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A First Modeling Exercise

I I have US$ 1,000 invested in the Brazilian stock index, the

IBOVESPA. I need to predict tomorrow’s value of my

portfolio.

I I also want to know how risky my portfolio is, in particular, I

want to know how likely am I to lose more than 3% of my

money by the end of tomorrow’s trading session.

I What should I do?
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IBOVESPA - Data
BOVESPA

Daily Returns
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I As a first modeling decision, let’s call the random variable

associated with daily returns on the IBOVESPA X and assume

that returns are independent and identically distributed as

X ∼ N(µ, σ2)

I Question: What are the values of µ and σ2 ?

I We need to estimate these values from the sample in hands

(n=113 observations)...
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I Let’s assume that each observation in the random sample

{x1, x2, x3, . . . , xn} is independent and distributed according to

the model above, i.e., xi ∼ N(µ, σ2)

I An usual strategy is to estimate µ and σ2, the mean and the

variance of the distribution, via the sample mean (X̄ ) and the

sample variance (s2)... (their sample counterparts)

X̄ =
1

n

n∑
i=1

xi

s2 =
1

n − 1

n∑
i=1

(
xi − X̄

)2
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For the IBOVESPA data in hands,
BOVESPA

Daily Returns
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X̄ = 0.04 and s2 = 2.19

I The red line represents our “model”, i.e., the normal

distribution with mean and variance given by the estimated

quantities X̄ and s2.

I What is Pr(X < −3)?
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Annual Returns on the US market...

Assume I invest some money in the U.S. stock market. Your job is

to tell me the following:

I what is my expected one year return?

I what is the standard deviation (volatility)?

I what is the probability my investment grow by 10%?

I What happens in 20 years if I invest $1 today on the market?
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Building Portfolios

I Let’s assume we are considering 2 investment opportunities

1. IBM stocks

2. ALCOA stocks

I How should we start thinking about this problem?
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Building Portfolios

Let’s first learn about the characteristics of each option by

assuming the following models:

I IBM ∼ N(µIBM , σ
2
IBM)

I ALCOA ∼ N(µAlcoa, σ
2
Alcoa)

After observing some return data we can came up with estimates

for the means and variances describing the behavior of these stocks

9



Building Portfolios
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Building Portfolios

I How about combining these options? Is that a good idea? Is

it good to have all your eggs in the same basket? Why?

I What if I place half of my money in ALCOA and the other

half IBM...

In order to answer this question we need to understand how IBM

and Alcoa move together!
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Building Portfolios

We need to understand the behavior of the weighted sum (linear

combinations) of two random variables...

Let X and Y be two random variables:

I E (aX + bY ) = aE (X ) + bE (Y )

I Var(aX + bY ) = a2Var(X ) + b2Var(Y ) + 2ab × Cov(X ,Y )

where Cov(X ,Y ) is the covariance between X and Y .
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Covariance
Measure the direction and strength of the linear relationship between Y and X

Cov(Y ,X ) =

∑n
i=1 (Yi − Ȳ )(Xi − X̄ )
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I sy = 15.98, sx = 9.7

I Cov(X ,Y ) = 125.9

How do we interpret that?
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Correlation

Correlation is the standardized covariance:

corr(X ,Y ) =
cov(X ,Y )√

s2
x s

2
y

=
cov(X ,Y )

sxsy

The correlation is scale invariant and the units of measurement

don’t matter: It is always true that −1 ≤ corr(X ,Y ) ≤ 1.

This gives the direction (- or +) and strength (0→ 1)

of the linear relationship between X and Y .
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Correlation

corr(Y ,X ) =
cov(X ,Y )√

s2
x s
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Ȳ

15



Correlation
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Back to Building Portfolios

I So, by using what we learned about the means, variances and

covariance, we get to:

E (P) = 0.5X̄IBM + 0.5X̄Alcoa

Var(P) = 0.52 ∗ s2
IBM + 0.52 ∗ s2

Alcoa + 2 ∗ 0.5 ∗ 0.5 ∗ Cov(IBM,Alcoa)

I E (P) and Var(P) refer to the estimated mean and variance of

our portfolio
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Back to Building Portfolios

Here are the results for different combinations of Alcoa and IBM...
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Estimating Proportions... another modeling example

Your job is to manufacture a part. Each time you make a part, it is

defective or not. Below we have the results from 100 parts you just

made. Yi = 1 means a defect, 0 a good one.

