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The Multiple Regression Model

Many problems involve more than one independent variable or

factor which affects the dependent or response variable.

I More than size to predict house price!

I Demand for a product given prices of competing brands,

advertising,house hold attributes, etc.

In SLR, the conditional mean of Y depends on X. The Multiple

Linear Regression (MLR) model extends this idea to include more

than one independent variable.
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The MLR Model
Same as always, but with more covariates.

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε

Recall the key assumptions of our linear regression model:

(i) The conditional mean of Y is linear in the Xj variables.

(ii) The error term (deviations from line)

I are normally distributed

I independent from each other

I identically distributed (i.e., they have constant variance)

Y |X1 . . .Xp ∼ N(β0 + β1X1 . . .+ βpXp, σ
2)
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The MLR Model

Our interpretation of regression coefficients can be extended from

the simple single covariate regression case:

βj =
∂E [Y |X1, . . . ,Xp]

∂Xj

Holding all other variables constant, βj is the

average change in Y per unit change in Xj .
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The MLR Model
If p = 2, we can plot the regression surface in 3D.

Consider sales of a product as predicted by price of this product

(P1) and the price of a competing product (P2).

Sales = β0 + β1P1 + β2P2 + ε
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Least Squares

Y = β0 + β1X1 . . .+ βpXp + ε, ε ∼ N(0, σ2)

How do we estimate the MLR model parameters?

The principle of Least Squares is exactly the same as before:

I Define the fitted values

I Find the best fitting plane by minimizing the sum of squared

residuals.
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Least Squares

The data...

p1 p2 Sales

5.1356702 5.2041860 144.48788

3.4954600 8.0597324 637.24524

7.2753406 11.6759787 620.78693

4.6628156 8.3644209 549.00714

3.5845370 2.1502922 20.42542

5.1679168 10.1530371 713.00665

3.3840914 4.9465690 346.70679

4.2930636 7.7605691 595.77625

4.3690944 7.4288974 457.64694

7.2266002 10.7113247 591.45483

... ... ...
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Least Squares

Model: Salesi = β0 + β1P1i + β2P2i + εi , ε ∼ N(0, σ2)SUMMARY OUTPUT

Regression Statistics
Multiple R 0.99
R Square 0.99
Adjusted R Square 0.99
Standard Error 28.42
Observations 100.00

ANOVA
df SS MS F Significance F

Regression 2.00 6004047.24 3002023.62 3717.29 0.00
Residual 97.00 78335.60 807.58
Total 99.00 6082382.84

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 115.72 8.55 13.54 0.00 98.75 132.68
p1 -97.66 2.67 -36.60 0.00 -102.95 -92.36
p2 108.80 1.41 77.20 0.00 106.00 111.60

b0 = β̂0 = 115.72, b1 = β̂1 = −97.66, b2 = β̂2 = 108.80,

s = σ̂ = 28.42
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Plug-in Prediction in MLR

Suppose that by using advanced corporate espionage tactics, I

discover that my competitor will charge $10 the next quarter.

After some marketing analysis I decided to charge $8. How much

will I sell?

Our model is

Sales = β0 + β1P1 + β2P2 + ε

with ε ∼ N(0, σ2)

Our estimates are b0 = 115, b1 = −97, b2 = 109 and s = 28

which leads to

Sales = 115 +−97 ∗ P1 + 109 ∗ P2 + ε

with ε ∼ N(0, 282)
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Plug-in Prediction in MLR

By plugging-in the numbers,

Sales = 115 +−97 ∗ 8 + 109 ∗ 10 + ε

= 437 + ε

Sales|P1 = 8,P2 = 10 ∼ N(437, 282)

and the 95% Prediction Interval is (437± 2 ∗ 28)

381 < Sales < 493
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Residual Standard Error

The calculation for s2 is exactly the same:

s =

√ ∑n
i=1 e

2
i

n − p − 1
=

√∑n
i=1(Yi − Ŷi)2

n − p − 1

I Ŷi = b0 + b1X1i + · · ·+ bpXpi

I The residual “standard error” is the estimate for the standard

deviation of ε.
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Fitted Values in MLR
Another great plot for MLR problems is to look at

Y (true values) against Ŷ (fitted values).
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If things are working, these values should form a nice straight line. Can

you guess the slope of the blue line? 12



R-squared

I R2 is once again defined as

R2 = 1− SSE

SST

telling us the percentage of variation in Y explained by the

X ’s.

