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Abstract

In this paper we review sequential Monte Carlo (SMC) methods, or particle filters (PF),
with special emphasis on its potential applications in financial time-series analysis and
econometrics. We start with the well-known normal dynamic linear model, also known
as the normal linear state space model, for which sequential state learning is available in
closed form via standard Kalman filter and Kalman smoother recursions. Particle filters are
then introduced as a set of Monte Carlo schemes that enable Kalman-type recursions when
normality or linearity or both are abandoned. The seminal bootstrap filter (BF) of Gordon,
Salmond and Smith (1993) is used to introduce the SMC jargon, potentials and limitations.

We also review the literature on parameter learning, an area that started to attract much
attention from the particle filter community in recent years. We give particular attention to
the Liu-West filter (Liu and West, 2001), Storvik filter (Storvik, 2002) and particle learn-
ing (PL) of Carvalho, Johannes, Lopes and Polson (2010). We argue that the BF and the
auxiliary particle filter (APF) of Pitt and Shephard (1999) define two fundamentally dis-
tinct directions within the particle filter literature. We also show that the distinction is more
pronounced with parameter learning and argue that PL, which follows the APF direction,
is an attractive extension.

One of our contributions is to sort out the research from BF to APF (during the 90s),
from APF to now (the 00s) and from Liu-West filter to Storvik filter to PL. To this end, we
provide code in R for all the examples of the paper1. Readers are invited to find their own
way into this dynamic and active research arena.

Key words: Particle learning; Sequential Monte Carlo; Markov chain Monte Carlo; Stochastic
Volatility; Realized Volatility; Nelson-Siegel model.

1 Introduction

The Kalman filter (KF) and its many variants and generalizations have played a fundamental
role in modern time series analysis by allowing the study and estimation of complex dynamics
and by drawing the attention of researchers and practitioners to the rich class of state-space
models, also known as dynamic models (Harvey, 1989, West and Harrison, 1989, 1997). Well-
known and widely used variants of KF include (i) the extended KF (Jazwinski, 1970; West,

1http://faculty.chicagobooth.edu/hedibert.lopes/research/Jforecasting-PF.
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Harrison and Migon, 1985); (ii) the Gaussian sum filter (Alspach and Sorenson, 1972); (iii) the
unscented KF (Julier and Uhlmann, 1997; Van der Merwe et al., 2000); and (iv) the Gaussian
quadrature KF (Ito and Xiong, 2000).

Despite their wide applicability, approximations provided by these variants become less
effective when substantial nonlinearities and/or extreme non-Gaussianity are present in the data.
To overcome the difficulty, the last two decades have been exposed to an increasing number
of Monte Carlo (MC) based approximations for state-space models. These MC methods are
basically divided into two major categories: Markov chain Monte Carlo (MCMC) schemes
for offline/batch sampling and sequential Monte Carlo (SMC) schemes for online/sequential
sampling. For example, Carlin et al. (1992), Carter and Kohn (1994), Frühwirth-Schnatter
(1994) and Shephard (1994) propose MCMC methods to estimate general state-space models.
However, MCMC-based algorithms are prohibitively costly when performing online estimation
of states and parameters; see Gamerman and Lopes (2006).

SMC methods, also known as particle filters, are MC schemes that, when used in the state-
space context, rebalance draws from the posterior distribution of the states and parameters at a
given time (the particles) based on the next observation via its likelihood. In their seminal paper,
Gordon, Salmond and Smith (1993) propose one of the most popular filters, the bootstrap filter
(BF), which is based on a sampling importance resampling (SIR) argument (Smith and Gelfand,
1991). Also influential from the start are the works on sequential Bayesian imputation by Kong,
Liu and Wong (1994) and Liu and Chen (1995).

In this paper we review the bootstrap filter and its variants. We also introduce the auxiliary
particle filter (APF) of Pitt and Shephard (1999) (see also the discussion in Liu and Chen, 1998)
and argue that both filters define two directions within the SMC literature, namely sample-
resample and resample-sample methods. This is done in Section 3, which ends with a list of
additional review papers and books on SMC. Section 4 starts by showing how both BF and
APF can be used to approximate the likelihood function of fixed parameters. We then introduce
the Liu and West filter (Liu and West, 2001) that generalizes APF to sequentially update the
posterior distributions of parameters. The section also introduces the particle learning (PL) of
Carvalho et al. (2010). Some illustrative examples appear in Section 5. Final remarks and
current research directions are presented in Section 6.

2 Normal dynamic linear model

To introduce the ideas of the particle filter, let us start with the well-known normal dynamic
linear model (NDLM),

yt = F ′txt + vt, (1)
xt = Gtxt−1 + wt, (2)

where vt and wt are temporally and mutually independent Gaussian sequences with zero mean
and variances σ2

t and τ 2
t , respectively. Eq. (1) is referred to as the observation equation that

relates the observed series yt to the state vector xt. Eq. (2) is the state transition equation that
governs the time evolution of the state, which might be latent. The local level and the local
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linear trend models are special cases of the NDLM. In the local level model, yt = xt + vt and
xt = xt−1 + wt so that Ft = Gt = 1, σ2

t = σ2 and τ 2
t = τ 2 for all t. In the local linear

trend model, yt = x1t + vt, x1t = x1,t−1 + x2,t−1 + w1t and x2t = x2,t−1 + w2t, and we have
xt = (x1t, x2t)

′, Ft = (1, 0)′, G = (g1, g2), g1 = (1, 0)′, g2 = (1, 1)′, σ2
t = σ2 and τ 2

t = τ for
all t, where τ is a 2× 2 positive definite matrix.

Conditionally on the quadruple {Ft, Gt, σ
2
t , τ

2
t }, for t = 1, . . . , T , and on the initial distri-

bution (x0|y0) ∼ N(m0, C0), it is straightforward to show that

xt|yt−1 ∼ N(at, Rt), (3)
yt|yt−1 ∼ N(ft, Qt), (4)
xt|yt ∼ N(mt, Ct), (5)

for t = 1, . . . , T , where yt = (y1, . . . , yt)
′ and N(a, b) denotes the normal distribution with

mean a and variance b. The three densities in Eqs. (3)-(5) are referred to as the propagation
density, the predictive density and the filtering density, respectively. In fact, the propagation and
filtering densities are the prior density of xt given yt−1 and the posterior density of xt given yt.
The means and variances of the three densities are provided by the Kalman recursions:

at = Gtmt−1 and Rt = GtCt−1G
′
t + τ 2

t , (6)
ft = F ′tat and Qt = F ′tRtFt + σ2

t , (7)
mt = at + Atet and Ct = Rt − AtQtA

′
t, (8)

where et = yt − ft is the prediction error and At = RtFtQ
−1
t is the Kalman gain. Two other

useful densities are the conditional and marginal smoothed densities

xt|xt+1, yt ∼ N(ht, Ht), (9)
xt|yT ∼ N(mT

t , C
T
t ), (10)

where

ht = mt +Bt(xt+1 − at+1) and Ht = Ct −BtRt+1B
′
t, (11)

mT
t = mt +Bt(m

T
t+1 − at+1) and CT

t = Ct −B2
t (Rt+1 − CT

t+1), (12)

and Bt = CtG
′
t+1R

−1
t+1. See West and Harrison (1997, Ch. 4) for additional details.

An important and rich subclass of the NDLM assumes that Ft and Gt are both known, while
σ2
t = σ2 and τ 2

t = τ 2 are both unknown variances. In this case, the above Kalman recursions
can be used to marginalize out the states based on Eq. (4), i.e.,

p(yT |σ2, τ 2) =
T∏
t=1

f(yt; ft, Qt), (13)

where f(x;µ, σ2) is the density of a normal random variable with mean µ and variance σ2

evaluated at x. Notice that here ft and Qt are both nonlinear functions of (σ2, τ 2). In other
words, should the main objective be sampling from p(xT , σ2, τ 2|yT ), then draws can be obtained
in two steps:
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1. Draw (σ2, τ 2) from p(σ2, τ 2|yT ), which is proportional to the prior p(σ2, τ 2) times the
likelihood from Eq. (13);

2. Draw xT from p(xT |σ2, τ 2) by first computing forward moments via Eqs. (6)-(8) and
(11), and then sampling backward xt conditional on xt+1 and yt via Eq. (9).

