Section 5: Dummy Variables and Interactions

Carlos M. Carvalho
The University of Texas at Austin
McCombs School of Business

http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/

Example: Detecting Sex Discrimination

Imagine you are a trial lawyer and you want to file a suit against a company for salary discrimination... you gather the following data...

Gender		Salary
1	Male	32.0
2	Female	39.1
3	Female	33.2
4	Female	30.6
5	Male	29.0
\ldots	\ldots	
. . .		
208	Female	30.0

Detecting Sex Discrimination

You want to relate salary (Y) to gender $(X) \ldots$ how can we do that?

Gender is an example of a categorical variable. The variable gender separates our data into 2 groups or categories. The question we want to answer is: "how is your salary related to which group you belong to..."

Could we think about additional examples of categories potentially associated with salary?

- MBA education vs. not
- legal vs. illegal immigrant
- quarterback vs wide receiver

Detecting Sex Discrimination

We can use regression to answer these question but we need to recode the categorical variable into a dummy variable

Gender		Salary	Sex
1	Male	32.00	1
2	Female	39.10	0
3	Female	33.20	0
4	Female	30.60	0
5	Male	29.00	1

208 Female 30.000
Note: In Excel you can create the dummy variable using the formula:

$$
=\mathrm{IF}(\text { Gender }=\text { "Male", } 1,0)
$$

Detecting Sex Discrimination

Now you can present the following model in court:

$$
\text { Salary }_{i}=\beta_{0}+\beta_{1} \text { Sex }_{i}+\epsilon_{i}
$$

How do you interpret β_{1} ?

$$
\begin{aligned}
& E[\text { Salary } \mid \text { Sex }=0]=\beta_{0} \\
& E[\text { Salary } \mid \text { Sex }=1]=\beta_{0}+\beta_{1}
\end{aligned}
$$

β_{1} is the male/female difference

Detecting Sex Discrimination

$$
\text { Salary }_{i}=\beta_{0}+\beta_{1} \text { Sex }_{i}+\epsilon_{i}
$$

Regression Statistics	
Multiple R	0.346541
R Square	0.120091
Adjusted R Square	0.115819
Standard Error	10.58426
Observations	208

ANOVA

	$d f$		SS	MS	F
Regression	1	3149.634	3149.6	28.1151	Significance F
Residual	206	23077.47	112.03		
Total	207	26227.11			

	Coefficientstandard Errı							t Stat	P-value	Lower 95\%	Upper 95\%
Intercept	37.20993	0.894533	41.597	3E-102	35.44631451	38.9735426					
Gender	8.295513	1.564493	5.3024	$2.9 \mathrm{E}-07$	5.211041089	11.3799841					

$\hat{\beta}_{1}=b_{1}=8.29 \ldots$ on average, a male makes approximately $\$ 8,300$ more than a female in this firm.

How should the plaintiff's lawyer use the confidence interval in his presentation?

Detecting Sex Discrimination

How can the defense attorney try to counteract the plaintiff's argument?

Perhaps, the observed difference in salaries is related to other variables in the background and NOT to policy discrimination...

Obviously, there are many other factors which we can legitimately use in determining salaries:

- education
- job productivity
- experience

How can we use regression to incorporate additional information?

Detecting Sex Discrimination

Let's add a measure of experience...

$$
\text { Salary }_{i}=\beta_{0}+\beta_{1} \text { Sex }_{i}+\beta_{2} \text { Exp }_{i}+\epsilon_{i}
$$

What does that mean?

$$
\begin{aligned}
& E[\text { Salary } \mid \text { Sex }=0, \text { Exp }]=\beta_{0}+\beta_{2} E x p \\
& E[\text { Salary } \mid \text { Sex }=1, \text { Exp }]=\left(\beta_{0}+\beta_{1}\right)+\beta_{2} E x p
\end{aligned}
$$

Detecting Sex Discrimination

Detecting Sex Discrimination

$$
\text { Salary }_{i}=\beta_{0}+\beta_{1} \text { Sex }_{i}+\beta_{2} \operatorname{Exp}+\epsilon_{i}
$$

Regression Statistics						
Multiple R	0.701					
R Square	0.491					
Adjusted R Square	- 0.486					
Standard Error	8.070					
Observations	208					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	2.000	12876.269	6438.134	98.857	0.000	
Residual	205.000	13350.839	65.126			
Total	207.000	26227.107				
	Coefficient:	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
Intercept	27.812	1.028	27.057	0.000	25.785	29.839
Sex	8.012	1.193	6.715	0.000	5.660	10.364
Exp	0.981	0.080	12.221	0.000	0.823	1.139

