
1 

THE UNIVERSITY OF TEXAS AT AUSTIN 
Department of Information, Risk,  

and Operations Management 
 
BA 386T Tom Shively 
 

PROBABILITY CONCEPTS AND NORMAL DISTRIBUTIONS 
 
 The fundamental idea underlying any statistical analysis is the idea that probability 
distributions represent uncertainty. This concept will be used over and over throughout the 
semester. The goal of a statistical analysis is to determine what the probability distribution is in a 
specific situation (for example, by estimating the mean and variance of the distribution) and how 
to use the resulting distribution to make appropriate inferences (for example, to forecast future 
observations of quarterly sales for a company and to obtain a realistic measure of how accurate 
the forecast is likely to be). 
 
 The goal of this topic summary note is to develop several important probability concepts in 
very simple contexts. The ideas will be applied to more realistic situations and “real-world” 
problems throughout the semester but the basic probability concepts and intuition developed here 
will never change. 
 
 One of the important philosophies of the course is to develop intuition about specific 
concepts in very simple contexts so you get a good understanding of the basic concept. The 
advantage of using simple contexts initially is that the concept is more easily explained without a 
complicated context to confuse the issue. Once the concept is understood it is then much easier to 
apply to the real-world problems that we are actually interested in. If you try to learn the basic 
concepts in complicated contexts it makes things much more difficult. 
 
 

 
Probability Concept #1: Random Variables 

 This section begins with two definitions. These are the only two formal definitions that will 
be given in the course. However, it is very helpful to have them as the semester goes along. 
Specific examples illustrating the definitions follow immediately. 
 
Definition #1: A random variable

 

 is a variable that take takes on numerical values determined by 
the outcome of a random experiment. A random variable is typically denoted by a capital letter 
such as X or Y. 

 Note that there are two parts to the definition of a random variable. First, the outcome must 
be a numerical value. Second, the outcome must be determined by a random experiment (as we 
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  1      2      3      4       5      6 

1/6 

pr(X = x) 

x 

will see, a random experiment is defined very broadly – for example, collecting a random sample 
of observations is a random experiment). 
 
Definition #2: The probability function

 

 expresses the probability that the random variable X 
takes on the specific value x. The notation that is often used is pr(X = x).  

 
Examples of random variables and probability functions 

 This section provides three examples to illustrate the concepts of random variables and 
probability functions. The ideas captured by these examples apply to a wide variety of more 
complex real-world problems that will be discussed during the semester. 
 
Example #1: Outcome of the roll of a six-faced die: 
 
 The outcome of the roll of a die is a random variable. The outcome is a numerical value (in 
particular, the possible outcomes are 1, 2, 3, 4, 5 and 6). The random experiment that determines 
the outcome is physically rolling the die. 
 
 Very important idea: There is uncertainty about the outcome of the roll of a die. This 
uncertainty is represented by a probability distribution. The important and fundamental idea to 
understand is that anytime there is uncertainty about the outcome of a random experiment, this 
uncertainty can be represented by a probability distribution. This is true in very simple cases such 
as rolling a die as well as in more complicated situations that will arise later in the semester in 
real-world problems. 
 
 Assuming the die is fair, there are six possible outcomes with equal probability 1/6 associated 
with each outcome. This information is summarized by the probability function written in 
numerical form on the left and shown in graphical form on the right: 
 
 

x pr(X = x) 
1 1/6 
2 1/6 
3 1/6 
4 1/6 
5 1/6 
6 1/6 

 
 
 In the graphical representation of the probability function, the height of the spike at each 
possible outcome is its associated probability.  
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 It is always useful to graph a probability distribution. A great deal can be learned by just 
observing the graph, particularly in more complicated situations.  
 
 The probability distribution summarizes all available information regarding the uncertainty 
associated with the outcome of a roll of a die. The information contained in the distribution 
above (and available at a glance) is that there are six possible outcomes and each outcome is 
equally likely. Both these pieces of information will be important, for example, if you are 
planning to gamble on the outcome of the roll of a die. This is a fairly straightforward example 
but it illustrates in a simple context the basic idea that a probability distribution concisely 
summarizes all available information about the uncertainty of the outcome of a future event (in 
this case the outcome of a roll of a die). 
 
 There are two equivalent ways to think about probability in this context. First, if the die is 
rolled many, many times, then on one-sixth of all rolls the number one will be face up. 
Equivalently, for a given roll of the die there is a one in six chance that a one will be face up (i.e. 
a probability of 1/6 that a one will be face up). Similar probability statements can be made about 
the other five possible outcomes (i.e. 2, 3, 4, 5 and 6). 
 
 Thinking about probability in this way (which is hopefully fairly intuitive) provides a useful 
way to interpret probability statements in a wide variety of contexts – see, for example, the 
discussion of interpreting probability statements in the context of the MBA salary/normal 
distribution example later in these notes. 
 

 
Aside 

 The outcome of a roll of a die is a discrete random variable because the outcome can only 
take on the discrete values: 1, 2, 3, 4, 5 or 6. The definition of a discrete random variable is not 
particularly important for this class but it is included here for completeness. Most of the random 
variables we will discuss this semester are continuous random variables such as those in 
examples #2 and #3 below. 
 

 
End Aside 

Example #2: Height of a man selected at random from the people walking past the business school  
 
 The height of a man selected at random from the people walking past the business school is a 
random variable. A person’s height is a numerical value and the random experiment that 
determines the value is “selecting a man at random from the people walking past the business 
school.” 
 
 This is an example of a continuous random variable because a man’s height can take on any 
value in a continuum of values. For example, the man’s height might be 70 inches, 71 inches or 
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any value in the continuum between 70 and 71 inches. The same statement holds for any two 
reasonable heights. 
 
 Since there is uncertainty about the height of the man who is selected, there is a probability 
distribution that represents this uncertainty. A possible distribution curve is drawn below.  

 

Height

Distribution curve for Height

 
 
The distribution curve is a continuous curve (not spikes at discrete values as for the discrete 
random variable in example #1) because the height of a man selected at random is a continuous 
random variable. The interpretation of continuous distributions and how to compute probabilities 
associated with various outcomes (such as “what is the probability that the height of the man 
selected will be between 70 and 71 inches”) will be discussed in the section “Normal 
Distribution” later in these notes. 
 
 The important point to take away from this example is that there is uncertainty about what the 
height of the man selected will be and this uncertainty is represented by a probability distribution. 
 