Sampling (σ2, τ 2) from step 1 can be performed by SIR, acceptance-rejection or Metropolis-
Hastings-type algorithms or replaced by a Gibbs step that draws (σ2, τ 2) conditional on (yT , xT ).
Reis, Salazar and Gamerman (2006) compare the performance of these sampling and other
MCMC schemes in the context of the local level model. Step 2 is known as the forward fil-
tering, backward sampling (FFBS) algorithm (Carter and Kohn, 1994; Frühwirth-Schnatter,
1994).

For the NLDM, all densities needed for making inference are well-known and they can easily
be carried out in applications. On the other hand, difficulties arise when the model is nonlinear
or non-Gaussian, become no closed-form densities are available. As we discuss below, particle
filters provide an effective approach to overcoming the difficulty.

3 Basic particle filters

Let us consider a more general dynamic model where the assumptions of normality and/or
linearity are relaxed. The observation and state transition equations become

yt|xt ∼ p(yt|xt),
xt|xt−1 ∼ p(xt|xt−1), t = 1, 2, . . . .

Denote the initial probability density of the state by p(x0). All static parameters, such as σ2

and τ 2 from the previous section, are assumed to be known throughout this section. Batch and
sequential parameter learning are deferred to Section 4. The Kalman recursions from Eqs. (3)
and (5) are now replaced, respectively, by

p(xt|yt−1) =

∫
p(xt|xt−1)p(xt−1|yt−1)dxt−1 (14)

and

p
(
xt|yt

)
=
p (yt|xt) p (xt|yt−1)

p (yt|yt−1)
. (15)

In most real-world applications, outside the realm of NDLM, the integration with respect to
xt−1 in (14) and the implementation of Bayes’ theorem in (15) are both analytically intractable
and/or computationally costly. As mentioned in the Introduction, there exist approximations
for sequential state estimation and filtering based on Kalman-like filters, such as the extended
Kalman filter and the unscented Kalman filter. Also, as discussed in the Introduction, there exist
several MCMC-type samplers for batch estimation of the whole state vector and parameters
similar to the FFBS introduced in Section 2.
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Figure 1: Bootstrap filter. A schematic representation of the bootstrap filter over two time
periods. The squares are yt+1 and yt+2. From top to bottom, the first, second, fourth and fifth
set of dots represent particles, while the third and sixth set of dots represent particle weights.

Particle filters, loosely speaking, combine the sequential estimation nature of Kalman-like
filters with the flexibility for modeling of MCMC samplers, while avoiding some of the their
shortcomings. On the one hand, like MCMC samplers and unlike Kalman-like filters, particle
filters are designed to allow for more flexible observational and evolutional dynamics and distri-
butions. On the other hand, like Kalman-like filters and unlike MCMC samplers, particle filters
provide online filtering and smoothing distributions of states and parameters.

The goal of most particle filters is to draw a set of i.i.d. particles {x(i)
t }Ni=1 that approximates

p(xt|yt) by starting with a set of i.i.d. particles {x(i)
t−1}Ni=1 that approximates p(xt−1|yt−1).

The most popular filters are the bootstrap filter (BF), also known as the sequential impor-
tance sampling with resampling (SISR) filter, proposed by Gordon, Salmond and Smith (1993),
and the auxiliary particle filter (APF), also known as the auxiliary SIR (ASIR) filter, proposed
by Pitt and Shephard (1999). However, it is worth mentioning that one of the earliest sequen-
tial Monte Carlo algorithms was proposed by West (1992). For recent discussion regarding the
similarities and differences between BF and APF see, for instance, Carvalho, Johannes, Lopes
and Polson (2010), Doucet and Johansen (2008) and Douc, Moulines and Olsson (2009).

Propagate-resample filters. The BF of Gordon et al. (1993) is based on sequential SIR steps
over time (Smith and Gelfand, 1992). The Kalman recursions from (14) and (15) are combined
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in

p(xt, xt−1|yt, yt−1) ∝ p(yt|xt)︸ ︷︷ ︸
2.Resample

p(xt|xt−1)p(xt−1|yt−1)︸ ︷︷ ︸
1.P ropagate

(16)

In words, the BF first propagates particles from the posterior at time t − 1 in order to generate
particles from the prior at time t. Then it resamples the propagated particles with weights
proportional to their likelihoods. This is Algorithm 1 below, whose recursions are illustrated in
Figure 1.

Resample-propagate filters. Similarly, the APF first resamples particles from the posterior at
time t− 1 with weights taking into account the next observed data point, yt. Then it propagates
the resampled particles. The identity from equation (16) is rewritten as

p(xt, xt−1|yt, yt−1) ∝ p(xt|xt−1, y
t)︸ ︷︷ ︸

2.P ropagate

p(yt|xt−1)p(xt−1|yt−1)︸ ︷︷ ︸
1.Resample

. (17)

The main difficulty with the APF is that in most applications, neither p(yt|xt−1) is available for
pointwise evaluation (resampling) nor p(xt|xt−1, y

t) is available for sampling (propagation).
The APF is fully adapted when these conditions are satisfied. The main suggestion in Pitt and
Shephard (1999) for general state space models is:

a) Use p(yt|g(xt−1)), i.e. the data density p(yt|xt) evaluated at g(xt−1) (usually the expected
value, median or mode of the state transition density p(xt|xt−1)) as the proposal weight
to resample the old particle xt−1; and

b) Use q(xt|xt−1, yt) ≡ p(xt|xt−1) as the proposal density to propagate resampled particles to
the new set of particles {x(i)

t }Ni=1. Notice that here q(·) is blind since it does not incorpo-
rate the current observations yt. See below for more details on better ways of choosing
q(·).

Since both resampled and propagated particles come from proposal densities, it follows directly
from a simple SIR argument that these particles have weights given by

wt ∝
p(yt|xt)p(xt|xt−1)p(xt−1|yt−1)

p(yt|g(xt−1))p(xt|xt−1)p(xt−1|yt−1)

=
p(yt|xt)

p(yt|g(xt−1))
. (18)

This leads to Algorithm 2 below.

6



Algorithm 1: Bootstrap filter (BF)

1. Propagate {x(i)
t−1}Ni=1 to {x̃(i)

t }Ni=1 via p(xt|xt−1);

2. Resample {x(i)
t }Ni=1 from {x̃(i)

t }Ni=1 with weights w(i)
t ∝ p(yt|x̃(i)

t ).

Algorithm 2: Auxiliary particle filter (APF)

1. Resample {x̃(i)
t−1}Ni=1 from {x(i)

t−1}Ni=1 with weights w(i)
t ∝ p(yt|g(x

(i)
t−1)).

2. Propagate {x̃(i)
t−1}Ni=1 to {x̃(i)

t }Ni=1 via p(xt|x̃t−1);

3. Resample {x(i)
t }Ni=1 from {x̃(i)

t }Ni=1 with weights w(i)
t ∝ p(yt|x̃(i)

t )/p(yt|g(x̃
(i)
t−1)).

Algorithms 3 and 4 below are the optimal and fully adapted versions of BF and APF when
p(yt|xt−1) is analytically tractable and p(xt|xt−1, y

t) easy to sample from.

Algorithm 3: Optimal bootstrap filter (OBF)

1. Propagate {x(i)
t−1}Ni=1 to {x̃(i)

t }Ni=1 via p(xt|xt−1, yt);

2. Resample {x(i)
t }Ni=1 from {x̃(i)

t }Ni=1 with weights w(i)
t ∝ p(yt|x(i)

t−1).

Algorithm 4: Optimal auxiliary particle filter (OAPF)

1. Resample {x̃(i)
t−1}Ni=1 from {x(i)

t−1}Ni=1 with weights w(i)
t ∝ p(yt|x(i)

t−1);

2. Propagate {x̃(i)
t−1}Ni=1 to {x(i)

t }Ni=1 via p(xt|x̃t−1, yt).

