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Example: Detecting Sex Discrimination

Imagine you are a trial lawyer and you want to file a suit against a

company for salary discrimination... you gather the following

data...

Gender Salary

1 Male 32.0

2 Female 39.1

3 Female 33.2

4 Female 30.6

5 Male 29.0

... ... ...

208 Female 30.0
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Detecting Sex Discrimination

You want to relate salary(Y ) to gender(X )... how can we do that?

Gender is an example of a categorical variable. The variable gender

separates our data into 2 groups or categories. The question we

want to answer is: “how is your salary related to which group you

belong to...”

Could we think about additional examples of categories potentially

associated with salary?

I MBA education vs. not

I legal vs. illegal immigrant

I quarterback vs wide receiver
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Detecting Sex Discrimination

We can use regression to answer these question but we need to

recode the categorical variable into a dummy variable

Gender Salary Sex

1 Male 32.00 1

2 Female 39.10 0

3 Female 33.20 0

4 Female 30.60 0

5 Male 29.00 1

... ... ...

208 Female 30.00 0

Note: In Excel you can create the dummy variable using the

formula:

=IF(Gender=“Male”,1,0) 4



Detecting Sex Discrimination

Now you can present the following model in court:

Salaryi = β0 + β1Sexi + εi

How do you interpret β1?

E [Salary |Sex = 0] = β0

E [Salary |Sex = 1] = β0 + β1

β1 is the male/female difference
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Detecting Sex Discrimination

Salaryi = β0 + β1Sexi + εi

s o

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.346541
R Square 0.120091
Adjusted R Square 0.115819
Standard Error 10.58426
Observations 208

ANOVA
df SS MS F Significance F

Regression 1 3149.634 3149.6 28.1151 2.93545E-07
Residual 206 23077.47 112.03
Total 207 26227.11

Coefficient tandard Err t Stat P-value Lower 95% Upper 95%
Intercept 37.20993 0.894533 41.597 3E-102 35.44631451 38.9735426
Gender 8.295513 1.564493 5.3024 2.9E-07 5.211041089 11.3799841

β̂1 = b1 = 8.29... on average, a male makes approximately $8,300

more than a female in this firm.

How should the plaintiff’s lawyer use the confidence interval in his

presentation?
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Detecting Sex Discrimination

How can the defense attorney try to counteract the plaintiff’s

argument?

Perhaps, the observed difference in salaries is related to other

variables in the background and NOT to policy discrimination...

Obviously, there are many other factors which we can legitimately

use in determining salaries:

I education

I job productivity

I experience

How can we use regression to incorporate additional information?
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Detecting Sex Discrimination

Let’s add a measure of experience...

Salaryi = β0 + β1Sexi + β2Expi + εi

What does that mean?

E [Salary |Sex = 0,Exp] = β0 + β2Exp

E [Salary |Sex = 1,Exp] = (β0 + β1) + β2Exp
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Detecting Sex Discrimination

Exp Gender Salary Sex

1 3 Male 32.00 1

2 14 Female 39.10 0

3 12 Female 33.20 0

4 8 Female 30.60 0

5 3 Male 29.00 1

... ... ...

208 33 Female 30.00 0
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Detecting Sex Discrimination

Salaryi = β0 + β1Sexi + β2Exp + εi

Regression Statistics
Multiple R 0.701
R Square 0.491
Adjusted R Square 0.486
Standard Error 8.070
Observations 208

ANOVA
df SS MS F Significance F

Regression 2.000 12876.269 6438.134 98.857 0.000
Residual 205.000 13350.839 65.126
Total 207.000 26227.107

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 27.812 1.028 27.057 0.000 25.785 29.839
Sex 8.012 1.193 6.715 0.000 5.660 10.364
Exp 0.981 0.080 12.221 0.000 0.823 1.139

Salaryi = 27 + 8Sexi + 0.98Expi + εi

Is this good or bad news for the defense?
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Detecting Sex Discrimination

Salaryi =

{
27 + 0.98Expi + εi females

35 + 0.98Expi + εi males
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More than Two Categories

We can use dummy variables in situations in which there are more

than two categories. Dummy variables are needed for each

category except one, designated as the “base” category.

Why? Remember that the numerical value of each category has no

quantitative meaning!
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Example: House Prices

We want to evaluate the difference in house prices in a couple of

different neighborhoods.

Nbhd SqFt Price

1 2 1.79 114.3

2 2 2.03 114.2

3 2 1.74 114.8

4 2 1.98 94.7

5 2 2.13 119.8

6 1 1.78 114.6

7 3 1.83 151.6

8 3 2.16 150.7

... ... ... ...
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Example: House Prices

Let’s create the dummy variables dn1, dn2 and dn3...

