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Foundations

I Statistical Inference: Study of problems in which data has
been generated in accordance with an unknown (random)
process. The main goal is to come up with strategies that
allow us to make statements about these processes.

I Probability Models: Simplified vehicle to seek the
understanding of the unknown process... usually involves a set
of rules, functional forms and parameters.

I Probability: Language used to address uncertainty about
unknown quantities.

I Information Set: Main input in statistics... Data, scientific
knowledge, assumptions, priors.
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Probability

• Definition: OK!

• Interpretation: NOT...

I Classical or Physical

I Frequentist

I Subjective
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Probability
• Classical: Based on the concept of “equally likely outcomes”.

I Example: Coin Toss... Two outcomes, H and T... 1/2 each

I No systematic method for assigning probabilities when
outcomes are not equally likely

• Frequentist: Relative frequency of an outcome/event when the
experiment is repeated a large number of times.

Pr(A) = limn→∞
m

n

I main shortcoming is that it only applies to problems when
replication is possible.

• Question: How do we deal with statements like:

I Will it snow today?

I Will John get married to Mary?

I Will the U.S. default on its debt? 4



Probability
• Subjective: “Probability does not exist” (De Finneti). The
probability of an event A is a measure of someone’s beliefs in the
occurrence of A. Explicitly recognizes the subjective aspects of the
scientific process

• Example: A = “snow in Chicago”

I For someone in Rio de Janeiro:

Pr(A|I1) = 0.5

I For someone in Peoria, IL

Pr(A|I2) =

{
0.75 if snow in Peoria
0.25 otherwise

I For someone in Chicago

Pr(A|I3) =

{
1
0

5



Boy or Girl?

• One morning, on my way to work, I was stopped by a pregnant
lady in Hyde Park. She was anxious to know the chance of her
seventh baby to be male!

I First instincts... Pr(M|I0) = 0.5

I Additional information: I1 = {MMMMMF}
I Pr(A|I0, I1) ?

• Probability Model: Pr(Xi = 1|θ) = θ

I Joint distribution
Pr(X1 = 1,X2 = 1, . . . ,X6 = 0|θ) = θ5(1− θ)1

What am I assuming here?

I MLE: θ̂ = 5/6 = 0.83
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Alternative

Pr(X7 = 1|I1) =

∫ 1

0
Pr(X7 = 1, θ|I1)dθ

=

∫ 1

0
Pr(X7 = 1|θ, I1)p(θ|I1)dθ

=

∫ 1

0
Pr(X7 = 1|θ)p(θ|I1)dθ

=

∫ 1

0
θp(θ|I1)dθ

= E(θ|I1)

• Prior: p(θ|I0) = p(θ)→ U(0, 1)
• Posterior: p(θ|I1) ∝ p(X1, . . .X6|θ)× p(θ)
Pr(X7 = 1|I1) = E(θ|I1) = 0.75 (Why?) → Shrinkage!

• Bayesian Inference: uses probability statements about unknown
quantities conditional on the data and prior information as the
basis for inference. 7



Representation Theorem

Pr(X1, . . . ,Xn) =

∫
θSn(1− θ)n−Sndµ(θ)

• de Finneti’s Representation Theorem justify the above model by
using one assumption: Exchangeability

• If there is an infinite sequence of exchangeable random quantities
{Xn}∞n=1 then there must be some random quantity θ such that
the Xi s are conditionally IID given θ. If the random variables are
Bernoulli, θ can be taken to be the limit of proportions of
successes in the first n observations. (Equivalent to strong law of
large numbers)

• Exchangeability implies that θ is given an implicit meaning as a
random variable rather than a fixed value.

• Provides a connection between two worlds: observables vs.
mathematical constructs such as θ.
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Conditioning and the Likelihood Principle

• Likelihood Principle: The likelihood function L(θ) contains all
the relevant information about θ from the data. Moreover, two
likelihoods contain the same information about the θ if they are
proportional to each other.

• The Likelihood Principle makes explicit the natural conditional
idea that only the actual observed x should be relevant to
conclusions or evidence about θ. (Contrast with any
sampling-based approach to inference)

• Example... Highlights that the Bayesian inference get to answers
based only conditional on the observed data (and prior
information) and not based on the distribution of estimators and
test statistics that rely on non-observable quantities.
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Some Pro and Cons

• Self-contained paradigm for statistical inference that will always
quantify uncertainty via probabilistic statements conditionally on
all available information. Uncertainty about all unknows is
quantified... parameters, models, etc...

• Provide a coherent framework for the incorporation of prior
information.

• Unified treatment a decision theory and inference.

• Equivalence of classically optimal and Bayes rules. Complete
Class Theorem states that all “admissible” decision rules
(estimators) correspond to a Bayes rule. This also includes all rules
related to most powerful tests. Moreover, Bayesian estimators are
consistent, asymptotic normal and efficient given very mild
regularity conditions. Bayesian procedures are almost always
equivalent to classical large sample strategies... advantages appear
in finite sample situations.
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Some Pro and Cons

• Operational advantages. (1) Conditioning on the observed data
introduces great simplification in the analysis. No need to average
over the data space. (2) The posterior distribution provides a
simple mechanism to address a large number of questions
simultaneously.

• It’s the natural strategy for dealing with sequential inference and
therefore perfect for dynamic predictive models.

• Prior specification can be viewed as a drawback.

• Requirement of a likelihood function...

• Computational challenges... Bayesians need to compute all sorts
of integrals!
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Bayesian Estimation

• Basic elements:

(1) Prior... p(θ)

(2) Likelihood... p(x1, . . . , xn|θ)

(3) Posterior... p(θ|x1, . . . , xn)

(4) Predictive... p(x1, . . . , xn)

(4) Posterior Predictive... p(xn+1|x1, . . . , xn)
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Bayesian Estimation

• By a simple application of Bayes’ Theorem:

p(θ|X ) =
p(θ,X )

p(X )

=
p(X |θ)p(θ)

p(X )

∝ p(X |θ)p(θ)

• Predictive or marginal distribution of the data:

p(X ) =

∫
p(θ,X )dθ = Eθ(p(X |θ))
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Bayesian Estimation

• Posterior Predictive:

p(xn+1|X ) =

∫
p(xn+1, θ|X )dθ

=

∫
p(xn+1|θ,X )p(θ|X )dθ

=

∫
p(xn+1|θ)p(θ|X )dθ Why?

= Eθ|X (p(xn+1|θ))

• Sequential nature of Bayesian analysis... notice that both the
predictive and posterior predictive are NOT a function of the
unobservable quantity θ
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Bayesian Estimation

• Conjugate Families:

I N(θ, σ2) – Normal / IG

I Po(λ) – Gamma

I Ber(p) – Beta

I Exp(λ) – Gamma

I etc...
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The Normal Model

We start with the model

• X ∼ N(θ, σ2) where we assume knowledge of σ2

• p(θ) = N(m0,C0)

We then observe i.i.d. data {x1, x2, . . . , xn}

How should I estimate θ ?

The object of inference is always the posterior distribution!

p(θ|x1, x2, . . . , xn) ∝ p(x1, x2, . . . , xn|θ)p(θ)
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The Normal Model

• It turns out that

p(θ|x1, x2, . . . , xn) = N(m1,C1)

where

I C1 =
(

n
σ2 + 1

C0

)−1

I m1 = C1

(
nX̄
σ2 + m0

C0

)
We can also write

m1 =

(
nC0

nC0 + σ2

)
X̄ +

(
σ2

nC0 + σ2

)
m0

a weighted combination of the prior and experimental information

What is the predictive for xn+1?
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The Normal Model

• Let’s think about the result above...

I what happens when C0 → 0?

I what about C0 →∞?

• Can you contrast this approach to inference to the frequentist,
classical approach based on the sampling distribution?

X̄ ∼ N

(
θ,
σ2

n

)
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Multivariate Normal

Let a random p-vector x follow a multivariate normal distribution
in p dimensions

x ∼ Np(m,V)

where E (x) = m and Var(x) = V (what are the dimensions of
V?). The density is defined as:

p(x) = {(2π)p|V|}−1/2 exp

[
−1

2
(x−m)′V−1(x−m)

]
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Multivariate Normal

Suppose that we have the conformable partitions

x =

(
x1

x2

)
, m =

(
m1

m2

)
and V =

(
V11 V12

V21 V22

)

The marginal distributions are xi ∼ N(mi ,Vii )

and the conditional (x1|x2) ∼ N(m1.2,V1.2) where

m1.2 = m1 + V12V
−1
22 (x2 −m2)

V1.2 = V11 − V12V
−1
22 V21
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Linear Model

Consider the standard multiple regression model... (assume
knowledge of σ2)

Y = X ′β + ε

where ε ∼ Nn(0, σ2In)
Assume the prior β ∼ Np(m0,C0)

The posterior is defined as (β|Y ) ∼ Np(m1,C1) where

C−1
1 =

(
C−1

0 + X ′X/σ2
)−1

m1 = C1

[
C−1

0 m0 + X ′Y /σ2
]

Let’s make sure this looks right...

I What about σ2?

I and p(Y )?
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