Choosing the proposal. Improvements on the basic particle-filter algorithm include the use
of better proposal distributions in the importance sampling stage (Pitt and Shephard, 1999),
the use of Markov chain Monte Carlo sampling (Gilks and Berzuini, 2001; Fearnhead, 2002a
Fearnhead and Clifford, 2003) and the use of resampling (Liu and Chen, 1995; Carpenter et
al., 1999), which can be important to avoid having only a small number of particles with non-
negligible weight.

Pitt and Shephard (1999) suggest local linearization of the observation equation (via an ex-
tended Kalman filter-type approximation) in order to construct a proposal propagation density,
say q(xt|xt−1, y

t), for the OAPF propagation density p(xt|xt−1, y
t), that takes into account the

current observation yt and, potentially, outperforms the naı̈ve blind propagation proposal den-
sity p(xt|xt−1). See Liu and Chen (1995), Carpenter, Clifford and Fearnhead (1999), Gilks
and Berzuini (2001), Doucet, Godsill and Andrieu (2000), Fearnhead (2002) and Guo, Wang
and Chen (2005), amongst others, for additional discussion on the choice of q(xt|xt−1, yt). See
Chen and Lai (2007) for an interesting application of on-line identification and adaptive con-
trol of autoregressive models with exogenous inputs (ARX models) with Markov parameter
jumps. More efficient proposal densities can be obtained in the presence of conditional linearity
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and/or normality. In other words, when the split of the state vector xt into x1t and x2t leads
to, say, x1t|x2t being a NDLM, then part of the sequential learning algorithm can be performed
exactly by analytically integrating out x1t. Such filters are commonly refereed to as the Rao-
Blackwellized particle filter or mixture Kalman filter ( Chen and Liu, 2000, Andrieu and Doucet,
2002).

Resampling or not? It has been argued that the resampling step in the BF and the second
resampling step in the APF should only be performed when particle degeneracy is signaled.
For instance, Kong, Liu and Wong (1994) introduced the effective sample size, Neff, which
they estimate by

N̂eff =
1∑N

i=1(w
(i)
t )2

. (19)

The particle set that approximates p(xt|yt) is then represented by {(x̃t, wt)(i)}Ni=1, using the
notation from Algorithms 1 and 2 above.

Reducing MC error. Regardless of whether resampling is performed at each time period or
not, when the goal is to produce summary statistics based on the posterior p(xt|yt) (for instance,
mean, variance, quantiles, etc.), it is more efficient (estimator with lower variance) to perform
the computation prior to resampling. For instance, it is more efficient to estimate E(xt|yt) by∑N

i=1 ω
(i)
t x̃

(i)
t /
∑N

j=1w
(j)
t than by

∑N
i=1 x̃t/N .

Example 1 (Local level model). In this example, we use the local level model to compare
the performance of the four particle-filter algorithms discussed above. They are the BF, APF,
OBF and OAPF. As mentioned in Section 2, the local level model is yt|xt ∼ N(xt, σ

2) and
xt|xt−1 ∼ N(xt−1, τ

2). For this simple linear model, the traditional Kalman filter is available
to produce the “optimal” estimate of the filtered state vector. We use this estimate in evaluating
the performance of particle filters.

Based on results of Section 2, it is easy to see that (i) xt|yt ∼ N(mt, Atσ
2), where mt =

(1−At)mt−1 +Atyt and At = (At−1σ
2 + τ 2)/(At−1σ

2 + τ 2 +σ2), (ii) yt|xt−1 ∼ N(xt−1, σ
2 +

τ 2), and (iii) xt|xt−1, yt ∼ N(ω2(xt−1/τ
2 + yt/σ

2), ω2), where ω−2 = σ−2 + τ−2. Thus, the
four particle-filter algorithms are easy to implement. To compare the filters, we employ the
criterion of mean square errors, which are computed using R runs of each particle filter f in
{BF,OBF,APF,OAPF}, across M time-series of length T . Specifically, the MSE is given by
MSEf =

∑
t,m,r(x̂ftmr− x̃tm)2/(TMR), where x̃tm is obtained via the standard Kalman filter

recursions (Eqs. 3 to 8) for the m-th dataset up to time t, and x̂ftmr =
∑N

i=1 x
(i)
ftmr/N is the

particle approximation for x̃tm based on N particles {x(i)
ftmr}Ni=1.

The relative MSE, relative to the bootstrap filter, is defined as RMSEf = MSEf/MSEBF
for f in {OBF,APF,OAPF}. Results are summarized in Figure 2. From the plots, OAPF
outperforms OBF for all four values of τ 2 and OBF fares better than BF for all four values of
τ 2. Also, it seems that BF performs much better than APF when the signal to noise ratio, τ/σ,
is greater than one. �
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Figure 2: Comparison between BF, OBF, APF and OAPF via relative mean square error
(RMSE). Local level model is used, where yt|xt ∼ N(xt, σ

2) and xt|xt−1 ∼ N(xt−1, τ
2), for

t = 1, . . . , T , x0 ∼ N(m0, C0), σ = 1, τ = 0.22, 0.71, 1.0 or 1.41, m0 = 0 and C0 = 10. The
starting value is x0 = 0 and N denotes the number of particles. RMSE is based on M = 10
time series of length T and R = 10 runs of each particle filter per time series. Top row: sample
size T = 100; Bottom row: T = 1000.
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Review papers. Since Gordon, Salmond and Smith (1993), several review papers have con-
tributed to straightening out the sub-area of sequential Monte Carlo. Here we list a small subset
of these papers. The choice is rather subjective and based on our limited and biased views of the
field. A few of the early reviews are Doucet, De Freitas and Gordon (2000) and Arulampalam,
Maskell, Gordon and Clapp (2002), the books by Liu (2001), Doucet, De Freitas and Gordon
(2001) and Ristic, Arulampalam and Gordon (2004) and the 2002 special issue of IEEE Trans-
actions on Signal Processing on sequential Monte Carlo methods. See also the review by Chen
(2003)

More recent ones, along with this paper, are Cappé, Godsill and Moulines (2007), Doucet
and Johansen (2009) and Prado and West (2010, ch. 6). They carefully organize and highlight
the fast development of the field over the last decade, such as parameter learning, more efficient
particle smoothers, particle filters for highly dimensional dynamic systems and, perhaps the
most recent one, the interconnections between MCMC and SMC methods.

4 Parameter learning

Consider again the general dynamic model. We now address explicitly the unknown vector of
static parameters θ of the model:

yt|xt, θ ∼ p(yt|xt, θ), (20)
xt|xt−1, θ ∼ p(xt|xt−1, θ), (21)

for t = 1, . . . , T and initial probability density p(x0|θ) and prior p(θ). There are primarily two
ways to tackle the problem of learning θ: batch sampling and online sampling.

Batch sampling. The solution involves obtaining an approximation, say pN(yT |θ), to the joint
likelihood p(yT |θ). For the NDLM of Section 2, the predictive density was obtained analytically
from Eq. (13). The approximation pN(yT |θ) can be obtained by any of the previous filters as

pN(yT |θ) =
T∏
t=1

pN(yt|yt−1, θ) =
1

NT

T∏
t=1

N∑
i=1

p(yt|x(i)
t , θ), (22)

where x(i)
t ∼ p(xt|x(i)

t−1, θ), for i = 1, . . . , N . Therefore, the components of θ can be sam-
pled iteratively via a standard MCMC sampler, such as a Metropolis-Hastings algorithm, or
via a SIR step. Two of the major drawbacks of this solution are: 1) SMC loses its appeal-
ing sequential nature and 2) the overall MCMC or SIR scheme can be highly sensitive to the
approximation pN(yT |θ). See, for instance, Chopin (2002) and Del Moral et al. (2006) for
more theoretical justifications and further details, Doucet and Tadic (2003), Andrieu, Doucet
and Singh (2004), Poyiadjis, Doucet and Singh (2005), Andrieu, Doucet and Tadic (2005) and
Olsson, Cappé, Douc and Moulines (2006) for expectation-maximization-like schemes, and
Fernández-Villaverde and Rubio-Ramı́rez (2005, 2007) and DeJong et al. (2009) for applica-
tions in dynamic stochastic general equilibrium macroeconomic models.
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Particle filters and MCMC. Before introducing particle filters that learn about parameters
in a sequential manner, we should mention that hybrid schemes that combine particle methods
and MCMC methods are abundant. Gilks and Berzuini (2001) and Polson, Stroud and Müller
(2008), for instance, use MCMC steps to sample and replenish static parameters in dynamic sys-
tems. Andrieu, Doucet and Holenstein (2010) introduce particle MCMC methods to efficiently
construct proposal distributions in high dimension via SMC methods.

