Homework Assignment 4

Carlos M. Carvalho
McCombs School of Business

Problem 1

Suppose we are modeling house price as depending on house size, the number of bedrooms in the house and the number of bathrooms in the house. Price is measured in thousands of dollars and size is measured in thousands of square feet.

Suppose our model is:

$$
P=20+50 \text { size }+10 \text { nbed }+15 \text { nbath }+\epsilon, \quad \epsilon \sim N\left(0,10^{2}\right) .
$$

(a) Suppose you know that a house has size $=1.6$, nbed $=3$, and nbath $=2$.

What is the distribution of its price given the values for size, nbed, and nbath.
(hint: it is normal with mean $=? ?$ and variance $=? ?$)
$20+50 \times 1.6+10 \times 3+15 \times 2=160$
$P=160+\epsilon$ so that $P \sim N\left(160,10^{2}\right)$
(b) Given the values for the explanatory variables from part (a), give the 95% predictive interval for the price of the house.
160 ± 20
(c) Suppose you know that a house has size $=2.6$, nbed $=4$, and nbath $=3$. Give the 95% predictive interval for the price of the house.
$20+50 \times 2.6+10 \times 4+15 \times 3=235$
$P=235+\epsilon$ so that $P \sim N\left(235,10^{2}\right)$ and the 95% predictive interval is 235 ± 20
(d) In our model the slope for the variable nbath is 15 . What are the units of this number?

Thousands of dollars per bathroom.
(e) What are the units of the intercept 20? What are the units of the the error standard deviation 10 ?

The intercept has the same units as $P \ldots$ in this case, thousands of dollars. The error std deviation is also in the same units as P, ie, thousands of dollars.

Problem 2

For this problem us the data is the file Profits.csv.
There are 18 observations.
Each observation corresponds to a project developed by a firm.
$\mathrm{y}=$ Profit: profit on the project in thousands of dollars.
$\mathrm{x} 1=\mathrm{RD}$: expenditure on research and development for the project in thousands of dollars.
$\mathrm{x} 2=$ Risk: a measure of risk assigned to the project at the outset.
We want to see how profit on a project relates to research and development expenditure and "risk".
(a) Plot profit vs. each of the two x variables. That is, do two plots y vs. x 1 and y vs $x 2$. You can't really understand the full three-dimensional relationship from these two plots, but it is still a good idea to look at them. Does it seem like the y is related to the x's?
(b) Suppose a project has risk $=7$ and research and development $=76$. Give the 95% plug-in predictive interval for the profit on the project. Compare that to the correct, predictive interval (using the predict function in R).
(c) Suppose all you knew was risk=7. Run the simple linear regression of profit on risk and get the 68% plug-in predictive interval for profit.
(d) How does the size of your interval in (c) compare with the size of your interval in (b)? What does this tell us about our variables?
(a) It seems like there is some relationship, especially between RD and profit.

(b) The plug-in predictive interval, when $R D=76$ and $R I S K=7$ is $94.75 \pm 2 * 14.34=$ [66.1, 123.4].
(c) Using the model PROFIT $=\beta_{0}+\beta_{1} R I S K+\epsilon$, the 68% plug-in prediction interval for when RISK $=7$ is $143 \pm 106.1=[37.5,249.7]$.
(d) Our interval in (c) is bigger than the interval in (b) despite the fact that it is a "weaker" confidence interval. In essence (c) says that we predict Y will be in $[38,250] 68 \%$ of the time when RISK $=7$. In contrast, (b) says that Y will be in $[63,127] 95 \%$ of the time when RISK $=7$ and $R D=76$. Using $R D$ in our regression narrows our prediction interval by quite a bit.

Problem 3

The data for this question is in the file zagat.xls. The data is from the Zagat restaurant guide. There are 114 observations and each observation corresponds to a restaurant. There are 4 variables:
price: the price of a typical meal
food: the zagat rating for the quality of food.
service: the zagat rating for the quality of service.
decor: the zagat rating for the quality of the decor.

We want to see how the price of a meal relates the quality characteristics of the restaurant experience as measured by the variables food, service, and decor.
(a) Plot price vs. each of the three x's. Does it seem like our y (price) is related to the x's (food, service, and decor)?
(b) Suppose a restaurant has food $=18$, service $=14$, and decor $=16$. Run the regression of price on food, decor, and service and give the 95% predictive interval for the price of a meal.
(c) What is the interpretation of the coefficient estimate for the explanatory variable food in the multiple regression from part (b) ?
(d) Suppose you were to regress price on the one variable food in a simple linear regression? What would be the interpretation of the slope? Plot food vs. service. Is there a relationship? Does it make sense? What is your prediction for how the estimated coefficient for the variable food in the regression of price on food will compare to the estimated coefficient for food in the regression of price on food, service, and decor? Run the simple linear regression of price on food and see if you are right! Why are the coefficients different in the two regressions?
(e) Suppose I asked you to use the multiple regression results to predict the price of a meal at a restaurant with food $=20$, service $=3$, and decor $=17$. How would you feel about it?