Salary $_{i}=27+8$ Sex $_{i}+0.98$ Exp $_{i}+\epsilon_{i}$

Detecting Sex Discrimination

$$
\text { Salary }_{i}= \begin{cases}27+0.98 \text { Exp }_{i}+\epsilon_{i} & \text { females } \\ 35+0.98 \text { Exp }_{i}+\epsilon_{i} & \text { males }\end{cases}
$$

More than Two Categories

We can use dummy variables in situations in which there are more than two categories. Dummy variables are needed for each category except one, designated as the "base" category.

Why? Remember that the numerical value of each category has no quantitative meaning!

Example: House Prices

We want to evaluate the difference in house prices in a couple of different neighborhoods.

	Nbhd	SqFt	Price
1	2	1.79	114.3
2	2	2.03	114.2
3	2	1.74	114.8
4	2	1.98	94.7
5	2	2.13	119.8
6	1	1.78	114.6
7	3	1.83	151.6
8	3	2.16	150.7

Example: House Prices

Let's create the dummy variables $d n 1, d n 2$ and $d n 3 \ldots$

	Nbhd	SqFt	Price	dn1		dn2
dn3						
1	2	1.79	114.3	0	1	0
2	2	2.03	114.2	0	1	0
3	2	1.74	114.8	0	1	0
4	2	1.98	94.7	0	1	0
5	2	2.13	119.8	0	1	0
6	1	1.78	114.6	1	0	0
7	3	1.83	151.6	0	0	1
8	3	2.16	150.7	0	0	1

Example: House Prices

$$
\text { Price }_{i}=\beta_{0}+\beta_{1} d n 1_{i}+\beta_{2} d n 2_{i}+\beta_{3} \text { Size }_{i}+\epsilon_{i}
$$

$$
\begin{array}{rll}
E[\text { Price } \mid d n 1=1, \text { Size }] & =\beta_{0}+\beta_{1}+\beta_{3} \text { Size } & (\text { Nbhd } 1) \\
E[\text { Price } \mid d n 2=1, \text { Size }] & =\beta_{0}+\beta_{2}+\beta_{3} \text { Size } & (\text { Nbhd } 2) \\
E[\text { Price } \mid d n 1=0, d n 2=0, \text { Size }] & =\beta_{0}+\beta_{3} \text { Size } & (\text { Nbhd } 3)
\end{array}
$$

Example: House Prices

$$
\text { Price }=\beta_{0}+\beta_{1} d n 1+\beta_{2} d n 2+\beta_{3} \text { Size }+\epsilon
$$

Regression Statistics						
Multiple R	0.828					
R Square	0.685					
Adjusted R Square	0.677					
Standard Error	15.260					
Observations	128					
ANOVA						
	124	28876.0639	232.87			
Regression	127	91685.2143				
Residual						
Total						

	Coefficients	itandard Errol	t Stat	P-value		.ower
95\%/Jpper 95%						
Intercept	62.78	14.25	4.41	0.00	34.58	90.98
dn1	-41.54	3.53	-11.75	0.00	-48.53	-34.54
dn2	-30.97	3.37	-9.19	0.00	-37.63	-24.30
size	46.39	6.75	6.88	0.00	33.03	59.74

Price $=62.78-41.54 d n 1-30.97 d n 2+46.39$ Size $+\epsilon$

Example: House Prices

Example: House Prices

$$
\text { Price }=\beta_{0}+\beta_{1} \text { Size }+\epsilon
$$

Regression Statistics	
Multiple R	0.553
R Square	0.306
Adjusted R Square	0.300
Standard Error	22.476
Observations	128

ANOVA

	$d f$		SS	MS	F	子nificance
Regression	1	28036.4	28036.36	55.501	$1 \mathrm{E}-11$	
Residual	126	63648.9	505.1496			
Total	127	91685.2				

	Coefficientsandard Erı	t Stat	P-value ower 95\%,pper 95\%			
Intercept	-10.09	18.97	-0.53	0.60	-47.62	27.44
size	70.23	9.43	7.45	0.00	51.57	88.88

$$
\text { Price }=-10.09+\text { 70.23Size }+\epsilon
$$

Example: House Prices

Back to the Sex Discrimination Case

Does it look like the effect of experience on salary is the same for males and females?