Online sampling. The solution here is to produce sequential MC approximations to p(xt, θ|yt),
sometimes p(xt−1, xt, θ|yt) and/or other small dimensional functions (small compared to t) of
(xt, θ) conditional on yt. Simply resampling θ over time is bound to fail since, in general, after
a few time steps the particle set will contain only one particle. Gordon, Salmond and Smith
(1993) suggest incorporating artificial evolution noise for θ when tackling the problem of se-
quentially learning the static parameters of a state space model. Since parameters are not states,
adding noise artificially will eventually distort and compromise the validity of the approximated
posterior distributions. Their approach imposes a loss of information in time as artificial uncer-
tainties added to the parameters eventually result in a very diffuse posterior density for θ. In
what follows, we introduce three well established filters for sequentially learning both xt and θ:
(i) The Liu and West filter; (ii) The Storvik filter; and (iii) The particle learning (PL) filter of
Carvalho et al. (2010) and Lopes et al. (2010).

4.1 Liu and West filter

Liu and West (2001) combine (i) the APF of Pitt and Shephard (1999), (ii) a kernel smoothing
approximation to p(θ|yt−1) via a mixture of multivariate normals, and (iii) a neat shrinkage
idea to incorporate artificial evolution for θ without the associated loss of information; see
West (1993a,b). More specifically, let the set of i.i.d. particles {x(i)

t−1, θ
(i)
t−1}Ni=1 approximate

p(xt−1, θ|yt−1) such that p(θ|yt−1) can be approximated by

pN(θ|yt−1) =
1

N

N∑
j=1

f(θ;m(j), V ) (23)

where m(j) = aθ
(j)
t−1 + (1− a)θ̄, θ̄ =

∑N
j=1 θ

(j)
t−1/N , V = h2

∑N
j=1(θ

(j)
t−1 − θ̄)(θ

(j)
t−1 − θ̄)′/N and

h2 = 1 − a2. The subscript t of θt is used only to indicate that samples are from p(θ|yt). The
APF of Pitt and Shephard (1999) of Eq.(17) can now be written for the state vector (xt, θt) as

p(xt, xt−1, θt, θt−1|yt, yt−1) = p(yt|xt−1, θt−1)p(xt−1|θt−1, y
t−1)p(θt−1|yt−1)︸ ︷︷ ︸

1.Resample

× p(xt|xt−1, θt, y
t)p(θt|θt−1, y

t)︸ ︷︷ ︸
2.P ropagate

. (24)

In general and similar to the APF filter of Section 3, p(yt|xt−1, θ) is not available for point-
wise evaluation and/or p(xt|xt−1, θt, y

t) is not easy to sample from. Liu and West resample
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old particles with weights proportional to p(yt|g(xt−1),m(θt−1)), where g(·) and m(·) are de-
scribed above. Then, they propagate θt from the proposal propagation density p(θt|θt−1) and
propagate xt conditional on θt from the evolution density q(xt|xt−1, θ, y

t) ≡ p(xt|xt−1, θt). The
propagated particles (xt, θt) have associated weights

ω̃t ∝
p(yt|xt, θt)

p(yt|g(xt−1),m(θt−1))
,

which leads to Algorithm 5 below.
The performance of the LW filter depends on the choice of the tuning parameter a, which

drives both the shrinkage and the smoothness of the normal approximation. It is common prac-
tice to set a around 0.98 or higher. The components of θ can be either transformed in order to
accommodate the approximate local normality or the multivariate normal approximation could
be replaced by a composition of, say, conditionally normal densities for location parameters and
inverse-gamma densities for scale/variance parameters. See, for example, Petris et al. (2009,
pp. 222 - 228) for an example based on the local level model and Carvalho and Lopes (2007)
for an application to Markov switching stochastic volatility models.

Example 2: Stochastic volatility model. In its simplest form, asset returns yt are modeled
as conditionally independent normal random variables with log-variance xt following a first-
order autoregressive model, i.e. yt|xt ∼ N(0, exp{xt}) and xt|xt−1 ∼ N(α + βxt−1, τ

2); see
Jacquier, Polson and Rossi (1994) and Kim, Shephard and Chib (1998). One possible version
of the LW filter assumes, for example, that θ = (α, β, log τ 2) and g(xt−1) = α + βxt−1. �

Algorithm 5: Liu and West filter (LWF)

1. Resample {(x̃t−1, θ̃t−1)
(i)}Ni=1 from {(xt−1, θt−1)

(i)}Ni=1 with weights
w

(i)
t ∝ p(yt|g(x

(i)
t−1),m

(i)), where m(i) is defined in Eq. (23).

2. Propagate

(a) {θ̃(i)
t−1}Ni=1 to {θ̂(i)

t }Ni=1 via N(m̃(i), V ), then

(b) {x̃(i)
t−1}Ni=1 to {x̂(i)

t }Ni=1 via p(xt|x̃(i)
t−1, θ̂

(i)
t ).

3. Resample {(xt, θt)(i)}Ni=1 from {(x̂t, θ̂)(i)}Ni=1 with weights

w
(i)
t ∝

p(yt|x̂(i)
t ,θ̂

(i)
t )

p(yt|g(x̃(i)
t−1),m̃(i))

.

4.2 Storvik filter

For the class of state-space models where p(θ|xt, yt) can be rewritten as p(θ|st), where st is a
low-dimensional set of conditionally sufficient statistics and can be recursively computed via
st = S(st−1, xt, yt), Storvik (2002) (see also Fearnhead, 2002) proposed Algorithm 6 below.
This algorithm can be thought of as an extension of the bootstrap filter with the additional steps
of sequentially updating the sufficient statistics and sampling θ.

12



Algorithm 6: Storvik Filter (SF)

1. Propagate {x(i)
t−1}Ni=1 to {x̃(i)

t }Ni=1 via q(xt|xt−1, θ, y
t).

2. Resample {(xt, st−1)
(i)}Ni=1 from {(x̃t, st−1)

(i)}Ni=1 with weights

w
(i)
t ∝

p(yt|x̃(i)
t , θ)p(x̃

(i)
t |x

(i)
t−1, θ)

q(x̃
(i)
t |x

(i)
t−1, θ, y

t)
.

3. Compute sufficient statistics: st = S(st−1, xt, yt).

4. Sample θ from p(θ|st).

Example 2 (continued). The stochastic volatility model admits recursive sufficient statistics
for θ = (α, β, τ 2) when p(θ) is conditionally conjugate normal-inverse gamma. More pre-
cisely, when (α, β|τ 2) ∼ N(b0, τ

2B0) and τ 2 ∼ IG(c0, d0), it easy to see that (α, β|τ 2, xt) ∼
N(bt, τ

2Bt) and (τ 2|xt) ∼ IG(ct, dt), where B−1
t = B−1

t−1 + ztz
′
t, B

−1
t bt = B−1

t−1bt−1 + xtzt,
ct = ct−1 + 1/2, dt = dt−1 + (xt − b′tzt)xt/2 + (bt−1 − bt)′B−1

t−1bt−1/2 and z′t = (1, xt−1). The
recursive sufficient statistics are functions of xt−1, x2

t−1, xt−1xt and x2
t .

All simulated exercises in Storvik (2002) are based on a blind propagation rule, i.e. q(xt|xt−1, θ, y
t)

above is equal to p(xt|xt−1, θ). In this case, resampling is performed with weights wt ∝
p(yt|xt, θ). Like any other PF with blind propagation, such as the bootstrap filter, this filter
is bound to suffer from particle degeneracy, which in turn directly compromises sequential pa-
rameter estimation.