Example #3: Sales next quarter for a specific company 
 
 Sales next quarter for a specific company is a random variable. Quarterly sales is a numerical 
value and the random experiment that determines the value is “letting the economy run for the 
next quarter.” There are all kinds of forces that affect future sales whose magnitude and impact 
are uncertain. As mentioned following the definition of a random variable, a random experiment 
is defined very broadly. Anytime there is uncertainty about the effect of future events on a value 
of interest (examples of a value of interest are future sales, profits, stock returns, exchange rates, 
interest rates, etc.) we will interpret the value of interest to have been generated by the random 
experiment of “letting the economy run.” 
 
 Since there is uncertainty about next quarter’s sales there is a probability distribution that 
represents this uncertainty. A possible distribution is drawn below. 
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Sales

Distribution curve for Sales

 
 
 As discussed later in the semester this distribution can be used to make a prediction of next 
quarter sales and, just as importantly, to give a realistic and meaningful measure of how accurate 
the prediction is likely to be. Intuitively, if there is a large amount of uncertainty about what sales 
will be next quarter (as discussed in the next section “Probability Concept #2: Mean and 
Standard Deviation” a large amount of uncertainty corresponds to a very “spread out” 
distribution) then there is likely to be a significant prediction error. Conversely, if there is only a 
small amount of uncertainty about what sales will be next quarter then the prediction error is 
likely to be small. The concepts of prediction and confidence in the prediction are discussed in 
detail later in the semester. 
 
 As with the first two examples, the important point to take away from this example is that 
there is uncertainty about company sales next quarter and this uncertainty is represented by a 
probability distribution. 
 
 

 
Probability Concept #2: Mean and Standard Deviation 

 The mean of a probability distribution is a measure of the center of the distribution while the 
standard deviation is a measure of its dispersion (how spread out the distribution is). The best 
way to understand the concepts of mean and standard deviation is graphically. We will first 
consider the mean and then the standard deviation.  
 

 
Mean 

  Consider an MBA program at a specific business school. There is uncertainty regarding how 
much a student graduating from this school will make in their first job so there is a probability 
distribution that represents this uncertainty. For the sake of this example, suppose there are only 
two possible salaries a graduating student might make: $70,000 or $80,000. Further, suppose 
there is a 50/50 chance (i.e. a probability of 0.50) a student will make $70,000 and a 50/50 
chance a student will make $80,000. This is an unrealistically simple situation but it is useful for 
explaining the intuition related to the mean of a distribution.  
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 The probability function representing the uncertainty in salary (in thousands of dollars) for an 
MBA student graduating from this school is: 
 
 
 
 
 
 
 
 
 
 
Intuitively, the center of this distribution is 75. One way to interpret the mean graphically is that 
it is the spot where a teeter-totter will exactly balance, with the horizontal axis of the probability 
function representing the board of the teeter-totter and the spikes in the probability function 
representing the weight of the people sitting on it. 
 
 The notation we will use for the mean is the Greek letter µ (“mu”). When you see “µ” you 
should think immediately of the mean (center) of the distribution, as in the figure above. The 
Greek letter µ is essentially short-hand for writing “the mean of the distribution.” 
 
 Mathematically, the mean of a distribution is the weighted average of its values where the 
weights are the probabilities associated with each value. The mean of the above distribution is 
 
 µ = Mean = (70)(0.5) + (80)(0.5) = 75. 
 
 Now consider an MBA program at a second business school. Suppose for this school there is 
a 25% chance (i.e. a probability of 0.25) that a graduating student will make $70,000 in their first 
job and a 75% chance a student will make $80,000. Note that this is a slightly different 
distribution than the one for the first school.  The probability function representing possible 
salaries at the second school is 
 
 

 
 
 
 

 
 
 
 
 
 

Mean = 75 

0.5 

pr(X = x) 

x: Salary                             70        80 

0.75 

Mean = 77.5 

0.25 

pr(X = x) 

x: Salary                             70        80 
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The mean of this distribution has shifted to the right because some of the “weight” associated 
with Salary has shifted from 70 to 80. This is reflected in the new mean 
 
 µ = Mean = (70)(0.25) + (80)(0.75) = 77.5. 
 
The teeter-totter analogy still works because the center of the teeter-totter (which is analogous to 
the mean) will be further to the right if the person sitting on the right side is heavier than the 
person sitting on the left side. 
 

 
Standard deviation 

 The standard deviation is a measure of the spread of a distribution. The easiest way to 
understand intuitively what the standard deviation represents is by considering the concepts of 
standard deviation and spread graphically. 
 
 Consider an MBA program at a specific business school (School #1). For the sake of this 
example, suppose there are four possible salaries a graduating student might make in their first 
job: $50,000 with probability 0.2, $70,000 with probability 0.3, $80,000 with probability 0.3 and 
$100,000 with probability 0.2. The probability function representing the uncertainty in the salary 
of an MBA student graduating from this school is 
 
 
 

 
 
 
 
 
 
 
 
 

 The mean of this distribution is 
 
 µ = Mean = (50)(0.2) + (70)(0.3) + (80)(0.3) + (100)(0.2) = 75. 
 
The mean can still be thought of as the spot where a teeter-totter will exactly balance even when 
the random variable (Salary in this case) can take on more than two values. 
 
 Now consider an MBA program at a second school (School #2). Suppose the probability 
distribution representing the possible salaries a student graduating from this school might make 
in their first job is 
 

   0.2 

x (Salary) 

pr(X =x) 

   0.3 

50 70 80 100   
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 The mean of this distribution is also 75 since 
 
 µ = Mean = (20)(0.2) + (70)(0.3) + (80)(0.3) + (130)(0.2) = 75. 
 
 However, the salary distributions for Schools #1 and #2 are considerably different even 
though the means are the same. The distribution for School #2 is more “spread out.” There is 
more uncertainty associated with the second distribution than the first (i.e. there is more 
uncertainty associated with the salary an MBA student graduating from School #2 will make as 
compared to the salary a student from School #1 will make). 
 
Important Aside
 

: Summation notation 

 Summation notation is a very useful notation that represents a short-hand way of writing 
down the sum of several (possibly many) numbers. This notation will be used in this class as well 
as other classes such as finance. In particular, it will be used in the formula for standard 
deviation.  
 