Solutions.
(a) Check out the figure above... definitely looks like price is related to each of the 3 X's.
(b) The regression output is

Regression Statistics						
Multiple R	0.829					
R Square	0.687					
Adjusted R	0.679					
Standard E	6.298					
Observatio	114.000					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	3.000	9598.887	3199.629	80.655	0.000	
Residual	110.000	4363.745	39.670			
Total	113.000	13962.632				
	Coefficients	Standard Error	t Stat	P -value	Lower 95\%	Upper 95\%
Intercept	-30.664	4.787	-6.405	0.000	-40.151	-21.177
food	1.380	0.353	3.904	0.000	0.679	2.080
decor	1.104	0.176	6.272	0.000	0.755	1.453
service	1.048	0.381	2.750	0.007	0.293	1.803

so that $-30.66+1.38 \times 18+1.1 \times 16+1.05 \times 14=26.476$ and the 95% plug-in prediction interval is 26.476 ± 12.6
(c) If you hold service and decor constant and increase food by 1 , then price goes up (on average) by 1.38 .
(d) If food goes up by 1 price goes up by the slope (on average)... from the plot in item (a) we know that it looks like food and price are related in a positive way. Now, you would think that these four variables are somewhat related to each other, right? A better restaurant tend to have good food, service and decor... and also a higher price. By running the regression with only food as a explanatory variable I would guess the coefficient for food would be higher... let's see:

Regression Statistics						
Multiple R	0.599					
R Square	0.359					
Adjusted R Squ	0.353					
Standard Error	8.939					
Observations	114.000					
ANOVA						
	$d f$	SS	MS	F	Significance F	
Regression	1.000	5012.239	5012.239	62.720	0.000	
Residual	112.000	8950.393	79.914			
Total	113.000	13962.632				
	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
Intercept	-18.154	6.553	-2.770	0.007	-31.137	-5.170
food	2.625	0.331	7.920	0.000	1.968	3.282

I was right! In the simple linear, regression food works as a proxy for the overall quality of a restaurant. When food goes up service and decor tend to go up as well but since they are not in the regression, the coefficient for food has to reflect the other factors. Once decor and service are in the regression, the coefficient for food just has to reflect the impact associated with food but not with the other variables.
(e) Very bad! We just dont see in our data restaurants with that low of a service rating given food equal to 20 and decor equal to 17 . This would be a extreme extrapolation from what we have seen so far and the model might not be appropriate.

Problem 4: Baseball

Using our baseball data (RunsPerGame.xls), regress R / G on a binary variable for league membership (League $=0$ if National and League $=1$ if American) and $O B P$.

$$
R / G=\beta_{0}+\beta_{1} \text { League }+\beta_{2} O B P+\epsilon
$$

1. Based on the model assumptions, what is the expected value of R / G given $O B P$ for teams in the AL? How about the NL?
2. Interpret β_{0}, β_{1} and β_{2}.
3. After running the regression and obtaining the results, can you conclude with 95% probability that the marginal effect of $O B P$ on R / G (after taking into account the League effect) is positive?
4. Test the hypothesis that $\beta_{1}=0$ (with 99% probability). What do you conclude?
5. The expected value of R / G given $O B P$ is

$$
E[R / G \mid O B P, \text { League }=0]=\beta_{0}+\beta_{2} O B P
$$

for the NL and

$$
E[R / G \mid O B P, \text { League }=1]=\left(\beta_{0}+\beta_{1}\right)+\beta_{2} O B P
$$

for the AL.
2. β_{0} is the number of runs per game we expect a team from the National League to score if their OBP is zero.

We expect a team in the American League to score β_{1} more runs per game on average than a team in the National League with the same $O B P$.
β_{2} tells us how R / G scales with $O B P$. For every unit increase in $O B P$ there will be a β_{2} increase in R / G.
3. The 95% confidence interval for β_{2} is $37.26 \pm 2 * 2.72=(31.82 ; 42.70)$ hence, yes, it is greater than zero.
4. The best guess of β_{1} is $b_{1}=0.01615$ with standard error 0.06560 . Thus the 99% confidence interval is $b_{1} \pm 3 * s_{b_{1}}=[-0.18,0.21]$, which includes zero. Since zero is in our interval of reasonable values we cannot conclude that $\beta_{1} \neq 0$.

```
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.72065 0.93031 -8.299 6.59e-09 ***
LeagueAmerican 0.01615 0.06560 0.246 0.807
OBP 37.26060 2.72081 13.695 1.14e-13 ***
-
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.1712 on 27 degrees of freedom
Multiple R-squared: 0.8851, Adjusted R-squared: 0.8765
F-statistic: 103.9 on 2 and 27 DF, p-value: 2.073e-13
```


Problem 6: Beauty Pays!