4.3 Particle learning

Carvalho et al. (2010) present methods for sequential filtering, particle learning (PL) and
smoothing for rather general state space models. They extend Chen and Liu’s (2000) mixture
Kalman filter (MKF) methods by allowing parameter learning and utilize a resample-propagate
algorithm together with a particle set that includes state sufficient statistics. Recall the sim-
ulated exercise from Section 3 that empirically shows that resample-propagate filters tend to
outperform propagate-resample ones. They also show via several simulation studies that PL
outperforms both the LW and Storvik filters and is comparable to MCMC samplers, even when
full adaptation is considered. The advantage is even more pronounced for large values of T .

Let st and sxt denote the parameter and state sufficient statistics satisfying deterministic
updating rules st = S(st−1, xt, yt), as in the Storvik filter from the previous subsection, and
sxt = K(sxt−1, θ, yt), for K(·) mimicking the Kalman filter recursions (see Example 3 below).
Then PL can be described as follows.
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Algorithm 7: Particle learning (PL)

1. Resample (θ̃, s̃xt−1, s̃t−1) from (θ, sxt−1, st−1) with weights wt ∝ p(yt|sxt−1, θ).

2. Sample xt from p(xt|s̃xt−1, θ̃, y
t).

3. Update parameter sufficient statistics: st = S(s̃t−1, xt, yt).

4. Sample θ from p(θ|st).

5. Update state sufficient statistics: sxt = K(s̃xt−1, θ, yt).

In many cases S will also be a function of xt−1 and possibly other lags of the state variable,
such as in the stochastic volatility model of Example 2. In these cases, the above algorithm
is slightly changed and particles for such lagged values are also carried over time. Therefore,
step 2 is modified to sample (xt−1, xt) from p(xt−1, xt|sxt−1, θ, y

t), which implies sampling xt−1

from p(xt−1|sxt−1, θ, y
t) and xt from p(xt|xt−1, θ, y

t).

Example 3 (Conditional NDLM). Carvalho et al. (2010) derive the PL scheme for the class of
conditional NDLM defined by the observation and evolution equations that assume the form of
a linear system (see the NDLM Eqs. (1) and (2)) conditional on an auxiliary state λt

yt = F ′λt
xt + vt, vt ∼ N(0, σ2

λt
), (25)

xt = Gλtxt−1 + wt, wt ∼ N(0, τ 2
λt

), (26)

with the quadruple {Fλt , Gλt , σ
2
λt
, τ 2
λt
} being a function of the static parameter vector θ. The

marginal distributions of the observation error and state shock distributions are any combina-
tion of normal, scale mixture of normals, or discrete mixture of normals depending on the
specification of the distribution of the auxiliary state variable p(λt+1|θ) (Chen and Liu, 2000).
Extensions to hidden Markov specifications where λt+1 evolves according to p(λt+1|λt, θ) are
discussed in Carvalho et al. (2010). In the case where the auxiliary state variable λt is dis-
crete, such as in stochastic volatility with jumps models (Markovian or not), the state xt−1

can be analytically integrated out, in addition to xt and λt, at the initial resampling step,
i.e. p

(
yt|(λt−1, s

x
t−1, θ)

(i)
)

=
∑

λt
p(yt|λt, (sxt−1, θ)

(i))p(λt|(λt−1, θ)
(i)), where the conditional

sufficient statistics for states (sxt ) and parameters (st) satisfy the deterministic updating rules
st = S (st−1, xt, λt, yt) and sxt = K

(
sxt−1, θ, λt, yt

)
, where S(·) denotes, as defined previously,

the recursive update of the parameter sufficient statistics and K(·) denotes the Kalman filter
recursions of the conditional NDLM given in Eqs. (3) to (8). The algorithm can be summarized
as follows:

1. resample (λ̃t−1, θ̃, s̃
x
t−1, s̃t−1) from (λt−1, θ, s

x
t−1, st−1) with weightswt ∝ p(yt|λt−1, s

x
t−1, θ);

2. sample λt from p(λt|λ̃t−1, θ̃, y
t);

3. sample xt from p(xt|λt, s̃xt−1, θ̃, y
t);

4. compute st = S(st−1, xt, λt, yt);
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5. sample θ from p(θ|st); and

6. compute sxt = K(λt, s
x
t−1, θ, yt).

In the case where the auxiliary state variable λt is continuous, the authors extend the above
scheme by adding to the current particle set a propagated particle λt+1 ∼ p(λt+1|(λt, θ)(i)).
�

PL in time series models. Successful implementations of PL (and hybrid versions of PL)
have appeared over the last couple of years. Rios and Lopes (2009), for example, propose a
hybrid LW-Storvik filter for the Markov switching stochastic volatility model that outperforms
the Carvalho and Lopes (2007) filter. Lund and Lopes (2009) sequentially estimate a regime-
switching macro-finance model for the postwar US term-structure of interest rates, while Prado
and Lopes (2009) adapt PL to study state-space autoregressive models with structured priors.
Chen, Petralia and Lopes (2009) propose a hybrid PL-LW sequential MC algorithm that fully
estimates non-linear, non-normal dynamic to stochastic general equilibrium models, with a par-
ticular application in a neoclassical growth model. Additionally, Dukic, Lopes and Polson
(2009) use PL to track flu epidemics using Google trends data, while Lopes and Polson (2010)
use PL to estimate volatility and examine volatility dynamics for financial time series, such as
the S&P500 and the NDX100 indices, during the early part of the credit crisis.

Sequential Bayesian computation via PL. Lopes et al. (2010) develop a simulation-based
approach to sequential Bayesian computation for both dynamic and non-dynamic systems. They
show through various important applications that PL provides a simple yet powerful framework
for efficient sequential posterior sampling strategies. For example, Carvalho et. al. (2009)
adapt PL to a rich and general class of mixture models that include finite mixture models and
Dirichlet process mixture models, as well as for the less common settings of latent feature se-
lection through an Indian Buffet process and dependent distribution tracking through a probit
stick breaking model. Taddy, Gramacy and Polson (2010) show that PL is the best alternative to
perform online posterior filtering of tree-states in dynamic regression tree models, while Gra-
macy and Polson (2010) use PL for online updating of Gaussian process models for regression
and classification. Shi and Dunson (2009) adopt PL for stochastic variable selection and model
search in linear regression and probit models, while Mukherjee and West (2009) focus on model
comparison for applications in cellular dynamics in systems biology.

Example 4 (Comparison between LW, Storvik and PL). We compare the performance of
these particle filters using the local level model of Example 1 with parameter learning, where
the random walk system equation is replaced by a first-order autoregression. More precisely,
yt|xt, θ ∼ N(xt, σ

2) and xt|xt−1, θ ∼ N(α + βxt−1, τ
2), where x0 ∼ N(m0, C0) and θ =

(α, β, τ 2, σ2). The prior distribution of θ is p(θ) = p(σ2)p(τ 2)p(α, β|τ 2), where σ2 ∼
IG(n0/2, n0σ

2
0/2), τ 2 ∼ IG(ν0/2, ν0τ

2
0 /2) and (α, β) ∼ N(b0, τ

2B0). The recursive suffi-
cient statistics for θ can easily be derived. It can be shown that β|(τ 2, xt) ∼ N(bt, τ

2Bt) and
τ 2|xt ∼ IG(ν1/2, ν1τ

2
1 /2), where ν1 = ν0 + t, B−1

t = B−1
0 + Z ′tZt, B

−1
t bt = B−1

0 b0 + ZT
t zt,

and ν1τ
2
1 = ν0τ

2
0 + (zt − Xtbt)

′zt + (b0 − bt)
′B−1

0 b0, for zt = (x1, . . . , xt)
′, Zt = (1t, Z2t),
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Z2t = (x0, . . . , xt−1)
′ and 1t a t-dimensional vector of ones. The quantities (nt, ntτ

2
t , bt, Bt)

can be rewritten recursively as functions of (νt−1, νt−1τ
2
t−1, bt−1, Bt−1), xt−1, xt and yt. A time

series of length T = 200 was simulated using θ = (0.0, 0.9, 0.5, 1.0) and x0 = 0. The prior
hyperparameters are m0 = 0, C0 = 10, b0 = (0.0, 0.9)′, B0 = I2, n0 = ν0 = 10, τ 2

