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SV Model

_ At
Yt = exp 5 €t

At = a4+ Bh—1+we

> e ~ N(0,1) and w; ~ N(0,w?)
> Y~ N(OJ e)\t)
» |G| < 1... stationary model for the log-volatility



Posterior Inference

The overal Gibbs Sampler will cycle through the following:
1. p(a|B,w? A\i.T, DT)
2. p(Bla,w?, A1, DT)
3. p(w?|ev, B, AT, D7)
4. p(A1. 7|, B,w?, DT)

We will explore a couple of different ways to explore the full
conditional posterior distribution of all states...

v

Individual state update via RW Metropolis-Hastings

» Individual state update via Independent Metropolis-Hastings
» Block update via normal approximation
>

Block update via mixture approximation



Simulated Data: ov = —0.00645, 3 = 0.99 and w? = 0.15?




RW Metropolis-Hastings

Let © = (a, 3,w?). The goal here is to generate draws from the
full conditional of each individual state... p(A¢|A_¢, D7, ©), for all

t.

. Current state: )\9)

. draw A} from the proposal N()\(tj), v2). v2 is the tuning

parameter...

. Move to the new state according to the transition

)\gj—i-l):{ )\E-) w.p. o

At wp. 1—af
where

p(Ai[A—¢,©, D7)

p(Ar-r.0,07)

o =min< 1,




RW Metropolis-Hastings

As a reminder,

P(At|A—t, ©, D) o p(ye|Ae)p(At| At-1,©)p(At+1|At, ©)



ACF

lag




RW M-H




Independence M-H

Let's start by trying to figure out a proposal distribution... Notice
that we can re-write

p(At|A—t, D1,0) o< p(At|At—1, Aev1, ©)p(yelAe)
Here is an idea for a proposal:
q(>‘t‘)‘*t7 DT) @) = N(:at’ 1/t2)
where fi; = p; + 0.502(y2e Mt — 1)
and

Mt = E(/\t|)\t—1a Att1, @)
V% = Val’()\t’)\t_]_, )\t+17 @)



Independence M-H

1. Current state: )\gj)
2. draw A} from the proposal g()\:) = N(fit, v?)

3. Move to the new state according to the transition

)\(jJrl) _ )\2’.< W.p. a*
‘ /\(,_:’) w.p. 1—aof

where

p(XiA-,0,D1)  q(W)
p<A§J)yA_t,e,DT) q(Ap)

o =min{1



Independence M-H
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Independence M-H
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Independence M-H
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Normal Approximation

Another alternative is to use the following approximation for the
model...

Let y; = log(y?2) and n; = log(e?). The model can be re-written
as:

Yi = A+
)\t = o+ ﬁ)\t—l + we

If n+ was normally distributed, life would be easy, right? However,
ne ~ log(x?) with E(n;) = —1.27 and Var(n;) = 4.935

Well, how about using the approximation n; ~ N(—1.27,4.935)7
That would allow us to draw the states in block using the FFBS
algorithm!!
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Normal Approximation
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Normal Approximation
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Normal Approximation
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Normal Approximation
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Mixture Approximation

The log x? distribution can be approximated by

7
Z ﬂ-iN(Nia wl2)
i=1

where

mj i Wi
0.00730 -11.40039 5.79596
0.10556 -5.24321 2.61369
0.00002  -9.83726 5.17950
0.04395 150746 0.16735
0.34001  -0.65098 0.64009
0.24566  0.52478 0.34023
0.25750  -2.35850 1.26261

~NOoO OB WD~

This approximation also allow us to use the FFBS algorithm...
(next class)



Mixture Approximation
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Mixture Approximation

ACF
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Mixture Approximation
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Mixture Approximation
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