I In Excel, R2 is in the same place and “Multiple R” refers to

the correlation between Ŷ and Y .
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Understanding Multiple Regression

The Sales Data:

I Sales : units sold in excess of a baseline

I P1: our price in $ (in excess of a baseline price)

I P2: competitors price (again, over a baseline)
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Understanding Multiple Regression

I If we regress Sales on our own price, we obtain a somewhat

surprising conclusion... the higher the price the more we sell!!

27

The Sales Data

In this data we have weekly observations on
sales:# units (in excess of base level)
p1=our price: $ (in excess of base)
p2=competitors price: $ (in excess of base).

p1 p2 Sales
5.13567 5.2042 144.49
3.49546 8.0597 637.25
7.27534 11.6760 620.79
4.66282 8.3644 549.01
...
...

(each row corresponds
to a week)

If we regress
Sales on 
own price,
we obtain the
somewhat
surprising
conclusion
that a higher
price is associated
with more sales!!
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S = 223.401      R-Sq = 19.6 %      R-Sq(adj) = 18.8 %

Sales = 211.165 + 63.7130 p1

Regression Plot

The regression line
has a positive slope !!

I It looks like we should just raise our prices, right? NO, not if

you have taken this statistics class!
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Understanding Multiple Regression

I The regression equation for Sales on own price (P1) is:

Sales = 211 + 63.7P1

I If now we add the competitors price to the regression we get

Sales = 116− 97.7P1 + 109P2

I Does this look better? How did it happen?

I Remember: −97.7 is the affect on sales of a change in P1

with P2 held fixed!!
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Understanding Multiple Regression

I How can we see what is going on? Let’s compare Sales in two

different observations: weeks 82 and 99.

I We see that an increase in P1, holding P2 constant,

corresponds to a drop in Sales!

28

Sales on own price:

The multiple regression of Sales on own price (p1) and
competitor's price (p2) yield more intuitive signs:

How does this happen ?

The regression equation is
Sales = 211 + 63.7 p1

The regression equation is
Sales = 116 - 97.7 p1 + 109 p2

Remember: -97.7 is the affect on sales of a change in
p1 with p2 held fixed !!
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If we compares sales in weeks 82 and 99, we 
see that an increase in p1, holding p2 constant
(82 to 99) corresponds to a drop is sales.

How can we see what is going on ?

Note the strong relationship between p1 and p2 !!I Note the strong relationship (dependence) between P1 and

P2!! 17



Understanding Multiple Regression

I Let’s look at a subset of points where P1 varies and P2 is

held approximately constant...

29
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Here we select a subset of points where p varies
and p2 does is help approximately constant.

For a fixed level of p2, variation in p1 is negatively
correlated with sale!
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for each fixed level of p2
there is a negative relationship
between sales and p1

larger p1 are associated with
larger p2

I For a fixed level of P2, variation in P1 is negatively correlated

with Sales!!
18



Understanding Multiple Regression

I Below, different colors indicate different ranges for P2...

29
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Here we select a subset of points where p varies
and p2 does is help approximately constant.

For a fixed level of p2, variation in p1 is negatively
correlated with sale!
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Understanding Multiple Regression

I Summary:

1. A larger P1 is associated with larger P2 and the overall effect

leads to bigger sales

2. With P2 held fixed, a larger P1 leads to lower sales

3. MLR does the trick and unveils the “correct” economic

relationship between Sales and prices!
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Understanding Multiple Regression

Beer Data (from an MBA class)

I nbeer – number of beers before getting drunk

I height and weight

31

The regression equation is
nbeer = - 36.9 + 0.643 height

Predictor       Coef StDev T        P
Constant     -36.920       8.956      -4.12    0.000
height        0.6430      0.1296       4.96    0.000
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to height ?