0 = 0.5
and σ2

0 = 1.0, leading to relatively uninformative prior information. The performance of the
filters is assessed by running each algorithm for R = 100 times based on N = 1000 particles.
A very long PL (N = 100, 000) is run to serve as a benchmark for comparison. Let q(γ, α, t) be
the 100αth percentile of p(γ|yt), where γ is an element of θ. We define the root mean squared
error as the square root of MSE(γ, α, f, t) =

∑
t,r[q(γ, α, t) − qfr(γ, α, t)]2/R for filter f in

{LW,STORVIK,PL} and replication r = 1, . . . , R. Finally, a full adaptation is implemented for
the three filters. In other words, LW differs from PL only through the sequential estimation of
θ, Storvik differs from PL only to the extent that Storvik propagates first and then resamples,
while PL resamples first and then propagates. Results are summarized in Figures 3 and 4. Both
the Storvik filter and PL are significantly better than the LW filter, while PL is moderately better
than Storvik, particularly when estimating the pair (τ 2, σ2). �

4.4 Smoothing

In addition to delivering sequential filtering for parameters and states, particle filters can also be
implemented effectively when the main goal is smoothing the states conditional on the whole
vector of observations yT . In this sense, particle smoothers are alternatives to MCMC in state-
space models (Kitagawa, 1996). Godsill, Doucet and West (2004) introduced an algorithm that
relies on (i) forward particle sampling and (ii) backward particle resampling. Carvalho et al.
(2010) extend the algorithm to accommodate sequential learning of the parameter vector θ. In
this more general case, it can be shown that

p(xT , θ|yT ) =

{
T−1∏
t=1

p(xt|xt+1, θ, y
t)

}
p(xT , θ|yT ), (27)

whose components, by Bayes rule and conditional independence, are

p(xt|xt+1, θ, y
t) ∝ p(xt+1|xt, θ)p(xt|θ, yt). (28)

This leads to a backward sampling algorithm that resamples forward particles xt from p(xt|θ, yt)
with weights proportional to p(xt+1|xt, θ). More precisely, for each particle i, for i = 1, . . . , N ,
start with (x̃T , θ̃)

(i) = (xT , θ)
(i), i.e. a draw from p(xT , θ|yT ). Then, for t = T − 1, . . . , 1, sam-

ple x̃(i)
t from {x(j)

t }Nj=1 with weights π(j)
t ∝ p(x̃t+1|x(j)

t , θ̃). In the end, (x̃1, . . . , x̃T )(i) are draws
from p(xT |yT ) for i = 1, . . . , N . Notice that the algorithm is O(TN2) so the computational
time to obtain draws from p(xT |yT ) is expected to be much larger than the computational time
to obtain draws from p(xt|yt) via standard SMC filters for t = 1, . . . , T . See Briers, Doucet and
Maskell (2010) for an alternative O(TN2) SMC smoother for the case where θ is known. An
O(TN) smoothing algorithm has recently been introduced by Fearnhead, Wyncoll and Tawn
(2008) also for the case where θ is known. See also Douc, Garivier, Moulines and Olsson (2009)
for additional FFBS particle approximations.
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Figure 3: Comparison between LWF, SF and PL. Percentiles of p(θ|yt) (2.5th, 50th and 97.5th)
based on 100 replications of each particle filter with N = 1000 particles (grey lines). Black
lines are based on PL and N = 100, 000. Liu and West filter (left column), Storvik’s filter
(center column) and particle learning (right column). The row (from top to bottom) represents
the components of θ = (α, β, τ 2, σ2).
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Figure 4: Comparison between LWF, SF and PL. Root mean squared error of R = 100 replica-
tions for each filter. All filters are based on N = 1000 particles and the root mean squared error
is computed against a long PL run (N = 100, 000).
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Example 4 (cont.) Comparison between PL and MCMC. In the case of pure filtering, i.e.
when the parameter vector θ = (α, β, τ 2, σ2) is known and fixed, it is easy to see that both
filtered and smoothed distributions, p(xt|yt, θ) and p(xt|yT , θ), are available in closed form
(see Eqs. (5) and (10), respectively). For example, Figure 5 shows that results of particle
filtering and a smoothing approximation based on the OAPF (N = 2000 particles) virtually
match the true distributions. Figure 6 shows that both MCMC approximation (M = 2000
draws, after M0 = 10000 as burn-in) and PL approximation (N = 2000 particles) to p(α|yT ),
p(β|yT ), p(τ 2|yT ) and p(σ2|yT ) are virtually identical. Computational cost is measured here
in CPU seconds with N = 1000 and M0 = M = 1000 points. FFBS is about one order of
magnitude faster than PL for smoothing (34s versus 233s), but PL is approximately three orders
of magnitude faster than FFBS for filtering (2s versus 3500s). �

4.5 Sequential model assessment

One of the direct benefits of particle filters is the easy approximation of marginal likelihoods
and Bayes factors. These tasks are usually rather involved under MCMC approximations, where
computing marginal likelihoods is essentially an independent task in the MCMC parapherna-
lia. See Kass and Raftery (1995), Carlin and Han (2001), Lopes and West (2004), Gamerman
and Lopes (2006, ch. 7) and their references for additional details on several MCMC-based
algorithms for Bayesian model assessment.

Even in the simple case of the NDLM of Section 2 and Eq. (13), computing p(y1, . . . , yT )
is a nontrivial task. In this case, the simplest Monte Carlo solution is

pN(yT ) =
1

N

N∑
i=1

p(yT |(σ2, τ 2)(i)) ≈ p(yT ) =

∫
p(yT |σ2, τ 2)p(σ2, τ 2)dσ2dτ 2, (29)

where {(σ2, τ 2)(i)}Ni=1 is a random sample from the prior p(σ2, τ 2). Despite its simplicity, this
approximation is very unstable when the prior and the likelihood for (σ2, τ 2) are moderately
separated. Moreover, the MC approximation deteriorates quickly for more general state-space
models where the dimension of the parameter space is likely to be greater than two. The se-
quential Monte Carlo solution to this problem is rather straightforward, with Eq. (13) being
approximated by

pN(yT ) =
1

NT

T∏
t=1

N∑
i=1

p(yt|(xt−1, σ
2, τ 2)(i)), (30)

where {(xt−1, σ
2, τ 2)(i)}Ni=1 is the particle approximation to p(xt, σ2, τ 2|yt−1) obtained from the

LW filter, Storvik’s filter or PL. See the stochastic volatility with Student-t errors from Section
5.2 for the sequential computation of posterior model probabilities.

There are contributions that explicitly deal with parameter, state and model uncertainties all
together via SMC methods. Fearnhead (2004), MacEachern, Clyde and Liu (1999 and Carvalho,
Lopes, Polson and Taddy (2009) use particle methods for general mixtures.
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Figure 5: Particle smoothing. (a) Comparing the true filtered and smoothed distributions,
p(xt|yt) and p(xt|yT ), respectively, with approximations based on N = 2000 particles from
the OAPF. (b) Comparing the MCMC and PL approximations to the filtered and smoothed dis-
tributions, p(xt|yt) and p(xt|yT ). MCMC is based on M = 2000 draws, after M0 = 10, 000 as
burn-in, while PL is based on N = 2000 particles.
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draws, after M0 = 10, 000 as burn-in, while PL is based on N = 2000 particles.
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5 Applications

In this section we apply particle filters to four time-series problems that are of common interest
in many scientific areas. The first application revisits the stochastic volatility model of Example
2. The second application is concerned with the Markov switching stochastic volatility model
of Carvalho and Lopes (2007). The last two applications illustrate the use of particle filters in
modeling realized volatilities and in estimating unemployment rates via a dynamic generalized
linear model.