 To explain the notation, consider the probability function for salaries from School #1. Let x1 
represent the first possible salary so x1 = 50. Also, let pr(X = x1) represent the probability 
associated with x1 = 50 so pr(X = x1) = 0.2. Similarly, let x2, x3 and x4 represent the other possible 
values (so x2 = 70, x3 = 80, and x4 = 100) and pr(X = x2), pr(X = x3) and pr(X = x4) represent the 
associated probabilities (so pr(X = x2) = 0.3, pr(X = x3) = 0.3 and pr(X = x4) = 0.2). 
 
 Using this notation, the mean can now be written 
 
 µ = Mean =    (50)(0.2)  +   (70)(0.3)  +    (80)(0.3)  +    (100)(0.2) 
 
 = x1 pr(X = x1) + x2 pr(X = x2) + x3 pr(X = x3) + x4 pr(X = x4) . 
 
This can be written more concisely in summation notation as 
 

0.2 

x (Salary) 

pr(X = x) 

0.3 

  70  80    130  20 
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 µ = Mean = ∑
=

=
4

1
)(

i
ii xXprx  

 
where xi pr(X = xi) represents the value and probability associated with the ith point. Thus, for i = 

1, we have x1 pr(X = x1); for i = 2, we have x2 pr(X = x2); etc. The notation ∑
=

4

1i
means to sum the 

terms xi pr(X = xi) for i = 1, 2, 3 and 4. 
 

 When you see the summation notation ∑
=

=
4

1
)(

i
ii xXprx  you should think of 

 
  (50)(0.2) + (70)(0.3) + (80)(0.3) + (100)(0.2) = 75 
 
i.e. you should think of the sum of each x-value times the probability associated with the x-value.  
 

 
End Aside 

 The standard deviation is a measure of the spread, or dispersion, of a distribution. A natural 
way to measure the spread of a distribution is to look at the average distance each point is from 
the center of the distribution (i.e. the average distance each point is from the mean of the 
distribution). The greater this average distance is the more spread out the distribution is. 
 
 For School #1, the center of the distribution is µ = 75 so the distance the ith point is from the 
center is (xi – 75). For example, for the first point (i = 1), the distance is x1 – 75 = 50 – 75 = -25; 
for the second point, the distance is x2 – 75 = 70 – 75 = -5; etc. 
 
 We want the average distance so we take each distance (xi – 75) and multiply it by its 
associated probability to give 
 
 (xi – 75) pr(X = xi) 
 
and then add these values across all four points (i = 1, 2, 3 and 4)  
 

 ∑
=

=−
4

1
)()75(

i
ii xXprx  

 
to give the average distance. While this is an intuitively appealing measure of spread at first 
glance, it unfortunately will always be zero. The reason is that the positive and negative distances 
will always cancel out.  
 
 To see this, note that the negative distance (x1 – 75) = 50 – 75 = -25 associated with the first 
point cancels in the summation with the positive distance (x4 – 75) = 100 – 75 = 25 associated 
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with the fourth point. Similarly, the negative distance (x2 – 75) = 70 – 75 = -5 associated with the 
second point cancels with the positive distance (x3 – 75) = 80 – 75 = 5 associated with the third 
point. 
 
 The result is that 
 

 ∑
=

=−
4

1
)()75(

i
ii xXprx  

 
 = (50 – 75)(0.2) + (70 – 75)(0.3) + (80 – 75)(0.3) + (100 – 75)(0.2)  
 
 =    (–25)(0.2)    +    (–5)(0.3)      +     (5)(0.3)       +     (25)(0.2) 
 
 = 0 
 
which isn’t very useful as a measure of spread. 
 

 
Aside 

 It is straightforward, though tedious, to show that ∑
=

=−
n

i
ii xXprx

1
)()( µ = 0 for every 

distribution no matter how complicated the distribution is. 
 

 
End Aside 

 A natural way to avoid the problem of positive and negative distances cancelling out is to use 
the absolute value of the distance each point is from the center of the distribution rather than the 
actual distance itself, i.e. to use 
 

 ∑
=

=−
4

1
)(|75|

i
ii xXprx  

 
as a measure of spread. While this is a perfectly reasonable and intuitive measure there are some 
technical problems with using it (which are not important and do not add anything to an intuitive 
understanding of the measure of spread we will actually use). 
 
 Instead of using the average of the absolute values of the distances to avoid the problem of 
negative and positive terms cancelling out in the summation we use the average of the squares of 
the distances. Therefore, 
 

 ∑
=

=−
4

1

2 )()75(
i

ii xXprx  
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is the measure of spread we will use. It is interpreted as the average distance squared each point 
is from the center of the distribution. The greater the average distance squared is the more spread 
out the distribution is. 
 
 This measure is called the variance of the distribution. The term “variance” comes from the 
fact that it measures the “variability” in the possible outcomes that Salary can take on. The 
notation used for the variance is 2σ  (σ is the Greek letter “Sigma”). When you see “ 2σ ” you 
should think immediately of the spread (dispersion) of the distribution. The notation 2σ  is 
essentially short-hand for writing “the spread of the distribution.” 
 
 For School #1, the variance is 
 

 2σ = ∑
=

=−
4

1

2 )()75(
i

ii xXprx  

 
 = (50 – 75)2 (0.2) + (70 – 75)2 (0.3) + (80 – 75)2 (0.3) + (100 – 75)2 (0.2)  
 
 = 265 
 
This means the average distance squared each point is from the center of the distribution is 265. 
 
 For School #2, the variance is 
 

 2σ = ∑
=

=−
4

1

2 )()75(
i

ii xXprx  

 
 = (20 – 75)2 (0.2) + (70 – 75)2 (0.3) + (80 – 75)2 (0.3) + (130 – 75)2 (0.2)  
 
 = 1225 
 
The distribution for School #2 is clearly more spread out than the distribution for School #1 and 
this is reflected in its larger variance. 
 
 The variance σ 2 is an intuitively reasonable measure of the spread of a distribution. The 
disadvantage of the variance is that its units can be difficult to interpret in a meaningful way. For 
example, in the salary example discussed here, the units are dollars squared (because the units on 
the distances from each point to the center of the distribution are in dollars and these values are 
squared to obtain the variance). To put the units back into the original scale, in this case dollars, 
we often work with σ = 2σ . The units for σ are dollars and are easily interpretable. 
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 σ is called the standard deviation of the distribution. The term “standard deviation” comes 
from the fact that its value represents, roughly speaking, the “typical” (or “standard”) distance (or 
“deviation”) that each point is from the center of the distribution. When you see “σ” you should 
think immediately of the spread of the distribution. 
 