Professor Daniel Hamermesh from UT's economics department has been studying the impact of beauty in labor income (yes, this is serious research!!).

First, watch the following video:
http://www.thedailyshow.com/watch/mon-november-14-2011/ugly-people
It turns out this is indeed serious research and Dr. Hamermesh has demonstrated the effect of beauty into income in a variety of different situations. Here's an example: in the paper "Beauty in the Classroom" they showed that "...instructors who are viewed as better looking receive higher instructional ratings" leading to a direct impact in the salaries in the long run.

By now, you should know that this is a hard effect to measure. Not only one has to work hard to figure out a way to measure "beauty" objectively (well, the video said it all!) but one also needs to "adjust for many other determinants" (gender, lower division class, native language, tenure track status).

So, Dr. Hamermesh was kind enough to share the data for this paper with us. It is available in our class website in the file "BeautyData.csv". In the file you will find, for a number of UT classes, course ratings, a relative measure of beauty for the instructors, and other potentially relevant variables.

1. Using the data, estimate the effect of "beauty" into course ratings. Make sure to think about the potential many "other determinants". Describe your analysis and your conclusions.
We talked about this one in class. The main point here is that in order to isolate the effect of beauty into class ratings we need to CONTROL for other potential determinants of ratings. From the data available it looks like all the other variables are relevant so we should be running the following regression:
```
Ratings \(=\beta_{0}+\beta_{1}\) BeautyScore \(+\beta_{2}\) Female \(+\beta_{3}\) Lower \(+\beta_{4}\) NonEnglish +
\(\beta_{5}\) TenureTrack \(+\epsilon\)
```

Here are the results:

Coefficients:

	Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$				
(Intercept)	4.06542	0.05145	79.020	$<2 \mathrm{e}-16 * * *$	
BeautyScore	0.30415	0.02543	11.959	$<2 \mathrm{e}-16 * * *$	
female	-0.33199	0.04075	-8.146	$3.62 \mathrm{e}-15 * * *$	
lower	-0.34255	0.04282	-7.999	$1.04 \mathrm{e}-14$	$* * *$
nonenglish	-0.25808	0.08478	-3.044	0.00247	$* *$
tenuretrack	-0.09945	0.04888	-2.035	$0.04245 *$	

So, as discussed in class it makes sense for some of these coefficients to be negative, right? For example, if an instructor is not a native english speaker he/she might have a harder time communicating the material and hence lower teaching evaluations. Same goes for lower division classes; most people have to take those classes whether they want or not which leads to lower ratings as students are potentially less interested in the materials to begin with. Now, the results for females is a bit surprising. Why are (holding all else equal) females instructors receiving lower ratings on average? Are there any reasons for us to believe females are not as capable as males to teach? Probably not, right? So, this data demonstrates a potential negative bias that people have in evaluating women.

Finally, with all of that taken into account we find that the higher the beauty score of the instructor the higher their ratings!
2. In his paper, Dr. Hamermesh has the following sentence: "Disentangling whether this outcome represents productivity or discrimination is, as with the issue generally, probably impossible". Using the concepts we have talked about so far, what does he mean by that?
The question here is: are beautiful people indeed better teachers or are they just perceived to be better teachers because of their looks? This analysis can't answer this question! In my opinion the results are very suggestive that this is just discrimination as I dont really believe that beauty relates to one's ability to teach. But, until we run an controlled experiment or find a "natural experiment" (like the one in question 3) we can't conclusively prove this point. What would be a potential natural experiment here? Wouldn't it be nice if we had data on blind students taking these classes? Why would that help?

Problem 7: Housing Price Structure

The file MidCity.xls, available on the class website, contains data on 128 recent sales of houses in a town. For each sale, the file shows the neighborhood in which the house is located, the number of offers made on the house, the square footage, whether the house is made out of brick, the number of bathrooms, the number of bedrooms, and the selling price. Neighborhoods 1 and 2 are more traditional whereas 3 is a more modern, newer and more prestigious part of town. Use regression models to estimate the pricing structure of houses in this town. Consider, in particular, the following questions and be specific in your answers:

1. Is there a premium for brick houses everything else being equal?
2. