters, as long as they are in the right range. In fact, link prediction accuracy
could be used to choose the right parameter settings even for other applications of
PCM. Indeed, this is precisely how we select the parameter λ for our two applica-
tions, namely, inferring topics from Twitter, and from paper citations (Section 7).
For these applications, we manually chose the number of topics K for ease of
presentation, but it could have been selected via link prediction as well.

Scalability. The updates for each node only require information from its neigh-
bors, so the complexity is O(K�), where K is the number of topics and � is the
maximum degree of the network. In addition, PCM is easily parallelizable, by split-
ting node updates across multiple cores. The running times of the various models
are shown in Table 2 (the parallelized version of PCM was used; the Mixed Mem-

TABLE 2
Running time: We report total time for inference and predictions using 10 topics. Only PCM and

SVI scale to the larger datasets

ML AI/ROBOTICS THEORY HEP-TH HEP-PH EPINIONS

PCM 26s 32s 13s 1280s 1565s 2062s
IRM 200s 382s 153s × × ×
MMSB 2199s 4637s 739s × × ×
SVI 5s 5s 3s × 2509s 3240s
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bership Stochastic Blockmodel was run with 100 iterations and a burn-in of 100,
as higher values increased run-time significantly). The scalability of PCM is clear.

Topic size distribution. Let the size of a topic denote the number of consumers
interested in that topic. Formally, the size of a topic t is |{u ∈ U | θut > 0.8}|,
where we used a threshold value of 0.8 to indicate interest in consuming topic t .
Figure 3 shows the distribution of topic size when a few (10) or many (75) topics
are desired. In both cases, the ratio of sizes of the largest to the smallest topic is
relatively small (within a factor of 2 for 10 topics, and a factor of 4 for 75 topics).
This is because, for a “large” topic t , producers on that topic will typically have
a small αv since the set of followers of a producer of t will not be “exclusive.”
More precisely, the followers will be drawn from a multinomial that is close to
the uniform distribution, and hence yields a low likelihood. Thus, PCM implicitly
penalizes large topics.

The behavior of PCM can be interpreted in terms of the trade-off between topic
coherence and topic sizes. For instance, an algorithm that focuses on finding top-
ics that are very well “separated” from each other may find a few such tightly-knit
topics. However, a significant fraction of nodes may not belong to any of these
topics. This results in at least one diffuse topic for such “left-over” nodes. Instead,
PCM has a preference for similar-sized topics. Faced with a seemingly large-sized
topic, PCM will try to find reasonably-sized sub-topics within it. Thus, each topic
found by PCM is likely to be useful, with no diffuse topics for left-over nodes.
The cost of this is that the topics found by PCM can be at different granulari-
ties, with especially popular topics being split up. We believe that this trade-off is
worthwhile.

Note that we defined topic size in terms of the number of consumers interested
in it, and not the number of producers. This is because we consider topic consump-
tion to be a more natural measure of topic importance. The number of producers

(a) 10 topics (b) 75 topics

FIG. 3. Fraction of consumers interested in each topic: A node u is interested in a topic if θut > 0.8
(thresholds between 0.75 and 0.9 were tested and give similar plots). Topic sizes are seen to be
relatively similar.
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for the various topics are in fact more skewed, as we shall see in the Italian elec-
tions application in the next section.

7. Applications. We now use PCM to analyze Twitter topics over the course
of the 2013 Italian elections. Then we will find the main machine learning research
topics from the citation network of papers published in machine learning confer-
ences.

7.1. Twitter topics during the Italian elections (2013). A general election took
place on 24–25 February, 2013 to determine members of the Italian Chamber of
Deputies and the Senate. While there were many parties involved, the primary ones
were: (a) the Con Monti per l’Italia (With Monti for Italy) coalition, headed by the
incumbent prime minister Mario Monti and his party (Scelta Civica), (b) the PD
party, led by Pier Luigi Bersani, representing the center-left, (c) the PdL party, led
by Silvio Berlusconi, representing the center-right, and (d) the Five Star Move-
ment (M5S), led by Beppe Grillo, a new entrant to the political scene, representing
populist ideas.

Data: We use data collected by Caldarelli et al. (2014), available from http:
//www.linkalab.it/data. The data contains tweets from November 2012 until June
2013, but we ignore the first and last months (which have very low volume). All
user names and tweets are anonymized, but the hashtags used in the tweets are
available. We filter out users who received or sent fewer than 50 tweets in total.
This yields, for each month, a directed graph of Twitter users (Auv = 1 iff person
u tweeted “at” person v). Also, for each user, we know the hashtags used by that
user in that month. Graph statistics are presented in Table 3.

Experimental setup: For a given month of data, we first apply PCM with K = 5
topics, and infer the latent topical interests of each user who tweeted in that month.
We chose to set no hard threshold τ on the number of consumption interests, and
the soft penalty parameter λ was set to 2.0 by cross-validation. To interpret these
topics, we find the best hashtags corresponding to these topics. This is again done
via PCM. Specifically, we first build a directed network from users to hashtags (if
u used hashtag h, we create an edge Auh = 1). Then, given the (known) topical
interests of the users (the “consumers” in this network), we find the topical interest
th for each hashtag h (the “producers”), and also its purity αh. Finally, for each

TABLE 3
Graph statistics for Twitter data over the course of the Italian elections (2013)

December 2012 January 2013 February 2013 March 2013 April 2013 May 2013

Nodes 5061 6697 9360 5139 6197 2411
Edges 51,125 75,497 129,682 62,670 80,434 22,760

http://www.linkalab.it/data
http://www.linkalab.it/data
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topic, we select the hashtags with the highest purity, that is, the hashtags that are
most associated with the topic.1

Description of results: In the polarized climate engendered by elections, we
expected topics to be aligned strictly along party lines and to be stable across time.
However, neither of these turns out to be true. While some topics in each month
may be party-specific, others can refer to coalitions (or even related parties). The
topics that dominate the conversation change every month, as do the corresponding
parties and politicians. Indeed, we find that the conversation on Twitter is heavily
influences by TV talk shows and recent news/events. Mixed in with all of these are
broader but ephemeral fads that arise occasionally on Twitter, and the influence of
outside events on Italian politics (see Table 4).

December 2012: Three events dominate the discussion. Topic 1 follows Mr.
Grillo (M5S) and his campaign for signatures (which he calls the “Massacre Tour”)
against Mr. Monti (“torna a casa, monti,” or “back at home, Monti!”). Topic 3
follows Mr. Monti’s efforts to engage with voters live on Twitter (“monti live”)
in favor of his party (“Scelta Civica”). Topic 4 is about the Primarie delle idee
(Primaries of Ideas) event organized by the Fratelli d’Italia party in which they
criticized Mr. Berlusconi’s leadership of PdL; “senza paura” (i.e., “fearless”) is the
tag line. Topics 0 and 2 are more generic: the former aligns with Mr. Berlusconi
(“I’m with Silvio”) and the FLI party that split from Mr. Berlusconi’s PdL, while
the latter references the Omnibusnotte, an Italian TV show.

January 2013: A major topic of interest (Topic 1) is about a letter signed by Mr.
Berlusconi delivered to Italian homes saying that he would abolish the IMU tax
(“rimborso imu”). This topic is mixed with references to the “Lega Nord” (North-
ern League) regional political party whose leader was aligned with Mr. Berlusconi.
Topic 4 combines information about the M5S party (the upcoming “Tsunami tour”
of all parts of Italy by Mr. Grillo) and the Fratelli d’Italia party (and its cofounder
Ms. Meloni). Topics 2 and 3 references the Le Invasioni Barbariche TV talk show.

February 2013: In the lead-up to the elections, held at the end of February, we
find an increasing interest in the niche party called FARE, which is represented
alongside leaders Mr. Boldrin and Ms. Silvia Enrico in topics 2 and 4. Topic 0
refers to the Scelta Civica party of Mr. Monti, and the coalition of allied parties
(Con Monti per l’Italia). We also see the growth of a Twitter fad, namely, the
indivanados hashtag, which originated as a tweet-based chain-letter. Finally, again
we see a TV program (Ultima Parola) significantly affecting the topics of interest
of Twitter users.

March 2013: The elections failed to deliver a decisive result. The PD party, led
by Mr. Bersani, was asked to form a coalition, but failed to do so. The Twitter
discussion is dominated by small parties which could affect coalitions, and by

1We only consider the top-200 hashtags by frequency to avoid selecting esoteric hashtags. Topic
descriptions are based on detailed searches of online media based on the hashtags.
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TABLE 4
Twitter topics over the course of the Italian elections (2013). For each topic, the primary hashtags

and their counts are shown

December 2012
Topic 0 #iostoconsilvio (208) #montibis (211) #berlusconi2013 (143) #ue (171) #fli (205)
Topic 1 nohashtag (272) #massacrotour (182) #firmaday (298) #crisigoverno (150)

#tornaacasamonti (423)
Topic 2 #scalfari (147) #omnibusnotte (157) #report (305) #sischerza (192) #montibis (211)
Topic 3 #tvb (150) #fiat (146) #primarieparlamentari (425) #sceltacivica (663) #montilive (1001)
Topic 4 #primariedelleidee (162) #primarieidee (224) #senzapaura (371) #centrodestra (162)

#fratelliditalia (407)

January 2013

Topic 0 nohashtag (414) #agendatweet (208) #iostoconambrosoli (253) #shoah (324) #lavoro
(676)

Topic 1 #rimborsoimu (233) #leganord (221) #cgil (286) #ppe (203) #iostoconsilvio (256)
Topic 2 #seviziapubblica (452) #leinvasioni (241) #invasioni (576) #rassegnati (211) #firenze

(331)
Topic 3 #carfagna (189) #sischerza (186) #leinvasionibarbariche (215) #coerenza (193) #ff (223)
Topic 4 #rai3 (224) #iovotom5s (306) #fratelliditalia (634) #tsunamitour (1357) #meloni (386)

February 2013

Topic 0 #conmontiperlitalia (384) #sceltacivica (672) #letta (289) #ariachetira (422) #faresulserio
(534)

Topic 1 nohashtag (501) #instantpoll (418) #padova (264) #conmontiperlitalia (384) #tg1 (266)
Topic 2 #boldrin (303) #combattere (278) #indivanados (330) #grecia (304) #silviaenrico (370)
Topic 3 #fratelliditalia (575) #iovotom5s (462) #udc (353) #dipietro (512) #sel (875)
Topic 4 #ultimaparola (559) #indivanados (330) #boldrin (303) #sallusti (542) #iovotofare (337)

March 2013

Topic 0 nohashtag (384) #nuovogoverno (126) #elezioni (192) #nuovecamere (133) #aldrovandi
(118)

Topic 1 #pude (106) #sceltacivica (187) #ff (156) #fornero (127) #sischerza (182)
Topic 2 #m5s! (104) #8marzo (155) #prodi (148) #poveropaese (143) #bersani! (124)
Topic 3 #rivoluzionecivile (112) #ghedini (115) #campanella (142) #8punti (108) #fumatabianca

(167)
Topic 4 #openpd (122) #rassegnati (188) #pude (106) #trasparenza (125) #lega (290)

April 2013

Topic 0 #adesso (162) #italy (135) #presidenteditutti (331) #fratelliditalia (151) #chiamparino
(171)

Topic 1 #chetempochefa (187) #25aprile (148) #ballaro (307) #info5stelle (146) #boston (140)
Topic 2 #iostoconbersani (177) #perdire (437) #b (175) #raisenzapartiti (257) #controlapovertà

(280)
Topic 3 #casta (207) #crisi (193) #elezioni (170) #sicilia (142) #noprodi (303)
Topic 4 nohashtag (367) #rodotàperchèno (205) #fiatosulcolle (267) #politica (505)

#rodotàperchéno (454)
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TABLE 4
(Continued)

May 2013

Topic 0 #carfagna (105) #brunetta (129) #santanchè (129) #salto13 (118) #ineleggibilità (104)
Topic 1 #tuttiacasa (125) #eleroma (160) #nonsiamounpartito (336) #leggetruffa (221)

#tuttiacasatour (519)
Topic 2 nohashtag (193) #ultimora (134) #giustizia (148) #lega (115) #roma (298)
Topic 3 #openpd (144) #oltrelarottamazione (245) #salto13 (118) #firenze (130) #assembleapd

(425)
Topic 4 #ingroia (289) #grillo? (166) #falcone (111) #italia (113) #finocchiaro (125)

internal strife within the PD party. For instance, Topics 1 and 3 reference the Scelta
Civica party of Mr. Monti, and the small Rivoluzione Civile party, respectively.
However, we also find the hashtag #ff (or Follow Friday), a long-standing Twitter
tradition of users pointing out interesting new accounts or hashtags to their friends.
Topic 4 is primarily about strife within the PD party and the call for an open PD
with new leadership and calls for resignation (rassegnati).

April 2013: With the governmental succession in chaos, a new election to
choose the president was called in April. The president would be chosen by dele-
gates, not by the public directly. After the PD’s candidate failed to win after sev-
eral ballots, PD split and the incumbent leader Mr. Bersani resigned. Finally, the
incumbent president was re-elected, and he encouraged PD’s deputy secretary Mr.
Letta to form a coalition, which he duly accomplished by the end of April.

The topics for April reflect the sense of crisis in the elections (Topic 3), and the
interest in selecting someone who could be a “president of all” (presidenteditutti;
Topic 0). TV talk shows again take center stage (Che Tempo Che Fa and Ballaro in
Topic 1). Recent news events also get significant attention (Topic 2), as evidenced
by interest in Mr. Bersani’s rally on April 13 “against poverty” (contro la poverta)
and Mr. Grillo’s proposal to “free TV channel RAI from the parties” (RAI senza
partiti).

May 2013: The three main parties (PD, PdL, and M5S) were all affected differ-
ently by the election results. Topic 0 documents turmoil regarding leadership of the
PdL after it appeared that the incumbent leader (Mr. Berlusconi) may be convicted.
There was heated discussion regarding the possible candidacies of Ms. Carfagna,
Ms. Santanche, and Mr. Brunetta as possible replacements. Topic 1 refers to the
leader of M5S (Mr. Grillo) encouraging an effort against other parties under the
tagline tutti a casa (“send them all home”). It also notes his efforts against a pro-
posed law sponsored by PD that would exclude organizations (such as M5S) that
were not technically parties from receiving public funding. He railed against the
proposal saying that M5S was not a party (non siamo un partito) and would never
become one. The PD also faced calls for new leadership (Topic 3), expressed by the
hashtag #openpd, after the resignation of Mr. Bersani. A leading candidate (Mr.
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Renzi) publishing a book, called Oltre la Rottamazione (“beyond the scrapping”)
in May 19, 2013, which gained much attention.

Summary of Twitter topics: Thus, we find that in contrast to our expectations, the
topics are neither stable across time, nor are they always aligned along party lines.
The topics fluctuate depending on events promoted by parties (e.g., the tsunami
tour of M5S, or the contro la poverta rally of PD), and also the talking points
discussed on Italian TV shows (e.g., Le Invasioni Barbariche). Some topics pos-
sess a degree of continuity, but interest in them can vary greatly over time. For
instance, the #openpd hashtag was popular in March 2013 and also in May
2013, but not in the intervening month. Also, the most discriminative hashtags
are also not necessarily the most common ones. For instance, #berlusconi is
used by users across the political spectrum. Picking hashtags h with high purity
scores αh allows PCM to solve this problem, and create interpretable topic sum-
maries.

Analysis of inferred node parameters: Figure 4 shows several facets about the
inferred parameters. The number of consumers and producers interested in the var-
ious topics are shown in plots (a) and (b). In each, the topics are ordered according
to total consumer (producer) interest. Recall from Section 6 (Figure 3, and the dis-
cussion on “Topic size distribution”) that PCM tends to find topics with balanced
consumption interests. This is because any topic that is of interest to a large frac-
tion of consumers will have an associated multinomial distribution that is close
to uniform, which in turn leads to a lower likelihood. However, there is no such
penalty for the number of producers tweeting about any topic. This is validated by
our results, where consumer interest varies only by a factor of 2 across topics [plot
(a)], but shows greater variation for producer interest [plot (b)].

In Figure 4(c), we show the distribution node purity values αv , normalized by
the maximum possible purity for those topics. We find that most producers are
extremely pure, that is, most of their followers have a consumption interest in
the topic of their tweets. In plot (d), we split the producers by their in-degrees, and
compute purity for various in-degree ranges. This shows a slightly downward trend
in purity as in-degree increases, suggesting that as people become more popular,
they can gain followers for reasons unrelated to the topic of their tweets (e.g.,
celebrities may gain followers simply because they are famous). While these two
plots are for only February 2013, we find that every month shows the same pattern.