How would you predict the next one?
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In this case, it might be reasonable to model the defects as iid...

We can’t be sure this is right, but, the data looks like the kind of

thing we would get if we had iid draws with that p!!!

If we believe our model, what is the chance that the next 10 are

good?

.8210 = 0.137.
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Models, Parameters, Estimates...

In general we talk about unknown quantities using the language of

probability... and the following steps:

I Define the random variables of interest

I Define a model (or probability distribution) that describes the

behavior of the RV of interest

I Based on the data available, we estimate the parameters

defining the model

I We are now ready to describe possible scenarios, generate

predictions, make decisions, evaluate risk, etc...
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Oracle vs SAP Example (understanding variation)

22



Oracle vs. SAP

I Do we “buy” the claim from this add?

I We have a dataset of 81 firms that use SAP...

I The industry ROE is 15% (also an estimate but let’s assume

it is true)

I We assume that the random variable X represents ROE of

SAP firms and can be described by

X ∼ N(µ, σ2)

X̄ s2

SAP firms 0.1263 0.065

I Well, 0.12
0.15 ≈ 0.8! I guess the add is correct, right?

I Not so fast... 23



Oracle vs. SAP

I Let’s assume the sample we have is a good representation of

the “population” of firms that use SAP...

I What if we have observed a different sample of size 81?
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Oracle vs. SAP

I Selecting a random, with replacement, from the original 81

samples I get a new X̄ = 0.09... I do it again, and I get

X̄ = 0.155... and again X̄ = 0.132...The Bootstrap: why it works

data sample

� ↓ �

bootstrap samples

You are pretending that the emperical data distribution is the

sampling distribution, and using it to draw alternative samples.

7
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Oracle vs. SAP

I After doing this 1000 times... here’s the histogram of X̄ ...

Now, what do you think about the add?

Histogram of sample mean
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Sampling Distribution of Sample Mean

Consider the mean for an iid sample of n observations of a random

variable {X1, . . . ,Xn}

If X is normal, then

X̄ ∼ N

(
µ,
σ2

n

)
.

This is called the sampling distribution of the mean...
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Sampling Distribution of Sample Mean

I The sampling distribution of X̄ describes how our estimate

would vary over different datasets of the same size n

I It provides us with a vehicle to evaluate the uncertainty

associated with our estimate of the mean...

I It turns out that s2 is a good proxy for σ2 so that we can

approximate the sampling distribution by

X̄ ∼ N

(
µ,

s2

n

)

I We call
√

s2

n the standard error of X̄ ... it is a measure of its

variability... I like the notation

sX̄ =

√
s2

n 28



Back to the Oracle vs. SAP example

Back to our simulation...

Histogram of sample mean
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Confidence Intervals

X̄ ∼ N
(
µ, s2

X̄

)
so...

(X̄ − µ) ∼ N
(
0, s2

X̄

)
right?

I What is a good prediction for µ? What is our best guess??

X̄

I How do we make mistakes? How far from µ can we be??

95% of the time ±2× sX̄

I [X̄ ±2× sX̄ ] gives a 95% range of plausible values for µ... this

is called the 95% Confidence Interval for µ.
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Oracle vs. SAP example... one more time

In this example, X̄ = 0.1263, s2 = 0.065 and n = 81... therefore,

s2
X̄

= 0.065
81 so, the 95% confidence interval for the ROE of SAP

firms is [
X̄ − 2× sX̄ ; X̄ + 2× sX̄

]
=

[
0.1263− 2×

√
0.065

81
; 0.1263 + 2×

√
0.065

81

]
= [0.069; 0.183]

I Is 0.15 a plausible value? What does that mean?
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Back to the Oracle vs. SAP example

Back to our simulation...

Histogram of sample mean
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Let’s revisit the US stock market example from before...

Let’s run a simulation based on our results...
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Estimating Proportions...