5.1 Dynamic beta regression

Da Silva, Migon and Correia (2009) use a dynamic beta regression to analyze (via MCMC) the
Brazilian monthly unemployment rate from March 2002 to December 2009. More precisely,
they model the unemployment rate at time t, namely yt, by

yt|µt, φ ∼ Beta(φµt, φ(1− µt)) (Beta model)
µ−1
t = 1 + exp{−βt} (link function)

βt|βt−1,W ∼ N(βt−1,W ), (transition)

for t = 1, . . . , T , β0 ∼ N(m0, C0), φ ∼ IG(a0, b0) and W ∼ IG(c0, d0). The dynamic beta
regression is a special case of the dynamic generalized linear model (DGLM) of West, Harrison
and Migon (1985), where the observational distribution belongs to the exponential family. The
data was downloaded from The Brazilian Institute for Geography and Statistics (IBGE) site.2

We illustrate the computation of sequential Bayes factors via particle filters by compar-
ing the Beta regression model to a simple local level model, i.e. yt|µt, σ2 ∼ N(µt, σ

2) and
µt|µt−1, τ

2 ∼ N(µt−1, τ
2), where µ0 ∼ N(m0, C0), σ2 ∼ IG(a0, b0) and τ 2 ∼ IG(c0, d0) with

given hyperparameters. The prior hyperparameters were set at m0 = 0.1, C0 = 100, a0 = 2.1,
b0 = (a0 + 1)0.00001, c0 = 2.1 and d0 = (c0 + 1)0.00001, for the local level model and at
m0 = log(y1/(1−y1)), C0 = 0.1, a0 = 2.1, b0 = (a0+1)15000, c0 = 2.1 and d0 = (c0+1)0.05,
for the dynamic beta model. More general dynamics, such as seasonality, could easily be in-
cluded in both models with only slight modifications to the models and particle filters. We
ignore the seasonality here for simplicity.

Sequential inference for the local level model was performed by PL whereas that for the
dynamic beta regression was performed by the LWF. Results appear in Figure 7, while a Monte
Carlo study is presented in Figures 8 and 9. The estimations of µt under both models are
relatively similar, with the sequential Bayes factor slightly favoring the dynamic beta regression
model. The Monte Carlo error associated with the estimation of parameters and Bayes factors is
relatively small. See Carvalho, Lopes and Polson (2009) for more details about PL for dynamic
generalized linear models and dynamic discrete choice models.

2http://www.sidra.ibge.gov.br/bda/pesquisas/pme/default.asp#dead.
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Figure 7: Dynamic beta regression. (a) Sequential Monte Carlo (SMC) approximations for
the median and 95% credibility interval based on N = 10, 000 particles for both models. (b)
Sequential Bayes factor. (c) and (d) Sequential parameter learning for σ and τ from the local
level model. (e) and (f) Sequential parameter learning for (1 + φ)−1/2 and W 1/2 from the
dynamic beta model.
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Figure 8: Dynamic beta regression. A total of 20 replications of the SMC algorithm, each one
based on N = 10, 000 particles. Top row: σ and τ from the local level model. Bottom row:
(1 + φ)−1/2 and W 1/2 from the dynamic beta model.
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Figure 9: Dynamic beta regression. A total of 20 replications of the SMC algorithm, each one
based on N = 10, 000 particles.
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5.2 Stochastic volatility model with Student-t innovations

We revisit the simple SV model with normal innovations of Example 2 and compute sequential
Bayes factors against the alternative SV model with Student-t innovations. We use monthly log
returns of GE stock from January 1926 to December 1999 for 888 observations. This series was
analyzed in Example 12.6 of Tsay (2005, ch. 12). 3 The competing models are:

Observation equation : yt|(xt, θ) ∼ tη(0, exp{xt}),
System equation : (xt|xt−1, θ) ∼ N(α + βxt−1, τ

2),

where tη(µ, σ2) denotes the Student-t distribution with η degrees of freedom, location µ and
scale σ2. The number of degrees of freedom η is treated as known. Sequential posterior infer-
ence is based on the Liu and West filter with N = 100, 000 particles. The shrinkage constant
a is set at a = 0.95, whereas prior hyperparameters are m0 = 0, C0 = 10, ν0 = 3, τ 2

0 = 0.01,
b0 = (0, 1)′ and B0 = 10I2. Particle approximation to the sequential posterior model probabili-
ties, assuming a uniform prior for η over models {t∞, t2, . . . , t20}, appears in Figure 10, where
t∞ denotes the normal distribution. Figure 10(d) shows percentiles of p(σt|yt) when integrating
out over all competing models in {t∞, t2, . . . , t20}. One can argue that the data slowly move
over time from a more t-like, heavy tail model towards a more Gaussian, thin tail model. Figures
11 and 12 present posterior summaries for the volatilities and parameters of a few competing
models.

5.3 Markov switching stochastic volatility model

Jumps have been intensively studied in financial data analysis; see, for example, Eraker, Jo-
hannes and Polson (2003). So et al. (1998) suggest a model that allows for occasional discrete
shifts in the parameter determining the level of the log-volatility through a Markovian process.
They claim that this model not only is a better way to explain volatility persistence but is also
a tool to capture changes in economic forces, as well as abrupt changes due to unusual market
forces. Carvalho and Lopes (2007) adopt the LWF when sequentially estimating univariate fi-
nancial time series with a MSSV structure. Let us call this filter the CL filter. For illustration,
we consider a MSSV model with two regimes, i.e.

yt|xt, θ ∼ N(0, exp{xt}),
λt|xt−1, st, θ ∼ N(αst + βxt−1, τ

2),

where Pr(st = j|st−1 = i) = pij , for i, j = 1, 2, and parameters θ = (α1, α2, β, τ
2, p11, p22).

Rios and Lopes (2009) propose an extension of the CL filter, which they named the extended
LW (ELW) filter, that combines features of the LW filter and PL. The simulation exercise from
figure 13 shows that the CL filter degenerates after 500 observations whereas the ELW filter
never collapses.

3The data are available at http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts2/m-geln.txt
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Figure 11: Stochastic volatility model. (a) GE returns; (b) and (c) 2.5th, 50th and 97.5th per-
centiles of p(σt|yt,M), where σ2

t = exp{xt}, for M = t12 and M = t18, respectively. (d)
2.5th, 50th and 97.5th percentiles of p(σt|yt) by integrating out over all competing models in
{Normal, t2, . . . , t20}.
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Figure 12: Stochastic volatility model. Column 1: Marginal prior distributions for α, β and
τ 2. Columns 2 to 4: Sequential 2.5th, 50th and 97.5th percentiles of p(γ|yt,M1), for γ in
(α, β, τ 2,M) and model M ∈ {Normal, t12, t18}.
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Figure 13: Markov switching stochastic volatility. Carvalho and Lopes’ (2007) filter (last two
rows) and Rios and Lopes’ (2009) ELW filter (first two rows). 2.5th, 50th and 97.5th percentiles
of the marginal distribution of each parameter based on N = 5000 particles. The dotted lines
are the true values are α1 = −2.5, α2 = −1.0, β = 0.5, τ 2 = 1.0, p11 = 0.99 and p22 = 0.985.

30



5.4 Realized volatility

We consider the intradaily realized volatilities of Alcoa stock from January 2, 2003 to May
7, 2004 for 340 observations. The daily realized volatilities used are the sums of squares of
intraday 5-minute, 10-minute and 20-minute log returns measured in percentages; see Tsay
(2005, Ch. 11). In what follows, we use the logarithms of the daily realized volatilities. Figure
14 presents the time series of log realized volatilities. As expected, all three series behave
similarly over time and are highly positively correlated, with the 5 & 10 and 10 & 20 minute
realized volatilities more correlated than the 5 & 20 minute ones. Table 1 shows summary
statistics of the time series.

Table 1: Summary statistics. Correlations (below main diagonal) and covariances (main diago-
nal and above).