Back to the Sex Discrimination Case

Could we try to expand our analysis by allowing a different slope for each group?

Yes... Consider the following model:

$$
\text { Salary }_{i}=\beta_{0}+\beta_{1} \text { Exp }_{i}+\beta_{2} \operatorname{Sex}_{i}+\beta_{3} \text { Exp }_{i} \times \operatorname{Sex}_{i}+\epsilon_{i}
$$

For Females:

$$
\text { Salary }_{i}=\beta_{0}+\beta_{1} \text { Exp }_{i}+\epsilon_{i}
$$

For Males:

$$
\text { Salary }_{i}=\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{3}\right) \text { Exp }_{i}+\epsilon_{i}
$$

Sex Discrimination Case

How does the data look like?

Sex Discrimination Case

Salary $=\beta_{0}+\beta_{1} \operatorname{Sex}+\beta_{2} \operatorname{Exp}+\beta_{3} \operatorname{Exp} * \operatorname{Sex}+\epsilon$

Regression Statistics	
Multiple R	0.7991
R Square	0.6386
Adjusted R Square	0.6333
Standard Error	6.8163
Observations	208

ANOVA

	$d f$		$S S$	$M S$	F
Regression	3	16748.875	5582.958	120.162	Significance F
Residual	204	9478.2322	46.46192		
Total	207	26227.107			

	Coefficients itandard Errc	Stat	P-value	Lower 95\%	Upper 95\%	
Intercept	34.528	1.138	30.342	0.000	32.285	36.772
Sex	-4.098	1.666	-2.460	0.015	-7.383	-0.814
Exp	0.280	0.102	2.733	0.007	0.078	0.482
Sex*Exp	1.248	0.137	9.130	0.000	0.978	1.517

$$
\text { Salary }=34-4 S e x+0.28 E x p+1.24 E x p * S e x+\epsilon
$$

Sex Discrimination Case

Is this good or bad news for the plaintiff?

Variable Interaction

So, the effect of experience on salary is different for males and females... in general, when the effect of the variable X_{1} onto Y depends on another variable X_{2} we say that X_{1} and X_{2} interact with each other.

We can extend this notion by the inclusion of multiplicative effects through interaction terms.

$$
\begin{gathered}
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3}\left(X_{1} X_{2}\right)+\varepsilon \\
\frac{\partial E\left[Y \mid X_{1}, X_{2}\right]}{\partial X_{1}}=\beta_{1}+\beta_{3} X_{2}
\end{gathered}
$$

We will pick this up in our next section...

Example: College GPA and Age

Consider the connection between college and MBA grades:
A model to predict McCombs GPA from college GPA could be

$$
G P A^{M B A}=\beta_{0}+\beta_{1} G P A^{B a c h}+\varepsilon
$$

	Estimate	Std.Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
BachGPA	0.26269	0.09244	2.842	$0.00607 * *$

For every 1 point increase in college GPA, your expected GPA at McCombs increases by about .26 points.

College GPA and Age

However, this model assumes that the marginal effect of College GPA is the same for any age.

It seems that how you did in college should have less effect on your MBA GPA as you get older (farther from college).

We can account for this intuition with an interaction term:

$$
G P A^{M B A}=\beta_{0}+\beta_{1} G P A^{\text {Bach }}+\beta_{2}\left(\text { Age } \times G P A^{\text {Bach }}\right)+\varepsilon
$$

Now, the college effect is $\frac{\partial E\left[G P A^{M B A} \mid G P A^{B a c h} A g e\right]}{\partial G P A^{B a c h}}=\beta_{1}+\beta_{2}$ Age.
Depends on Age!

College GPA and Age

$$
G P A^{M B A}=\beta_{0}+\beta_{1} G P A^{\text {Bach }}+\beta_{2}\left(\text { Age } \times G P A^{\text {Bach }}\right)+\varepsilon
$$

Here, we have the interaction term but do not the main effect of age... what are we assuming?

	Estimate	Std.Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
BachGPA	0.455750	0.103026	4.424	$4.07 \mathrm{e}-05 * *$
BachGPA:Age	-0.009377	0.002786	-3.366	$0.00132 * *$

College GPA and Age

Without the interaction term

- Marginal effect of College GPA is $b_{1}=0.26$.

With the interaction term:

- Marginal effect is $b_{1}+b_{2}$ Age $=0.46-0.0094$ Age .

$\frac{\text { Age }}{25}$	
30	0.22
35	0.17
40	0.13
	0.08