We used the proportion of defects in our sample to estimate p, the

true, long-run, proportion of defects.

Could this estimate be wrong?!!

Let p̂ denote the sample proportion.

The standard error associated with the sample proportion

as an estimate of the true proportion is:

sp̂ =

√
p̂ (1− p̂)

n
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Estimating Proportions...

We estimate the true p by the observed sample proportion

of 1’s, p̂.

The (approximate) 95% confidence interval for the true pro-

portion is:

p̂ ± 2 sp̂.
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Defects:

In our defect example we had p̂ = .18 and n = 100.

This gives

sp̂ =

√
(.18) (.82)

100
= .04.

The confidence interval is .18± .08 = (0.1, 0.26)
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Polls: yet another example...

(Read chapter 10 of “Naked Statistics” if you have a chance)

If we take a relatively small random sample from a large population

and ask each respondent yes or no with yes ≈ Yi = 1 and no

≈ Yi = 0, where p is the true population proportion of yes.

Suppose, as is common, n = 1000, and p̂ ≈ .5.

Then,

sp̂ =

√
(.5) (.5)

1000
= .0158.

The standard error is .0158 so that the ± is .0316, or about ± 3%.

(Sounds familiar?!)
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Example: Salary Discrimination

Say we are concerned with potential salary discrimination between

males and females in the banking industry... To study this issue,

we get a sample of salaries for both 100 males and 150 females

from multiple banks in Chicago. Here is a summary of the data:

average std. deviation

males 150k 30k

females 143k 15k

What do we conclude? Is there a difference FOR SURE?
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Example: Salary Discrimination

Let’s compute the confidence intervals:

males:

(150− 2×
√

302

100
; 150 + 2×

√
302

100
) = (144; 156)

females:

(143− 2×
√

152

150
; 143 + 2×

√
152

150
) = (140.55; 145.45)

How about now, what do we conclude? 39



Example: Google Search Algorithm

Google is testing a couple of modifications in its search

algorithms... they experiment with 2,500 searches and check how

often the result was defined as a “success”. Here’s the data from

this experiment:

Algorithm current mod 1 mod 2

success 1755 1850 1760

failure 745 650 740

The probability of success is estimated to be p̂ = 0.702 for the

current algorithm, p̂A = 0.74 for modification (A) and p̂B = 0.704

for modification (B) .

Are the modifications better FOR SURE? 40



Example: Google Search Algorithm

Let’s compute the confidence intervals and check if these
modifications are REALLY working... current:(
.702− 2×

√
.702 ∗ (1− .702)

2500
; .702 + 2×

√
.702 ∗ (1− .702)

2500

)
= (0.683; 0.720)

mod (A):(
.740− 2×

√
.740 ∗ (1− .740)

2500
; .740 + 2×

√
.740 ∗ (1− .740)

2500

)
= (0.723; 0.758)

mod (B):(
.704− 2×

√
.704 ∗ (1− .704)

2500
; .704 + 2×

√
.704 ∗ (1− .704)

2500

)
= (0.686; 0.722)

What do we conclude?
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Standard Error for the Difference in Means

It turns out there is a more precise way to address these

comparisons problems (for two groups)...

We can compute the standard error for the difference in means:

s(X̄a−X̄b) =

√
s2
Xa

na
+

s2
Xb

nb

or, for the difference in proportions

s(p̂a−p̂b) =

√
p̂a(1− p̂a)

na
+

p̂b(1− p̂b)

nb
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Confidence Interval for the Difference in Means

We can then compute the

confidence interval for the difference in means:

(X̄a − X̄b)± 2× s(X̄a−X̄b)

or, the confidence interval for the difference in proportions

(p̂a − p̂b)± 2× s(p̂a−p̂b)
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Let’s revisit the examples... Salary Discrimination

s(X̄males−X̄females) =

√
302

100
+

152

150
= 3.24

so that the confidence interval for the difference in means is:

(150− 143)± 2× 3.24 = (0.519; 13.48)

What is the conclusion now?
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Let’s revisit the examples... Google Search

Let’s look at the difference between the current algorithm and

modification B...

s(p̂current−p̂new ) =

√
0.702 ∗ 0.298

2500
+

0.704 ∗ 0.296

2500
= 0.0129

so that the confidence interval for the difference in means is:

(0.702− 0.704)± 2× 0.0129 = (−0.0278; 0.0238)

What is the conclusion now?
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The Bottom Line...

