
A Super Quick Intro to
Neural Nets

Carlos M. Carvalho
The University of Texas McCombs School of Business

1

Neural Nets

the x ’s must be numeric !!!

Since we will be regularizing we will have to standardize
(as usual).

2

2

Zagat data

Here is the zagat data:

zag = read.table("zagat.txt",header=T)

summary(zag)

food decor service price

Min. :14.00 Min. : 2.00 Min. :10.00 Min. :11.00

1st Qu.:18.00 1st Qu.:14.00 1st Qu.:16.00 1st Qu.:25.00

Median :20.00 Median :16.50 Median :18.00 Median :32.50

Mean :19.61 Mean :16.58 Mean :17.77 Mean :33.32

3rd Qu.:21.00 3rd Qu.:20.00 3rd Qu.:20.00 3rd Qu.:41.00

Max. :27.00 Max. :28.00 Max. :26.00 Max. :65.00

Let’s rescale so that each x is in (0,1).

3
3

nnet package... One layer example

7

> library(nnet)

First you have to load the neural net library, nnet:

Here is the command:

> znn = nnet(price~food,zagsc,size=3,decay=.1,linout=T)

As usual, a data structure is returned containing
(in some possibly obscure way!!)
the results.

The first two arguments are familiar.

linout=T is appropriate for a numeric y.

6
4

size, decay, ...

size and decay, are the two key parameters for controlling the
flexibility of the neural net fit.

After we understand the basic structure of the model we will
discuss these.

These will be the parameters that control the complexity of the
model like k in KNN and � in the LASSO.

7

5

9

Let’s have a look at the fits.
Just as with trees and regression,
we use the predict command:

> fznn = predict(znn,zagsc)

> plot(zagsc$food,zagsc$price)

> oo = order(zagsc$food)

> lines(zagsc$food[oo],fznn[oo],col="red",lwd=2)

> abline(lm(price~food,zagsc)$coef)

The red is the nn fit
and the straight
line is linear
regression.

zzn: nnet fit
zagsc: data frame with
scaled x’s.

8
6

10

What is the structure of the model ?

> summary(znn)

a 1-3-1 network with 10 weights

options were - linear output units decay=0.1

b->h1 i1->h1

4.35 -0.24

b->h2 i1->h2

-7.42 21.41

b->h3 i1->h3

-9.93 13.28

b->o h1->o h2->o h3->o

12.33 12.09 10.70 22.74

What does this mean ?

9
7

11

> z = (-100:100)/25

> fz = exp(z)/(1+exp(z))

> plot(z,fz)

Let,
z

z

eF(z)
1 e

=
+

First note:

This F is often
called the
logistic function.

10
8

12

Let,
z

z

eF(z)
1 e

=
+

food

z1=4.35-.24food z2=-7.42-21.41food z3=-9.93-13.28food

y=12.33 + 12.09F(z1) + 10.70F(z2) + 22.74F(z3)

1. Form several different linear functions of the x’s.
2. Apply the logistic function to each.
3. Take a linear combination of the results of 2.

11 9

13

The z’s are called the hidden layer.

Each of the z’s (linear function) is called a unit.

In the call to nnet the parameter "size" is the number
of units in the hidden layer.

12
10

14

> znn = nnet(price~food,zagsc,size=5,decay=.1,linout=T)

> summary(znn)

a 1-5-1 network with 16 weights

options were - linear output units decay=0.1

b->h1 i1->h1

2.70 0.40

b->h2 i1->h2

-9.69 13.02

b->h3 i1->h3

0.71 -5.99

b->h4 i1->h4

-6.63 19.76

b->h5 i1->h5

2.70 0.39

b->o h1->o h2->o h3->o h4->o h5->o

7.41 7.00 23.30 7.62 13.56 6.99

Here is the
fit of a neural
net with
5 units
in the hidden
layer.

the coefficients for the
5 linear functions of x,
the 5 z’s.

the coefficients for
the five f(z)

13 11

15

All three x’s
> znn = nnet(price~.,zagsc,size=5,decay=.1,linout=T)

> fznn = predict(znn,zagsc)

>

> zlm = lm(price~.,zagsc)

> fzlm = predict(zlm,zagsc)

>

> temp = data.frame(y=zagsc$price,fnn=fznn,flm=fzlm)

> pairs(temp)

>

> print(cor(temp$y,temp$fnn))

[1] 0.867858

> print(cor(temp$y,temp$flm))

[1] 0.829138

> print(cor(temp$fnn,temp$flm))

[1] 0.9705388

Using R2, nnet fit is a little better in sample, but quite similar
to the linear regression fit.