Yes,
very clearly.
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Is nbeer related
to height ?

No, not all.

nbeer weight
weight    0.692
height    0.582    0.806

The correlations:

The regression equation is
nbeer = - 11.2 + 0.078 height + 0.0853 weight

Predictor       Coef StDev T        P
Constant      -11.19       10.77      -1.04    0.304
height        0.0775      0.1960       0.40    0.694
weight       0.08530     0.02381       3.58    0.001

S = 2.784       R-Sq = 48.1%     R-Sq(adj) = 45.9%

The two x’s are
highly correlated !!

Is number of beers related to height? 21



Understanding Multiple Regression

nbeers = β0 + β1height + ε
SUMMARY OUTPUT

Regression Statistics
Multiple R 0.58
R Square 0.34
Adjusted R Square 0.33
Standard Error 3.11
Observations 50.00

ANOVA
df SS MS F Significance F

Regression 1.00 237.77 237.77 24.60 0.00
Residual 48.00 463.86 9.66
Total 49.00 701.63

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept -36.92 8.96 -4.12 0.00 -54.93 -18.91
height 0.64 0.13 4.96 0.00 0.38 0.90

Yes! Beers and height are related...
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Understanding Multiple Regression

nbeers = β0 + β1weight + β2height + ε
SUMMARY OUTPUT

Regression Statistics
Multiple R 0.69
R Square 0.48
Adjusted R Square 0.46
Standard Error 2.78
Observations 50.00

ANOVA
df SS MS F Significance F

Regression 2.00 337.24 168.62 21.75 0.00
Residual 47.00 364.38 7.75
Total 49.00 701.63

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept -11.19 10.77 -1.04 0.30 -32.85 10.48
weight 0.09 0.02 3.58 0.00 0.04 0.13
height 0.08 0.20 0.40 0.69 -0.32 0.47

What about now?? Height is not necessarily a factor...
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Understanding Multiple Regression

31

The regression equation is
nbeer = - 36.9 + 0.643 height

Predictor       Coef StDev T        P
Constant     -36.920       8.956      -4.12    0.000
height        0.6430      0.1296       4.96    0.000
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Is nbeer related
to height ?

No, not all.

nbeer weight
weight    0.692
height    0.582    0.806

The correlations:

The regression equation is
nbeer = - 11.2 + 0.078 height + 0.0853 weight

Predictor       Coef StDev T        P
Constant      -11.19       10.77      -1.04    0.304
height        0.0775      0.1960       0.40    0.694
weight       0.08530     0.02381       3.58    0.001

S = 2.784       R-Sq = 48.1%     R-Sq(adj) = 45.9%

The two x’s are
highly correlated !!

I If we regress “beers” only on height we see an effect. Bigger

heights go with more beers.

I However, when height goes up weight tends to go up as well...

in the first regression, height was a proxy for the real cause of

drinking ability. Bigger people can drink more and weight is a

more accurate measure of “bigness”. 24



Understanding Multiple Regression

31

The regression equation is
nbeer = - 36.9 + 0.643 height

Predictor       Coef StDev T        P
Constant     -36.920       8.956      -4.12    0.000
height        0.6430      0.1296       4.96    0.000
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Yes,
very clearly.
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Is nbeer related
to height ?

No, not all.

nbeer weight
weight    0.692
height    0.582    0.806

The correlations:

The regression equation is
nbeer = - 11.2 + 0.078 height + 0.0853 weight

Predictor       Coef StDev T        P
Constant      -11.19       10.77      -1.04    0.304
height        0.0775      0.1960       0.40    0.694
weight       0.08530     0.02381       3.58    0.001

S = 2.784       R-Sq = 48.1%     R-Sq(adj) = 45.9%

The two x’s are
highly correlated !!