I Estimates are based on random samples and therefore random

(uncertain) themselves

I We need to account for this uncertainty!

I “Standard Error” measures the uncertainty of an estimate

I We define the “95% Confidence Interval” as

estimate± 2× s.e.

I This provides us with a plausible range for the quantity we are

trying to estimate.
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The Bottom Line...

I When estimating a mean the 95% C.I. is

X̄ ± 2× sX̄

I When estimating a proportion the 95% C.I. is

p̂ ± 2× sp̂

I The same idea applies when comparing means or proportions
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Testing

Suppose we want to assess whether or not µ equals a proposed

value µ0. This is called hypothesis testing.

Formally we test the null hypothesis:

H0 : µ = µ0

vs. the alternative

H1 : µ 6= µ0
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Testing

That are 2 ways we can think about testing:

1. Building a test statistic... the t-stat,

t =
X̄ − µ0

sX̄

This quantity measures how many standard deviations the

estimate (X̄ ) from the proposed value (µ0).

If the absolute value of t is greater than 2, we need to worry

(why?)... we reject the hypothesis.
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Testing

2. Looking at the confidence interval. If the proposed value is

outside the confidence interval you reject the hypothesis.

Notice that this is equivalent to the t-stat. An absolute value

for t greater than 2 implies that the proposed value is outside

the confidence interval... therefore reject.

This is my preferred approach for the testing problem. You

can’t go wrong by using the confidence interval!
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Testing (Proportions)

I The same idea applies to proportions... we can compute the

t-stat testing the hypothesis that the true proportion equals p0

t =
p̂ − p0

sp̂

Again, if the absolute value of t is greater than 2,

we reject the hypothesis.

I As always, the confidence interval provides you with the same

(and more!) information.

(Note: In the proportion case, this test is sometimes called a

z-test)
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Testing (Differences)

I For testing the difference in means:

t =
(X̄a − X̄b)− d0

s(X̄a−X̄b)

I For testing a difference in proportions:

t =
(p̂a − p̂b)− d0

s(p̂a−p̂b)

In both cases d0 is the proposed value for the difference (we

often think of zero here... why?)

Again, if the absolute value of t is greater than 2,

we reject the hypothesis.

(Note: In the proportion case, this test is sometimes called a

z-test)
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Testing... Examples

Let’s recap by revisiting some examples:

I What hypothesis were we interested in the Oracle vs. SAP

example? Use a t-stat to test it...

I Using the t-stat, test whether or not the Patriots are cheating

in their coin tosses

I Use the t-stat to determine whether or not males are paid

more than females in the Chicago banking industry

I What does the t-stat tells you about Google’s new search

algorithm?
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The Importance of Considering and Reporting

Uncertainty

In 1997 the Red River flooded Grand Forks, ND overtopping its

levees with a 54-feet crest. 75% of the homes in the city were

damaged or destroyed!

It was predicted that the rain and the spring melt would lead to a

49-feet crest of the river. The levees were 51-feet high.

The Water Services of North Dakota had explicitly avoided

communicating the uncertainty in their forecasts as they were

afraid the public would loose confidence in their abilities to predict

such events.
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The Importance of Considering and Reporting

Uncertainty

It turns out the prediction interval for the flood was 49ft ± 9ft

leading to a 35% probability of the levees being overtopped!!

Should we take the point prediction (49ft) or the interval as an

input for a decision problem?

In general, the distribution of potential outcomes are very relevant

to help us make a decision
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The Importance of Considering and Reporting

Uncertainty

The answer seems obvious in this example (and it is!)... however,

you see these things happening all the time as people tend to

underplay uncertainty in many situations!

“Why do people not give intervals? Because they are

embarrassed!”

Jan Hatzius, Goldman Sachs economists talking about economic

forecasts...

Don’t make this mistake! Intervals are your friend and will lead to

better decisions!
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