neural net
fit

linear reg
fit

14
12

16

> summary(znn)

a 3-5-1 network with 26 weights

options were - linear output units decay=0.1

b->h1 i1->h1 i2->h1 i3->h1

-5.64 -2.64 11.48 8.31

b->h2 i1->h2 i2->h2 i3->h2

-18.09 20.98 19.53 -0.64

b->h3 i1->h3 i2->h3 i3->h3

1.45 -4.79 1.95 1.00

b->h4 i1->h4 i2->h4 i3->h4

1.44 -0.94 -7.64 3.35

b->h5 i1->h5 i2->h5 i3->h5

-20.40 9.93 14.09 4.48

b->o h1->o h2->o h3->o h4->o h5->o

5.15 13.15 13.33 6.75 12.51 24.42

The fitted
model with
3 x’s and
5 units
in the hidden
layer.

a 3-5-1
network.
3 x’s,
5 units,
1 y.

of weights = 4*5 + 6.

15 13

17

The General Model

x

1 10 11 1 1k kz x x= β + β + + β" 2 20 21 1 2k kz x x= β + β + + β" m m0 m1 1 mk kz x x= β + β + + β"........

0 1 1 m mŷ F(z) F(z)= β + β + + β"

k x’s
m hidden units.

Why on earth, would this work ?

A k-m-1 network.

16
14

Size and Decay2. Size and Decay

The size of the neural net is the number of units in the hidden
layer.

Clearly, the more units the richer the model.

The more we are able to fit the data.

The more we are able to overfit the data.

1915

Size and Decay

The decay parameter is the L2 regularlization parameter.

Fit minimizes:

error + decay ⇤
X

coe�cient2

where, for example,

error =
X

(yi � ŷi)
2.

20

16

Size and Decay

21

Whether a coefficient is large or small depends on the
units of the x’s.

This is the fundamental reason we rescale the x’s.

Only if the x’s are on the same scale does the decay
parameter work properly.

People have found that in practice the decay parameter
is useful for walking the fit/overfit line.

21
17

Size and Decay

24

Left to right we
can see that
lower decay means
a more flexible fit,
the coefficients
are freer.

With low decay
(right two plots)
increasing the
size really frees
up the fit.

With high decay adding
more units does not seem to hurt !!

24

18

Size and Decay

25

We also see that even with 50 hidden units,
a large decay parameter can restrain the fit.

In practice, this has lead to the following strategy
for fitting neural nets.

1. Fix a large number of hidden units.

2. Use the three set approach or cross validation
to choose the decay parameter.

Of course, you could use cv or three sets to
choose both size and decay.

25

19

How does it work?
4. How Does it Work?

How could this possibly work???!!!

Let’s fit a few simple examples and see how the pieces add up to
the overall fit.

36
20

How does it work?

38

x = zagsc$food

y = zagsc$price

z1 = 4.35 -0.24 *x

z2 = -7.42 +21.41*x

z3 = -9.93 +13.28*x

f1 = 12.09*exp(z1)/(1+exp(z1))

f2 = 10.7*exp(z2)/(1+exp(z2))

f3 = 22.74*exp(z3)/(1+exp(z3))

plot(x,y-12.33)

lines(x[oo],f1[oo],col=2)

lines(x[oo],f2[oo],col=3)

lines(x[oo],f3[oo],col=4)

lines(x[oo],(f1+f2+f3)[oo],col=5)

8.4 How does it work ?
Let’s calculate the pieces
for a simple example and
see how they can add up to a
decent fit.

The three linear functions of x, the z’s.

coefficent * f(z)

b->h1 i1->h1

4.35 -0.24

b->h2 i1->h2

-7.42 21.41

b->h3 i1->h3

-9.93 13.28

b->o h1->o h2->o h3->o

12.33 12.09 10.70 22.74

37

21

How does it work?

39

cyan:fit

red:first component
blue:second
green:third

Wow,
scary and
cool !

38

22

How does it work?

40

How would you fit a bump?

set.seed(23)

x = runif(1000)

x = sort(x)

y = exp(-80*(x-.5)*(x-.5)) + .05*rnorm(1000)

plot(x,y)

df = data.frame(y=y,x=x)

39

23

How does it work?

41

plot(x,y)

sz = 3

for(i in 1:20) {

nnsim = nnet(y~x,df,size=sz,decay = 1/2^i,linout=T,maxit=1000)

simfit = predict(nnsim,df)

lines(x,simfit,col=i,lwd=3)

print(i)

readline()

}

With 3 units
it takes a
small decay.

decay = 1/2^12
works.

Try various decay values.

40

24

How does it work?

42

nnsim = nnet(y~x,df,size=3,decay=1/2^12,linout=T,maxit=1000)

thefit = predict(nnsim,df)

plot(x,y)

lines(x,thefit)

Plot with
nn fits.
Pretty good.