Correlations/covariances
RV Mean Median Skewness Kurtosis 5-minute 10-minute 20-minute
5-minute 0.992 0.977 1.091 5.479 0.314 0.270 0.258
10-minute 0.913 0.871 0.153 0.769 0.857 0.317 0.307
20-minute 0.850 0.847 0.034 0.843 0.732 0.865 0.396

Two competing models. We entertain two models: i) the three RV time-series are mod-
eled by independent univariate local level models; and ii) the trivariate vector of RV time-
series is modeled by a multivariate local level model. In the first model, say model M1,
the i-minute log realized volatility yit, for i = 5, 10, 20, is initially modeled by a local level
model: (yit|xit, σ2

i ) ∼ N(xit, σ
2
i ) and (xit|xi,t−1, τ

2
i ) ∼ N(xi,t−1, τ

2
i ). In the second model,

say model M2, the univariate local level model is extended to jointly model the p = 3 time
series of realized volatilities: (yt|xt,Σ) ∼ N(1pxt,Σ) and (xt|xt−1, τ

2) ∼ N(xt−1, τ
2) and 1p

is a p-dimensional unity vector. The diagonal elements of the covariance matrix Σ are σ2
i , for

i = 1, . . . , p, and the non-diagonal elements are σij , for i < j = 1, . . . , p.

Parameter learning. The variances σ2
i and τ 2

i under M1 are, a priori, independent with
σ2
i ∼ IG(a0, b0), τ 2

i ∼ IG(c0, d0) and hyperparameters a0 = c0 = 10, b0 = 1.1 and
d0 = 0.55 common across i = 5, 10, 20. In this case the prior mean and mode of σ2

i are
0.122 and 0.1, respectively, while its prior 95% credibility interval is (0.064, 0.229). Similarly,
the prior mean and mode of τ 2

i are 0.061 and 0.05, respectively, while its 95% credibility inter-
val is (0.032, 0.115). Under modelM2, τ 2 ∼ IG(c0, d0) and Σ ∼ IW (ν0, S0)

4. When p = 1,
σ2 ∼ IG(ν0/2, S0/2), so we set ν0 = 2a0 = 20 and S0 = 2b0Ip = 2.2Ip for comparison to the

4Σ is inverse-Wishart with parameters ν0 and S0 and density p(Σ; ν0, S0) ∝ |Σ|−
ν0+p+1

2 exp{−0.5tr(S0Σ−1)},
for ν0 > p − 1, S0 > 0 (positive definite) and tr(Σ) = σ2

1 + · · · + σ2
p. The mean and the mode of Σ are

S0/(ν0 − p − 1) and S0/(ν0 + p + 1), respectively. Its inverse Σ−1 is Wishart with the same parameters and
denoted by Σ−1 ∼ W (ν0, S0). The mean and the mode of Σ−1 are ν0S−1

0 and (ν0 − p − 1)S−1
0 (ν0 ≥ p + 1),

respectively.
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univariate models. The prior mean and mode of Σ are 0.138Ip and 0.092Ip, respectively. The
parameter θ = (τ 2,Σ) can be sampled from p(θ|st) = pIG(τ 2; ct, dt)pIW (Σ; νt, St), where the
recursive sufficient statistics are ct = ct−1 + 1/2, dt = dt−1 + (xt−xt−1)

2/2, νt = νt−1 + 1 and
St = St−1 + (yt − 1pxt)(yt − 1pxt)

′.

State learning. Let us start by assuming that (xt−1|yt−1, θ) ∼ N(mt−1, Ct−1), with x0 ∼
N(m0, C0), θ = (Σ, τ 2) and sxt−1 = (mt−1, Ct−1). PL starts by resampling the particles
{(θ, st−1, s

x
t−1)

(i)}Ni=1 with weights p(yt|sxt−1, θ) = pN(yt; 1pmt−1, Qt), where Qt = RtDp + Σ,
Dp = 1p1

′
p and Rt = Ct−1 + τ 2. The state sufficient statistics sxt−1 are then propagated to

st = (mt, Ct), where mt = (1 − At1p)mt−1 + Atyt, Ct = Rt − AtQtA
′
t and At = Rt1

′
pQ
−1
t .

Since both xt−1 and xt are used in dt when sampling τ 2 from IG(ct, dt), then (xt−1, xt) need
to be sampled from p(xt−1, xt|yt, θ) = pN(xt−1; g(yt), Vt)pN(xt;h(yt, xt−1), C̄t), where V −1

t =
C−1
t−1 + 1′pW

−11p, g(yt) = Vt(C
−1
t−1mt−1 + 1′pW

−1yt), C̄−1
t = τ−2 + 1′pΣ

−11p and h(yt, xt−1) =
C̄t(τ

−2xt−1 + 1′pΣ
−1yt), for W = τ 2Dp + Σ. Finally, marginal posterior inference for xt

given (yt, θ) is more efficient if drawn from p(xt|yt, sxt−1, θ) = pN(xt; m̃t, C̃t), where C̃−1
t =

R−1
t + 1′pΣ

−11p and m̃t = C̃t(R
−1
t mt−1 + 1′pΣ

−1yt).

Results. Figures 15 to 17 summarize the sequential learning of parameters and states for the
univariate local level model based onN = 10, 000 particles, which is fairly large considering the
sample size T = 340. Figures 18 to 21 summarize the results for the multivariate local model,
also based on N = 10, 000 particles. Figure 22 compares the sequential posterior medians for
the latent states from the three individual fits of modelM1 against the multivariate fit of model
M2. Notice the shrinkage effect of modelM2, which provides a smoother point estimate for
the latent state.

6 Concluding Remark

In this paper we review particle filters, which are also known as sequential Monte Carlo (SMC)
methods. We argue that, after almost two decades since the seminal paper of Gordon, Salmond
and Smith (1993), SMC methods now belong in the toolbox of researchers and practitioners in
many areas of modern science, ranging from signal processing and target tracking to robotics,
bioinformatics and financial econometrics. This paper focuses on the latter with five demon-
strations.

Besides the references of PF in financial econometrics cited in Section 5, some additional
ones are Johannes, Korteweg and Polson (2008) on predictive regressions and optimal portfolio
allocation, Raggi and Bordignon (2006), Jasra et al. (2008), Li et al. (2008), Creal (2008)
and Li (2009) on Lévy-type SV models, and Johannes, Polson and Stroud (2009) on extracting
latent jump diffusions from asset prices. See also Fearnhead and Meligkotsidou (2004) and
Fearnhead et al. (2008) for particle filters in partially-observed continuous-time models and
diffusions. PF for jump Markov systems are studied by Doucet, Gordon and Krishnamurthy
(2001) and Andrieu, Davy and Doucet (2003).
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Figure 14: Realized volatility. Log realized volatility of Alcoa stock based on the sum of squares
of intraday 5-minute, 10-minute and 20-minute log returns measured in percentage.
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Figure 15: Realized volatility. 2.5th, 50th and 97.5th percentiles of p(σ2
i |yti), p(τ 2

i |yti) and
p(xit|yti), where yi is i-minute log realized volatilities, for i = 5, 10, 20.
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Figure 16: Realized volatility. Histogram approximations to p(σ2
i |yT ) and p(τ 2

i |yT ), for i =
5, 10, 20.
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Figure 17: Realized volatility. 2.5th, 50th and 97.5th percentiles of p(xit|yti), where yi is i-
minute log realized volatilities, for i = 5, 10, 20.
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Figure 18: Realized volatility. Sequential 2.5th, 50th and 97.5th percentiles for the unique
components of Σ and for the correlations.
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Figure 19: Realized volatility. (a) Sequential 2.5th, 50th and 97.5th percentiles of p(τ 2|yt).
(b) Histogram approximation to p(τ 2|yT ). (c) Sequential 2.5th, 50th and 97.5th percentiles of
p(xt|yt).
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Figure 20: Realized volatility. Approximated posterior distributions of τ 2
i and σ2

i . Univariate
local level models (grey lines) and multivariate local level model (black lines), for i = 5, 10, 20
(solid, dashed and dotted lines).
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Figure 21: Realized volatility. Sequential learning of correlations. Sequential 2.5th, 50th and
97.5th percentiles of p(ρij|yt) (left column). Histogram approximation to p(ρij|yT ) (right col-
umn).
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Figure 22: Realized volatility. Sequential 50th percentiles of p(xit|yt,M1) for i = 5, 10, 20 and
p(xt|yt,M2), whereM1 is the univariate local level model andM2 its multivariate version.
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Finally, we like to express our sincere appreciation of the achievements of Professor Rudolf
E. Kalman. His works have led to many new developments in scientific computing, statistical
inference, and applications. Particle filters are one more example that will have a long lasting
impact in our profession.
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