I In the multiple regression, when we consider only the variation

in height that is not associated with variation in weight, we

see no relationship between height and beers.
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Understanding Multiple Regression

nbeers = β0 + β1weight + εSUMMARY OUTPUT

Regression Statistics
Multiple R 0.69
R Square 0.48
Adjusted R Square0.47
Standard Error 2.76
Observations 50

ANOVA
df SS MS F Significance F

Regression 1 336.0317807 336.0318 44.11878 2.60227E-08
Residual 48 365.5932193 7.616525
Total 49 701.625

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept -7.021 2.213 -3.172 0.003 -11.471 -2.571
weight 0.093 0.014 6.642 0.000 0.065 0.121

Why is this a better model than the one with weight and height??
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Understanding Multiple Regression

In general, when we see a relationship between y and x (or x ’s),

that relationship may be driven by variables “lurking” in the

background which are related to your current x ’s.

This makes it hard to reliably find “causal” relationships. Any

correlation (association) you find could be caused by other

variables in the background... correlation is NOT causation

Any time a report says two variables are related and there’s a

suggestion of a “causal” relationship, ask yourself whether or not

other variables might be the real reason for the effect. Multiple

regression allows us to control for all important variables by

including them into the regression. “Once we control for weight,

height and beers are NOT related”!! 27



correlation is NOT causation

also...

I http://www.tylervigen.com/spurious-correlations

28
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Back to Baseball – Let’s try to add AVG on top of OBP

t o

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.948136
R Square 0.898961
Adjusted R Square 0.891477
Standard Error 0.160502
Observations 30

ANOVA
df SS MS F Significance F

Regression 2 6.188355 3.094177 120.1119098 3.63577E‐14
Residual 27 0.695541 0.025761
Total 29 6.883896

Coefficients andard Err t Stat P‐value Lower 95% Upper 95%
Intercept ‐7.933633 0.844353 ‐9.396107 5.30996E‐10 ‐9.666102081 ‐6.201163
AVG 7.810397 4.014609 1.945494 0.062195793 ‐0.426899658 16.04769
OBP 31.77892 3.802577 8.357205 5.74232E‐09 23.9766719 39.58116

R/G = β0 + β1AVG + β2OBP + ε

Is AVG any good? 29



Back to Baseball - Now let’s add SLG

t o

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.955698
R Square 0.913359
Adjusted R Square 0.906941
Standard Error 0.148627
Observations 30

ANOVA
df SS MS F Significance F

Regression 2 6.28747 3.143735 142.31576 4.56302E‐15
Residual 27 0.596426 0.02209
Total 29 6.883896

Coefficients andard Err t Stat P‐value Lower 95% Upper 95%
Intercept ‐7.014316 0.81991 ‐8.554984 3.60968E‐09 ‐8.69663241 ‐5.332
OBP 27.59287 4.003208 6.892689 2.09112E‐07 19.37896463 35.80677
SLG 6.031124 2.021542 2.983428 0.005983713 1.883262806 10.17899

R/G = β0 + β1OBP + β2SLG + ε

What about now? Is SLG any good 30



Back to Baseball

Correlations
AVG 1

OBP 0.77 1

SLG 0.75 0.83 1

I When AVG is added to the model with OBP, no additional

information is conveyed. AVG does nothing “on its own” to

help predict Runs per Game...

I SLG however, measures something that OBP doesn’t (power!)

and by doing something “on its own” it is relevant to help

predict Runs per Game. (Okay, but not much...)
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Things to remember:

I Intervals are your friend! Understanding uncertainty is a key

element for sound business decisions.

I Correlation is NOT causation!

I When presented with a analysis from a regression model or

any analysis that implies a causal relationship, skepticism is

always a good first response! Ask question... “is there an

alternative explanation for this result”?

I Simple models are often better than very complex

alternatives... remember the trade-off between complexity and

generalization (more on this later)
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