41

25

Here is the fitted model:

> summary(nnsim)

a 1-3-1 network with 10 weights

options were - linear output units decay=0.0002441406

b->h1 i1->h1

5.26 -13.74

b->h2 i1->h2

-6.58 13.98

b->h3 i1->h3

-9.67 17.87

b->o h1->o h2->o h3->o

-2.20 2.21 7.61 -5.40

Add up the pieces:

F = function(x) {return(exp(x)/(1+exp(x)))}

z1 = 5.26 - 13.74*x

z2 = -6.58 + 13.98*x

z3 = -9.67 + 17.87

f1 = 2.21*F(z1)

f2 = 7.61*F(z2)

f3 = -5.40*F(z3)

4226

rx=range(x)

ry = range(c(f1,f2,f3,y))

plot(rx,ry,type="n",xlab="x",ylab="fit",cex.axis=2,cex.lab=2)

points(x,y)

lines(x,f1,col=1,lwd=2)

lines(x,f2,col=2,lwd=2)

lines(x,f3,col=3,lwd=2)

lines(x,f1+f2+f3,col=4,lwd=4)

43
27

0.0 0.2 0.4 0.6 0.8 1.0

−4
−2

0
2

4
6

8

x

fit

●
●●●●
●●
●●
●
●●
●
●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●
●●●●

●
●●●●
●
●●●
●●
●●●●●
●
●●
●●●●●●
●●●●●●●●●

●
●
●●●●●●●
●●●●●●●●
●
●
●●●
●
●●
●
●●●
●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●
●●●●●●
●●●
●
●●
●●●●●●●●
●
●●
●●
●
●●
●●
●
●●●●●
●
●●●●
●●●●●●●●●●●●●●

●
●●
●●●●●●

●
●
●
●●●●●
●●●●●●●

●●
●
●●●●●

●●
●
●●●●●●●●●●●●●●●●

●
●●●●

●●
●
●
●●●●●
●
●●●●●●
●
●●
●
●●●●●●
●
●
●●●●●●●

●●●●●●●●
●
●●●●
●●●●●●●
●
●
●●●●●●●●●●●●

●●●
●●●
●●●
●●●●●●●●●
●
●●●
●●●
●●●
●●●●●●●
●●
●●●●●●●●●

●●
●●
●
●

●●●●●
●
●
●
●●●●●●●●
●
●●●●
●●
●
●●
●●●●●●
●
●
●
●
●●●●●●

●●●
●●●●●●●
●●●●
●●●●
●●●

●●
●
●●
●●●●●●●●●●
●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●

●●
●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●
●
●●●●
●●●●●●●●
●
●●●●●
●●
●●●●
●●
●●●●●
●●●●●●●●

●●●●
●
●●
●
●●
●●●●●●●●●●●●●●●

●●●●●●
●●●●●
●●●
●●
●●
●●●
●
●●●●
●●
●●●
●●●●●●●●●
●●●●●●●●●

●
●●●●●●●●
●●●
●●●●●
●●●●●●
●
●●●●●●●●●●●

●
●●●●●●●

●
●●●●●●
●●●
●●●●●●
●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●

●●●●●●●●
●
●
●●●●●●●●●●●●●●●

●●
●
●●●●●●●●●
●●●●●●●●●

●
●●●
●●●●●
●
●●●
●●●●●●●●●●●●●●

●
●
●
●
●
●●●●●●
●
●
●●
●●●
●●
●
●
●●●●●●●
●
●●
●●
●●
●●●
●●●●
●●●●●
●●●
●●
●●●●●●
●●●
●●●●●●●●
●●●
●
●●
●
●●
●●
●●●●●
●
●
●●
●●●●●●●●
●●
●
●●●●
●●●●●
●●●●
●
●●●●●
●●
●●●●
●

●
●●●●●●
●●●●●
●●
●●●●●●
●
●●●●●●
●●
●●
●
●
●●●●●
●
●●●●●

Awesome !!!
44
28

More than one x?

45

With more than one x it is a little harder to see
how this works.

For each z, we get “ridge functions”.

F(x1+x2)

45

29

Single Layer vs. Deep Neural Nets

1. Deep Neural Nets

Single Layer Neural Nets

People often depict x = (x1, x2, . . . , xp) as an input layer with a
node for each xi .

Note that this picture is for a three-dimensional x and we now
draw a line from each xi to each hidden unit (or neuron).

1

Deep Neural Network:

A deep neural network is a neural network with more than one
hidden layer.

3

30

Some comments

I Fitting neural nets is no trivial task! Stability of output is an
issue...

I Approximating functions with “deep” nets can be easier that
wide single nets... somehow a better navigation of the
bias-variance trade-off

I DNN are very popular these days... they seem to work best in
highly non-linear but low-noise problems (think images)... it is
unclear how successful they are in high-noise social
science/economics type of applications.

31