 The variance of the probability distribution for School #1 is 2σ = 265. This means the 
standard deviation of the distribution is σ = 2σ = 265 = 16.28. Similarly, the variance of the 
probability distribution for School #2 is 2σ = 1225. This means its standard deviation is σ = 

2σ = 1225 = 35. 
 
 The standard deviation of the distribution for School #2 is approximately twice the standard 
deviation of the distribution for School #1. Comparing the two distributions graphically shows 
that, roughly speaking, the second distribution is about twice as spread out as the first 
distribution. This is what is reflected in the two standard deviations. 
 
 A final point to understand is that the standard deviation σ represents the same information as 
the variance 2σ , although the units are different (dollars and dollars squared). The reason the 
information content is the same is that if you know the standard deviation you can compute the 
variance, and vice versa. 
 

 
Interpretating the spread of the distribution as a measure of risk 

 The spread, or dispersion, of a distribution can be interpreted as risk in many contexts. In the 
context of MBA salaries, there is more risk associated with School #2 than School #1. It is 
possible that a student from School #2 will make a very high salary ($130,000) but there is an 
equal probability they will make a very low salary ($20,000). If you were making a decision to 
attend a business school based solely on your anticipated salary at graduation, you would need to 
determine if the possibility of making $130,000 is worth the risk that you might make only 
$20,000. School #1 has a smaller standard deviation (i.e. salaries that are less spread out) so there 
is less uncertainty, or risk, associated with attending this school than School #2. 
 
 
Probability Concept #3
 Multiplying a Random Variable by a Constant 

: Adding a Constant to a Random Variable and 

 
 The concept of adding a constant to a random variable is an important one that is used in 
explaining and understanding regression. It is also used in computing probabilities under the 
normal distribution curve (see the next section “Normal Distribution”). The concept of 
multiplying a random variable by a constant is used in computing probabilities under the normal 
distribution curve. 
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 The two concepts will be discussed in this section in a very simple context. The ideas will 
then be applied in contexts that are much more important. As discussed earlier, it is helpful to 
learn the basic concepts in as simple a context as possible so the ideas do not get lost because the 
context is complicated. 
 

 
Adding a constant to a random variable 

 Suppose we have a random variable X that has a probability 0.25 of taking on the value -1, a 
probability 0.50 of taking on the value 0, and a probability 0.25 of taking on the value 1. The 
probability distribution is given below on the left in numerical form and on the right in graphical 
form. 
 
 
 

x pr(X = x) 
-1 0.25 
0 0.50 
1 0.25 

 
 
 
 
 Now consider the random variable Y = X + 3. We want to find the probability distribution for 
Y. To obtain this distribution, note that Y takes on the value 2 if X takes on the value -1, and X 
takes on the value -1 with probability 0.25. Therefore, Y takes on the value 2 with probability 
0.25. Graphically, the probability spike associated with x = -1 is shifted three units to the right 
and is now associated with y = 2. 
 
 Similarly, Y takes on the value 3 if X takes on the value 0, and X takes on the value 0 with 
probability 0.50. Therefore, Y takes on the value 3 with probability 0.50.  
 
 Finally, Y takes on the value 4 if X takes on the value 1, and X takes on the value 1 with 
probability 0.25. Therefore, Y takes on the value 4 with probability 0.25. 
 
 The distribution for Y is given below in numerical and graphical form. 
 
 

x 
pr(X = x) 

and 
pr(Y = y) 

y = x + 3 

-1 0.25 2 
0 0.50 3 
1 0.25 4 

3 4 

0.50 

pr(X = x) 

x 1 2 0 -1 -2 

0.25 

3 4 

pr(Y = y) 

y 1 2 0 -1 -2 

0.25 

0.50 
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 The important point to take away from this example is that adding a positive constant to a 
random variable shifts the distribution to the right by the amount of the constant but does not 
change the spread of the distribution. In this example, the probabilities of 0.25, 0.50 and 0.25 
associated with the x-values of -1, 0 and 1 are shifted three units to the right to the y-values of 2, 
3 and 4. The mean (center) of the X distribution is also shifted three units to the right. Since the 
mean of X is 0 the mean of Y is 3. 
 
 Subtracting a positive constant from a random variable will shift the distribution to the left by 
the amount of the constant (be sure to understand why). 
 

 
Multiplying a random variable by a constant 

 Consider the same distribution for the random variable X used in the previous section.  
 
 Now consider the new random variable Y = 2X. We want to find the probability distribution 
for Y. To obtain this distribution, note that Y takes on the value -2 if X takes on the value -1, and 
X takes on the value -1 with probability 0.25. Therefore, Y takes on the value -2 with probability 
0.25. Graphically, the probability spike associated with x = -1 is now associated with y = -2. 
 
 Similarly, Y takes on the value 0 if X takes on the value 0, and X takes on the value 0 with 
probability 0.50. Therefore, Y takes on the value 0 with probability 0.50.  
 
 Finally, Y takes on the value 2 if X takes on the value 1, and X takes on the value 1 with 
probability 0.25. Therefore, Y takes on the value 2 with probability 0.25. 
 
 The distribution for Y is given below in numerical and graphical form. 
 
 

x 
pr(X = x) 

and 
pr(Y = y) 

y = 2x 

-1 0.25 -2 
0 0.50 0 
1 0.25 2 

 
 
 
 The important point to take away from this example is that multiplying a random variable 
with a mean of zero by a constant greater than one increases the spread of the distribution but 

3 4 

pr(Y = y) 

y 1 2 0 -1 -2 

0.25 

0.50 
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does not change its center. In this example, the probabilities of 0.25, 0.50 and 0.25 associated 
with the x-values of -1, 0 and 1 are shifted to the (more spread out) y-values of -2, 0 and 2.  
 
 Multiplying a random variable with a mean of zero by a constant between 0 and 1 decreases 
the spread of the distribution but does not change its center (be sure to understand why). In this 
course, we will not be concerned with what happens when a random variable X is multiplied by a 
negative constant or when the random variable X has a mean different from zero. 
 
 

 
Normal Distribution 

 The normal distribution is one of the most important distributions in statistics. It is the 
distribution we will use extensively throughout the semester. 
 
 The normal distribution is completely characterized by two parameters: 
 
(1) The mean (µ), which is a measure of the center of the distribution; and 
 
(2) The variance ( 2σ ), which is a measure of the spread of the distribution. 
 

 
Graphical interpretation of the normal distribution parameters µ and σ 2 

 The normal distribution is a bell-shaped distribution. To get an intuitive feel for the meaning 
of its two parameters µ and σ 2, it is useful to look at the distribution graphically using the figures 
below. The figure on the left graphs two normal distributions with the same variance (i.e. same 
spread) but different means (i.e. different centers). The distribution graphed with a solid line is a 
normal distribution with mean µ = 0 and variance σ 2 = 1. The distribution graphed with a dashed 
line is a normal distribution with mean µ = 2 and variance σ 2 = 1. The important point to 
understand in comparing these distributions is that changing the mean from 0 to 2 shifts the 
distribution by two units to the right but does not change the spread of the distribution.  
 
 The figure on the right graphs two normal distributions with the same mean (i.e. same center) 
but different variances (i.e. different spread). The distribution graphed with a solid line is a 
normal distribution with mean µ = 0 and variance σ 2 = 1. The distribution graphed with a dashed 
line is a normal distribution with mean µ = 0 and variance σ 2 = 4. The important point to 
understand in comparing these two distributions is that changing the variance changes the spread 
of the distribution but does not affect the center (mean) of the distribution. 



16 

 
 
 
 

6543210-1-2-3  6420-2-4-6  
 
 

 
Notation for the normal distribution 

 The notation for a random variable X that has a normal distribution with mean µ and variance 
σ 2 is 
 
   X ~ N(µ, σ 2). 
 
The “~” means “is distributed as” and the “N” means “normal distribution”. The first term in 
parentheses is always the mean and the second term is always the variance. Therefore, the 
notation “X ~ N(µ, σ 2)” is short-hand for writing “the random variable X is normally distributed 
with mean µ and variance σ 2”. 
 
 It is important to note that the convention we will always use in this class is that the second 
parameter is the variance, not the standard deviation. Since the variance and standard deviation 
represent the same information (i.e. providing one allows the other one to be determined) it 
doesn’t matter which is used in the normal distribution notation but it is important to be 
consistent to remove any chance of misunderstanding. 
 

 
Example 

 Consider the population of all MBA students in the U.S. who graduated last spring. This is a 
very large population. We will assume salaries in this population are normally distributed with 
mean $60,000 and variance σ 2 = ($10,000)2, i.e. Salary ~ N(60,000, (10,000)2). 
 
 In practice, it is very important to check the assumption that salaries are normally distributed 
using a sample of salaries collected from the population (i.e. using a sample of data). We will 

µ = 0, 2σ = 1 µ = 2, 2σ = 1 µ = 0, 2σ = 1 µ = 0, 2σ = 4 
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discuss this in detail later in the semester. In the current example, we will assume salaries are 
normally distributed to remove a level of complexity. 
 
 Also, the mean µ and variance σ 2 of a population will not typically be known. In practice, 
both parameters will have to be estimated using a sample of MBA salaries. This will be 
discussed in detail later in the semester (see the topic summary note “Estimation and Sampling 
Distributions”). Again, to remove complexity from the current example, we will assume the 
population mean µ = $60,000 and population variance σ 2 = ($10,000)2 are known. 
 
 The graphical representation of the N(60,000, (10,000)2) distribution for the population of 
MBA salaries is given below. 

 

90000800007000060000500004000030000

Normal distribution curve for Salary
Mean=60000, StDev=10000

 
 
 The interpretation of the population mean µ = $60,000 is that it is the average (mean) salary 
of all spring MBA graduates. This value can be computed in principle by asking every spring 
MBA graduate in the U.S. what their current salary is and dividing the sum of their salaries by 
the number of graduates. In practice, this is not feasible and we will have to estimate the 
population mean from a sample of salary data. 
 
 The interpretation of the population variance σ 2 = ($10,000)2 in the context of a normal 
distribution is slightly more complicated and will be discussed later in this note after probability 
calculations for the normal distribution are discussed. 
 
 One of the most important concepts related to the normal distribution is that the area under 
the curve between two values represents probability. Calculating this area will be discussed in 
detail but first it is important to understand the interpretation of probability in the context of the 
MBA salary example. (Similar interpretations apply to other normal distributions but it is easiest 
to understand the concept in the context of a specific example.) 
 
 The area under the normal curve between 60,000 and 70,000 is 0.34. This area is 
straightforward to compute as shown later in this note but for the time being accept that the area 
is 0.34. 
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Salary60000 70000

Mean=60000, StDev=10000
Normal distribution curve for Salary

 
 There are two equivalent interpretations of the area under the curve between 60,000 and 
70,000. The first interpretation is that 34% of all MBA graduates in the population make between 
$60,000 and $70,000. The second interpretation is that if a single MBA graduate is selected at 
random from the population then there is a 34% chance (i.e. a probability of 0.34) that the person 
will make between $60,000 and $70,000. The equivalency makes sense intuitively because if 34 
out of every 100 spring MBA graduates make between $60,000 and $70,000, there is a 34% 
chance that one of the people in this group will be selected. 
 

 
Computing the area under the normal distribution curve 

 The area under a normal distribution curve is determined using a table of normal distribution 
probabilities. The process for using the normal distribution table is a purely mechanical process 
and is outlined below. This process will be used frequently throughout the semester in a variety 
of contexts. While the context will change the basic process of computing probabilities will 
always be the same. 
 

 
Aside 

 You are not

 

 responsible for this aside. It is only included in case it helps motivate why tables 
are used to compute probabilities for the normal distribution. 

 Mathematically, the normal curve is a function and from calculus (which you do not need to 
know for this course) the area under the curve is an integral. The function for the normal curve is  
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and the area under the curve between 60,000 and 70,000 is 
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Area = 0.34 
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Graphically, the integral represents the shaded area below. 
 

Salary60000 70000

Mean=60000, StDev=10000
Normal distribution curve for Salary

 
Unfortunately, this integral cannot be done analytically. Therefore, we have to resort to using a 
table to give (approximate) values. The probability values in the table are obtained using 
numerical integration. A numerical integration can be made extremely precise but it is still only 
an approximation. 
 
 In any case, using the table removes the need to deal with the integral above. 
 

 
End Aside 

 Computing a probability for a random variable X ~ N(µ, σ 2), or equivalently, computing an 
area under the normal distribution curve, is a two-step process. Several examples are given below 
to illustrate the process. 
 
Step #1: Convert the distribution from X ~ N(µ, σ 2) to Z ~ N(0, 1). The distribution for Z is 

called the standard normal distribution because it has a mean of zero and a variance of 
one. 

 
Step #2: Compute the probability for Z using the standard normal distribution table. As shown in 

the examples below, this will give you the probability of interest for the initial random 
variable X. The standard normal table is given at the end of this topic summary note. 

 
 The reason for converting from X~ N(µ, σ 2) to Z ~ N(0, 1) in step #1 is so only one table is 
required. Without the conversion step, tables would be needed for every possible combination of 
µ and σ 2 and this is not feasible. 
 
 We will consider examples of step #2 first and then step #1. 
 
Examples for step #2
 

 (Using the standard normal distribution table) 

Example #1: Compute pr(Z < 0.32) where Z ~ N(0, 1) 
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 My strong suggestion is to always draw a graph to represent the probability being calculated. 
It takes very little time to do and greatly reduces the chance of making a silly mistake. 
 
 Graphically, pr(Z < 0.32) is represented by the area under the curve to the left of 0.32. 
 

3210-1-2-3 z0.32

Standard Normal Distribution Curve
Mean=0, StDev=1

 
 The standard normal distribution table gives the probability that the standard normal random 
variable Z is less than “little z” (i.e. pr(Z < z)) where “little z” is a specific number (for this 
problem, z = 0.32). 
 
 To find pr(Z < 0.32), look down the left hand column in the standard normal table for 0.3 and 
then across the top row for .02. The intersection of this row and column gives pr(Z < 0.32) = 
0.6255. There is an arrow pointing to this number in the table (at the end of this note). 
 
 The convention used in the table is that the digits before and immediately after the decimal 
place (for this problem, 0.3) are given in the left hand column and the second digit following the 
decimal is given in the top row (for this problem, .02). Positive values of z are given on the first 
page of the table and negative values of z are given on the second page.  
 
Example #2: Compute pr(Z > 1.42) where Z ~ N(0, 1) 
 
 Graphically, pr(Z > 1.42) is represented by the shaded area under the curve to the right of 
1.42. 
 

3210-1-2-3 z1.42

Standard Normal Distribution Curve
Mean=0, StDev=1

 
 

pr(Z > 1.42) 

pr(Z < 0.32) 
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 The standard normal table only gives areas to the left of a value. Graphically, to compute the 
area to the right of 1.42, we take the area under the entire curve (which is one) and subtract off 
the area we don’t want (the area to the left of 1.42, which is represented by the white un-shaded 
area) to leave the area that we want (the shaded area to the right of 1.42). 
 

3210-1-2-3 z1.42

Standard Normal Distribution Curve
Mean=0, StDev=1

 
 
Therefore, 
 
 
 
     
 
  pr(Z > 1.42) = 1 – pr(Z < 1.42). 
 
 
We can look 1.42 up in the standard normal table to give pr(Z < 1.42) = 0.9222 (there is an arrow 
pointing to this number in the table). Using this value gives 
 
   pr(Z > 1.42) = 1 – pr(Z < 1.42) 
 
 = 1 – 0.9222 
 
 = 0.0778. 
 
Example #3: Compute pr(-1.2 < Z < 1.4) where Z ~ N(0, 1) 
 
 We will often need to compute interval probabilities such as pr(-1.2 < Z < 1.4) during the 
semester. For example, if we are interested in predicting next quarter’s sales for a company, 
interval probabilities will be used to quantify how accurate the prediction is likely to be. 
 
 Graphically, pr(-1.2 < Z < 1.4) is represented by the shaded area under the curve between -1.2 
and 1.4. 
 

Unshaded white 
region is the area 
to the left of 1.42 

Shaded area to 
the right of 1.42 

Un-shaded area 
to the left of 1.42 

Area under the 
entire curve 

Shaded region is the 
area to the  

right of 1.42 
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3210-1-2-3 z-1.2 1.4

Standard Normal Distribution Curve
Mean=0, StDev=1

 
 
 
 To compute the shaded area, we take the total area to the left of 1.4 (this is the shaded area 
we are interested in plus the un-shaded white area to the left of -1.2) and subtract off the un-
shaded white area to the left of -1.2. Therefore, 
 
 
 
 
     
 
  pr(-1.2 < Z < 1.40) = pr(Z < 1.4) – pr(Z < -1.2) 
 
  = 0.9192 – 0.1151 
 
  = 0.8041. 
 
pr(Z < 1.4) = 0.9192 and pr(Z < -1.2) = 0.1151 are read off the standard normal table – there are 
arrows pointing to these numbers in the table (note that pr(Z < -1.2) is given on the second page 
of the table). 
 
 
Examples for step #1
 

 (Converting from X ~ N(µ, σ 2) to Z ~ N(0, 1)) 

Example #4: Compute pr(X < 3) where X ~ N(µ = 1, σ 2 = 4 = (2)2) 
 
 Graphically, pr(X < 3) is represented by the shaded area to the left of 3 under the N(1, 4) 
curve. 
 

pr(-1.2 < Z < 1.4) 

Shaded area 
between 

-1.2 and 1.4 
Un-shaded area 

to the left of -1.2 
Total area to the 

left of 1.4 
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76543210-1-2-3-4-5  
 
 To compute this area (probability) we need to “standardize” the random variable X so that the 
resulting random variable Z has a N(0, 1) distribution, and then look up the appropriate 
probability for Z in the standard normal table. 
 
 The standardization step is done in two stages.  We first create the random variable Y = X – 1. 
Subtracting one shifts the distribution for X by one unit to the left but does not change the spread 
of the distribution (recall the discussion of “Adding a constant to a random variable” earlier in 
these notes). The resulting distribution for Y has a mean of zero because the mean, or center, of 
the distribution for X is one and the entire distribution has been shifted one unit to the left. This is 
shown graphically in the figure on the next page. 
 
 The variance for Y (see the distribution on the top left in the figure on the next page) is four 
so the distribution is “too spread out” (we want a variance of one). Recall from the discussion 
“Multiplying a random variable by a constant” that if we multiple a random variable with a mean 
of zero by a constant less than one that the distribution becomes “less spread out.” We will create 
the new random variable Z by multiplying Y by ½, i.e. 
 

 Z = 
2

1)1(
2
1

2
1 −

=−=
XXY . 