Finally, we also computed the number of consumption interests for each Twit-
ter user. As in the computation of topic sizes, we say that a user is interested in
consuming topic t if θut > 0.8. We find that almost half the users are interested
in only one topic, and about 65% in up to two topics. This shows that a signifi-
cant fraction of users indeed have few consumption interests. This fact, coupled
with the observation of high average purity discussed earlier, suggests that PCM
is operating in the regime where it performed particularly well in the simulation
experiments.
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(a) Consumer interests (b) Producer interests

(c) Producer purity (d) Purity versus in-degree

FIG. 4. (a) Topics are ordered in descending order of the number of consumers interested in them
(a consumer u is interested in topic t if θut > 0.8). We find little difference between topic sizes,
agreeing with Figure 3. (b) On ordering topics by the number of producers tweeting about those
topics, we find a greater range of topic sizes. (c) The distribution of node purity αv for the election
month (February 2013) shows that most have high purity [i.e., αv ≈ αmax(tv), where αmax(t) is
the maximum allowable purity for a topic t]. Thus, most producers can indeed be modeled using a
single topic. (d) Plotting αv versus in-degree (for February 2013), we find a slightly downward trend.
People with too many followers are less pure, that is, their followers are not all interested in the topic
of their tweets (see also Remark 1).

7.2. Research areas extracted from a citation network. We use PCM to extract
10 topics from the ML citation network. Then, as with the Twitter topics above, we
find the best words for each topic by (a) building a directed network from papers
to words and phrases extracted from paper titles, (b) calculating the “production”
interest of each word from the known “consumption” interests of all papers point-
ing to it, and finally (c) selecting the words with the highest purity for each topic
as the representatives for that topic.

Table 5 lists these representative keywords for each topic (only words that occur
at least 30 times are considered). Two topics are devoted to reinforcement learn-
ing, demonstrating its importance to planning and AI. Topic 1 alludes to the policy
gradient and function approximation methods for reinforcement learning, while
Topic 8 is about kernel-based methods. State-space representations and Markov
Decision Processes also garner two topics (Topics 2 and 7). Other topics are asso-
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TABLE 5
Example topics for ML: PCM was used to find 10 topics explaining the machine-learning paper
citation network. For each topic, the best matching words extracted from paper titles were found,
again via PCM. Both the top 5 words and the corresponding αv values are reported (higher αv

implies stronger association of the word with the topic)

Topic 0 (336 papers) Gaussian_process (2.94) active (1.71)
support_vector_machines (1.56) sparse (1.52) kernel (1.22)

Topic 1 (306 papers) policy (1.95) gradient (1.72)
approximation (1.41) fast (1.29) function (0.98)

Topic 2 (275 papers) state (1.36) representations (1.21)
boosting (0.86) process (0.81) bounds (0.73)

Topic 3 (279 papers) semi-supervised (2.18) kernels (2.11)
information (1.50) clustering (1.09) probabilistic (0.94)

Topic 4 (348 papers) policy (2.00) approximation (1.87)
matrix (1.75) function (1.36) dynamic (1.15)

Topic 5 (303 papers) local (1.00) search (1.00)
multiple (0.99) recognition (0.97) optimal (0.96)

Topic 6 (323 papers) modeling (0.87) sparse (0.66)
boosting (0.62) machine (0.59) models (0.50)

Topic 7 (327 papers) representations (1.80) semi-supervised (1.70)
state (1.31) stochastic (1.09) clustering (0.95)

Topic 8 (321 papers) kernels (1.66) reinforcement_learning (1.27)
approximation (1.18) functions (0.79) markov (0.58)

Topic 9 (319 papers) matrix (1.17) semi-supervised (1.17)
prediction (1.07) stochastic (0.93) kernel (0.90)

ciated with disparate research areas such as Gaussian processes (Topic 0), semi-
supervised methods (Topic 3), local search methods (Topic 5), and matrix-based
methods (Topic 9). Topic 4 is a combination of function approximation (Topic 1)
and matrix methods (Topic 9). The only generic topic is Topic 6, tagged by com-
mon keywords such as modeling and sparse. Note that the purity values are
relatively low for Topic 6, and this can be used to automatically infer that this topic
is less coherent, and hence less important. All the other topics are coherent, and
have at least some words with high purity values.

Table 5 also shows the total consumer interest in each topic, in terms of the
number of papers which have θut > 0.8 in that particular topic. We find that the
sizes of all topics are fairly similar, echoing results from Figures 3 and 4. As noted
earlier, this reflects the tendency of PCM to find topics at different granularities,
such that each has similar levels of consumer interest.
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8. Conclusions. Networks resulting from human actions reflect the incentives
of the individuals involved, and directed networks may differ from their undirected
counterparts in this regard. In particular, the production and consumption interests
of nodes may differ, and each producer may be known to consumers as an expert
on only one topic. We presented the PCM model for directed networks that re-
flects such incentives. We developed a fast alternating-optimization procedure for
parameter inference under PCM. Experiments on simulated data as well as several
real-world datasets showed that PCM significantly outperforms existing models
both in terms of accuracy as well as scalability.