Nbhd SqFt Price dn1 dn2 dn3

1 2 1.79 114.3 0 1 0

2 2 2.03 114.2 0 1 0

3 2 1.74 114.8 0 1 0

4 2 1.98 94.7 0 1 0

5 2 2.13 119.8 0 1 0

6 1 1.78 114.6 1 0 0

7 3 1.83 151.6 0 0 1

8 3 2.16 150.7 0 0 1

... ... ...
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Example: House Prices

Pricei = β0 + β1dn1i + β2dn2i + β3Sizei + εi

E [Price|dn1 = 1, Size] = β0 + β1 + β3Size (Nbhd 1)

E [Price|dn2 = 1, Size] = β0 + β2 + β3Size (Nbhd 2)

E [Price|dn1 = 0, dn2 = 0, Size] = β0 + β3Size (Nbhd 3)
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Example: House Prices

Price = β0 + β1dn1 + β2dn2 + β3Size + ε
SUMMARY  OUTPUT

Regression  Statistics
Multiple  R 0.828
R  Square 0.685
Adjusted  R  Square 0.677
Standard  Error 15.260
Observations 128

ANOVA
df SS MS F Significance  F

Regression 3 62809.1504 20936 89.9053 5.8E-­31
Residual 124 28876.0639 232.87
Total 127 91685.2143

Coefficients Standard  Error t  Stat P-­value Lower  95%Upper  95%
Intercept 62.78 14.25 4.41 0.00 34.58 90.98
dn1 -­41.54 3.53 -­11.75 0.00 -­48.53 -­34.54
dn2 -­30.97 3.37 -­9.19 0.00 -­37.63 -­24.30
size 46.39 6.75 6.88 0.00 33.03 59.74

Price = 62.78− 41.54dn1− 30.97dn2 + 46.39Size + ε
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Example: House Prices
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Example: House Prices

Price = β0 + β1Size + ε
SUMMARY  OUTPUT

Regression  Statistics
Multiple  R 0.553
R  Square 0.306
Adjusted  R  Square 0.300
Standard  Error 22.476
Observations 128

ANOVA
df SS MS F Significance  F

Regression 1 28036.4 28036.36 55.501 1E-­11
Residual 126 63648.9 505.1496
Total 127 91685.2

CoefficientsStandard  Error t  Stat P-­valueLower  95%Upper  95%
Intercept -­10.09 18.97 -­0.53 0.60 -­47.62 27.44
size 70.23 9.43 7.45 0.00 51.57 88.88

Price = −10.09 + 70.23Size + ε
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Example: House Prices
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Back to the Sex Discrimination Case
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Does it look like the effect of experience on salary is the same for

males and females? 20



Back to the Sex Discrimination Case

Could we try to expand our analysis by allowing a different slope

for each group?

Yes... Consider the following model:

Salaryi = β0 + β1Expi + β2Sexi + β3Expi × Sexi + εi

For Females:

Salaryi = β0 + β1Expi + εi

For Males:

Salaryi = (β0 + β2) + (β1 + β3)Expi + εi
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Sex Discrimination Case

How does the data look like?

Exp Gender Salary Sex Exp*Sex

1 3 Male 32.00 1 3

2 14 Female 39.10 0 0

3 12 Female 33.20 0 0

4 8 Female 30.60 0 0

5 3 Male 29.00 1 3

... ... ...

208 33 Female 30.00 0 0
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Sex Discrimination Case

Salary = β0 + β1Sex + β2Exp + β3Exp ∗ Sex + ε

Regression Statistics
Multiple R 0.7991
R Square 0.6386
Adjusted R Square 0.6333
Standard Error 6.8163
Observations 208

ANOVA
df SS MS F Significance F

Regression 3 16748.875 5582.958 120.162 7.513E-45
Residual 204 9478.2322 46.46192
Total 207 26227.107

CoefficientsStandard Error t Stat P-value Lower 95% Upper 95%
Intercept 34.528 1.138 30.342 0.000 32.285 36.772
Sex -4.098 1.666 -2.460 0.015 -7.383 -0.814
Exp 0.280 0.102 2.733 0.007 0.078 0.482
Sex*Exp 1.248 0.137 9.130 0.000 0.978 1.517

Salary = 34− 4Sex + 0.28Exp + 1.24Exp ∗ Sex + ε
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Sex Discrimination Case
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Is this good or bad news for the plaintiff? 24



Variable Interaction

So, the effect of experience on salary is different for males and

females... in general, when the effect of the variable X1 onto Y

depends on another variable X2 we say that X1 and X2 interact

with each other.

We can extend this notion by the inclusion of multiplicative effects

through interaction terms.

Y = β0 + β1X1 + β2X2 + β3(X1X2) + ε

∂E [Y |X1,X2]

∂X1
= β1 + β3X2

We will pick this up in our next section...
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Example: College GPA and Age

Consider the connection between college and MBA grades:

A model to predict McCombs GPA from college GPA could be

GPAMBA = β0 + β1GPA
Bach + ε

Estimate Std.Error t value Pr(>|t|)

BachGPA 0.26269 0.09244 2.842 0.00607 **

For every 1 point increase in college GPA, your expected

GPA at McCombs increases by about .26 points.
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College GPA and Age

However, this model assumes that the marginal effect

of College GPA is the same for any age.

It seems that how you did in college should have less effect on your

MBA GPA as you get older (farther from college).

We can account for this intuition with an interaction term:

GPAMBA = β0 + β1GPA
Bach + β2(Age × GPABach) + ε

Now, the college effect is ∂E [GPAMBA|GPABach Age]
∂GPABach = β1 + β2Age.

Depends on Age!

27



College GPA and Age

GPAMBA = β0 + β1GPA
Bach + β2(Age × GPABach) + ε

Here, we have the interaction term but do not the main effect of

age... what are we assuming?

Estimate Std.Error t value Pr(>|t|)

BachGPA 0.455750 0.103026 4.424 4.07e-05 ***

BachGPA:Age -0.009377 0.002786 -3.366 0.00132 **

28



College GPA and Age

Without the interaction term

I Marginal effect of College GPA is b1 = 0.26.

With the interaction term:

I Marginal effect is b1 + b2Age = 0.46− 0.0094Age.

Age Marginal Effect

25 0.22

30 0.17

35 0.13

40 0.08
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