 
This decreases the spread by the appropriate amount so the resulting random variable Z has a 
variance of one (see the distribution in the bottom left in the figure on the next page). It is not 
intuitively obvious why we multiply by the specific number ½. However, it should be clear 
intuitively (based on the discussion in “Multiplying a random variable by a constant”) why we 
multiply by a number less than one to reduce the spread of the distribution. You can just accept 

that the specifiec value required to obtain a variance of one for Z in this problem is 
2
1  (in 

general, it is 
σ
1 ).  

 

X ~ N(1, 4) 

pr(X < 3) 
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 76543210-1-2-3-4-5  76543210-1-2-3-4-5  
 
 
 
 
 

 76543210-1-2-3-4-5  
 
 
 

 The new random variable Z =
2

1−X  has a N(0, 1) distribution and we can look up 

probabilities involving Z in the standard normal table. 
 
 The specific steps to compute pr(X < 3) are: 
 
  pr(X < 3) Original probability to compute 
 

 = 





 −

<
−

2
13

2
1Xpr  Step #1: Convert from X ~ N(1, 4) to Z ~ N(0, 1) 

 

 = pr(Z < 1) Rewrite 
2

1−X  as Z and 
2

13 −  as 1 

 
 = 0.8413 Step #2: Use the standard normal table to look up 
  the appropriate probability for Z 

Shift the distribution for X 
one unit to the left by 
subtracting 1 from X. The 
new distribution for Y = X – 1 
has mean zero but the same 
spread σ 2 = 4. 

X ~ N(1, 4) Y = X – 1 
Y ~ N(0, 4) 

Z =
2

1)1(
2
1

2
1 −

=−=
XXY  

Z ~ N(0, 1) 

“Pull in” the spread of the 
distribution by multiplying Y by ½. 

The new distribution for Z = Y
2
1 has 

a mean of zero (no change from the 
mean of Y) and a variance of one. 
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 The conversion step (step #1) requires that we subtract 1 from X and divide by 2 on the left of 

the inequality sign to give 
2

1−
=

XZ  ~ N(0, 1). Whatever is done on the left side of the 

inequality sign must also be done on the right side. Subtracting 1 and dividing by 2 on the right 

gives 
2

13 − = 1.  

 
 The important point to take away from this example is that to compute a probability such as 
pr(X < 3) we first convert X ~ N(1, 4) to the standard normal random variable Z ~ N(0, 1), and 
then look up the appropriate probability for Z in the standard normal table. Because we keep 
equality at each line of the calculation, the probability pr(Z < 1) computed for Z is equal to the 
probability pr(X < 3) required for X. 
 
Example #5: Compute pr(0 < X < 3) where X ~ N(µ = 1, σ 2 = 9 = (3)2) 
 
 Graphically, pr(0 < X < 3) is represented by the shaded area between 0 and 3. 

 1086420-2-4-68  
 
 
To compute this probability, X ~ N(1, 9 = (3)2) must be converted to Z ~ N(0, 1) and then the 
standard normal tables are used to compute the probability. 
 
 In terms of the probability calculation, 
 
  pr(0 < X < 3) Original probability to compute 
 

  = 





 −

<
−

<
−

3
13

3
1

3
10 Xpr  Step #1: Convert from X ~ N(1, 9 = (3)2) to Z ~ N(0, 1) 

 

  = pr(–0.33 < Z < 0.67) Rewrite 
3

10 −  as –0.33, 
3

1−X  as Z,  and 
3

13 −  as 0.67. 

 

pr(0 < X < 3) 

X ~ N(1, 9) 
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 The conversion step requires that we subtract µ = 1 from X and divide by σ = 3 in the center 

of the two inequality signs to give 
3

1−
=

XZ  ~ N(0, 1). Whatever is done in the center must also 

be done on both ends of the inequality. Subtracting µ =1 and dividing by σ = 3 on both ends of 

the inequality gives 
3

10 −  = –0.33 and 
3

13 −  = 0.67. 

 
 Graphically, the shaded area in the figure below represents pr(–0.33 < Z < 0.67). To compute 
the shaded area, we take the total area to the left of 0.67 (this is the shaded area we are interested 
in plus the un-shaded white area to the left of –0.33) and subtract off the un-shaded white area to 
the left of –0.33.  
 

 43210-1-2-3-4  
 
Therefore, 
 
 
 
 
     
 
  pr(–0.33 < Z < 0.67) = pr(Z < 0.67) – pr(Z < –0.33) 
 
  = 0.7486 – 0.3707 Step #2: Use the standard normal 
   table to look up appropriate 
  = 0.3779. probabilities for Z 
 
 

 
General formula for converting from X ~ N(µ, σ 2) to Z ~ N(0, 1) 

 If X ~ N(µ, σ 2), where µ and σ 2 are specific numbers, we convert X to Z by first subtracting 
off the mean µ to give Y = X – µ. In the above problem, this corresponds to subtracting off µ = 1. 
The random variable Y has a mean of zero because the distribution for X is shifted by µ units. 
 

Shaded area 
between 

-0.33 and 0.67 
Un-shaded area to 

the left of -0.33 
Total area to the 

left of 0.67 

Z ~ N(0, 1) 

pr(–0.33 < Z < 0.67)  



27 

 We then divide Y by σ (or equivalently, multiply by 
σ
1 ) to give 

 

 Z = 
σ

µµ
σσ

−
=−=

XXY )(11 . 

 

In the above problem, this corresponds to dividing by σ = 3 (or equivalently, multiply by 
σ
1 =

3
1 .) 

 
 Note that if σ > 1 (i.e. the variance for X is greater than one), then the spread is too large. 
Dividing by a σ value greater than one is equivalent to multiplying by a number less than one, 
with the result that the variance of the new random variable Z has a smaller variance than X (in 
particular, the variance of Z is one). 
 
 Similarly, if σ < 1 (i.e. the variance for X is less than one), then the spread is too small. 
Dividing by a σ value less than one is equivalent to multiplying by a number greater than one, 
with the result that the variance of the new random variable Z has a larger variance than X (in 
particular, the variance is one). 
 
 It can be a bit confusing to think about the conversion step in general terms. To get a good 
understanding of the conversion, try a couple of specific combinations of µ and σ (for example, 
try standardizing a N(3, 4) distribution and a N(2, 0.09) distribution). 
 
 To summarize, the formula 
 

 Z = 
σ

µ−X  

 
is the general formula for converting from X ~ N(µ, σ 2) to Z ~ N(0, 1). It will work for any 
combination of µ and σ. 
 