We then used PCM to explore the topics of interest to Twitter users during
the Italian elections of 2013. In addition, we tagged these topics with the most
relevant hashtags, again using PCM. The results show that Twitter discussions are
not necessarily aligned along party lines, but rather focus on recent political events.
The reach and importance of TV talk shows is also clear. As a second application,
we used PCM to infer topics of research from a machine learning paper citation
network, and tag them with appropriate keywords extracted from paper titles. This
again finds intuitive and interpretable topics.

One potential application of PCM is in search and recommendation systems.
Consider a new Twitter user who searches for a particular topic. Twitter should
ideally return links to other Twitter users who are “authorities” on that topic. How-
ever, an authority is not necessarily one with many followers. Indeed, as we have
seen, those with very high in-degrees often have low node purity, that is, their fol-
lowers are not specifically interested in the topics of their tweets, but are perhaps
only interested in following celebrities. An authority must ideally have high pu-
rity as well as high popularity, signifying that the person is widely followed (and
hence endorsed) primarily by those those interested in a topic. In fact, we used this
very principle when picking hashtags to represent topics: we selected from among
the most popular hashtags the ones that had the highest purity for each topic. Ex-
tending and applying this to a general recommendation system is an interesting
direction for future work.

One limitation of PCM is our inability to estimate parameter distributions; our
analysis only yields point estimates. The standard solution via a bootstrap is dif-
ficult here, because the network is not a collection of i.i.d. samples of nodes and
links. The “network bootstrap” is an active area of research, but we are unaware
of any method with provable guarantees. We note that this problem is common
to all network models and not specific to PCM. Even for the well-studied Mixed-
Membership Stochastic Blockmodel, only the MCMC-based methods yield distri-
butions. However, as we showed in Section 6 (Table 2), this is difficult to scale to
large networks.

Another possible concern about PCM is that there may be Twitter users who
choose to tweet about multiple topics in spite of their incentives to focus on just one
topic. First, we note that the PCM generative model of network structure remains
valid even in this case as long as users are “known” for only one topic, that is, they
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attract followers for their tweets on only that topic. If even this weaker assumption
fails to hold, PCM will pick up the primary topic of producer v as her single
production interest. The fact that v has followers who are interested in other topics
will be reflected in a lower node purity αv . In the extreme case where a producer
tweets about a wide range of topics, we will have α̂v ≈ 0, and the contribution
of v and her followers to the likelihood will become nearly constant. Thus, a few
such atypical Twitter users will not affect inference. Indeed, inference of consumer
interests will be mainly driven by “pure” nodes who have a single interest. The
importance of pure nodes is also emphasized in recent work on a variant of the
Mixed Membership Stochastic Blockmodel [Zhang, Levina and Zhu (2014)].

Also, while we have proven dyadic effects such as reciprocity, network models
often have higher-order effects as well. Proving these effects for PCM is difficult.
Some latent space models, such as the one by Hoff, Raftery and Handcock (2002),
automatically yield networks with transitivity. However, they are not as scalable as
PCM. Hence, we believe that PCM is primarily applicable to large social network
datasets.

Finally, we have not proven the consistency of the MAP estimator for PCM. The
difficulty is that each node has parameters, and hence the parameter size grows
with the number of nodes. This is in general a difficult problem, and recent work
has shown consistency for random graphs with known degrees [Chatterjee, Diaco-
nis and Sly (2011)], for directed exponential random graphs with known in- and
out-degrees [Yan, Leng and Zhu (2016)], and for exponential random graphs un-
der sampling with certain conditions [Shalizi and Rinaldo (2013)]. For stochastic
blockmodels and variants, consistency has been proven for alternative inference
methods, for example, spectral clustering for stochastic blockmodels [Lei and Ri-
naldo (2015)], and the OCCAM method for a variant of the Mixed Membership
Stochastic Blockmodel [Zhang, Levina and Zhu (2014)]. However, for PCM, this
is an area of future work.

SUPPLEMENTARY MATERIAL

Supplement A: Proofs (DOI: 10.1214/17-AOAS1079SUPP; .pdf). We provide
the proofs for all propositions and theorems.
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