 
Interpreting σ in the context of a normal distribution 

 Suppose the random variable X has a N(µ, σ 2) distribution. Then (as shown below), there is a 
68% chance X will fall within one standard deviation σ of the mean µ. Similarly, there is a 95% 
chance X will fall within two standard deviations of the mean.  
 
 For example, in the MBA salary example where X represents Salary and X ~ N(60,000, 
(10,000)2), 68% of all spring MBA graduates in the population make between µ – σ = $60,000 – 
$10,000 = $50,000 and µ + σ = $60,000 + $10,000 = $70,000. Or equivalently, if we pick an 
MBA graduate at random from the population there is a 68% chance this person will make 
between $50,000 and $70,000.  
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 Similarly, 95% of all spring MBA graduates make between µ – 2σ = $60,000 – 2($10,000) = 
$40,000 and µ + 2σ = $60,000 + 2($10,000) = $80,000. Or equivalently, if we pick an MBA 
graduate at random from the population there is a 95% chance this person will make between 
$40,000 and $80,000. 
 
 Graphically, 68% of the area under the normal distribution curve falls between µ – σ and µ + σ. 
(To be more precise, 68.26% of the area under the normal distribution curve falls between µ – σ 
and µ + σ.) 

 
 
 
In terms of the probability calculation, 
 
  pr(µ – σ < X < µ + σ) Original probability to compute 
 

  = 





 −+

<
−

<
−−

σ
µσµ

σ
µ

σ
µσµ )()( Xpr  Step #1: Convert from X ~ N(µ, σ2) to Z ~ N(0,1) 

 

  = pr(–1 < Z < 1) Rewrite 
σ

µσµ −− )(  as –1, 
σ

µ−X  as Z,  and 

   
σ

µσµ −+ )(  as 1 

 
Note that this probability calculation holds whatever the values of µ and σ are in a given 
situation. (The calculation of pr(–1 < Z < 1) is completed below.) 
 
 The conversion step requires that we subtract µ from X and divide by σ in the center of the 

two inequality signs to give 
σ

µ−
=

XZ  ~ N(0, 1). Whatever is done in the center must also be 

done on both ends of the inequality. When we subtract µ and divide by σ on both ends of the 

inequality they cancel out to give 
σ

µσµ −− )(  = 
σ
σ− = –1 and 

σ
µσµ −+ )(  = 

σ
σ = 1. 

 

  µ − σ      µ       µ + σ         X ~ N(µ, σ 2) 

pr(µ – σ < X < µ + σ) = 0.6826 
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Aside 

 Anytime you are asked to compute a probability where µ and σ are not assigned specific 
numerical values (as in this situation) both µ and σ must cancel out of the calculation. If they 
don’t this means a mistake was made somewhere in the calculation. 
 

 
End Aside 

 To complete the probability calculation above we need to compute pr(–1 < Z < 1). 
Graphically, the shaded area in the figure below represents this probability To compute the 
shaded area, we take the total area to the left of 1.0 (this is the shaded area we are interested in 
plus the un-shaded white area to the left of -1.0) and subtract off the un-shaded white area to the 
left of –1.0.  
 

10-1  
 
Therefore, 
 
 
 
 
     
 
  pr(–1.0 < Z < 1.0) = pr(Z < 1.0) – pr(Z < –1.0) 
 
  = 0.8413 – 0.1587 Step #2: Use the standard normal 
   table to look up appropriate 
  = 0.6826. probabilities for Z 
 
 The 68% and 95% intervals of (µ – σ, µ + σ) and (µ – 2σ, µ + 2σ), respectively, are worth 
memorizing as they will come up regularly during the semester. 
 
 Be sure to do the calculation that shows 95% of the area under the N(µ, σ 2) curve falls within 
two standard deviations of the mean. (To be more precise, 95% of the area under the N(µ, σ 2) 

Shaded area 
between 

-1.0 and 1.0 
Un-shaded area 

to the left of -1.0 
Total area to the 

left of 1.0 

Z ~ N(0, 1) 

pr(–1 < Z < 1)  
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curve falls within 1.96 standard deviations of the mean. However, in order to use round numbers 
we will use the statement “95% of the area under the N(µ, σ 2) curve falls within two standard 
deviations of the mean.”)
 

 
Aside 

 For any probability calculation involving the normal distribution when the mean and variance 
are specific numerical values it is possible to compute areas under the normal distribution curve 
using a formula in Excel. For example, Excel can be used to compute pr(X < 3) in Example #4 
where X ~ N(µ = 1, σ 2 = (2)2 = 4). If you type the formula “=NORMDIST(3,1,2,TRUE)” into an 
Excel cell the resulting value will be pr(X < 3) = 0.8413. 
 
 You can use Excel to compute normal distribution probabilities in homework problems if you 
want to but I recommend against it for three reasons. First, since laptops will not be used on the 
exam (for reasons discussed in class) you will need to use the standard normal table on the exam 
to compute probabilities.  
 
 Second, you cannot compute probabilities of the type 
 
  pr(µ – 1.5σ < X < µ + 1.5σ) 
 
where X ~ N(µ, σ 2) and µ and σ are not specified numerical values. The reason is that Excel 
requires specific numbers to be input into the NORMDIST formula. These types of problems will 
occur during the semester and arise in real-world problems (for example, in computing 
confidence intervals other than 68% and 95% intervals). 
 
 Finally, in my opinion, it is easier to use the table than to start up Excel and type in the 
NORMDIST formula, although this is a matter of personal preference that may vary across 
people. 
 

 
End Aside 
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0 z 

Standard Normal Distribution Table 
 
 
 
 

 Table entry is the 
 probability at or 
 below z 

 
Standard normal distribution probabilities for positive values of z 

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 

Pr(Z < 0.32) 
for Example #1 

Pr(Z < 1.4) 
for Example #3 

 

Pr(Z < 1.42) 
for Example #2 
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 Table entry is the 
 probability at or 
 below z 
 

 
Standard normal distribution probabilities for negative values of z 

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 
-3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 

-3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 

-3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 

-3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007 

-3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010 

-2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 

-2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019 

-2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 

-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 

-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 

-2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 

-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084 

-2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 

-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143 

-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 

-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 

-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294 

-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 

-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 

-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 

-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 

-1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 

-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985 

-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 

-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 

-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 

-0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867 

-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148 

-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451 

-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 

-0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121 

-0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 

-0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 

-0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 

-0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641 

 

z 0 

Pr(Z < -1.2) 
for Example #3 

 


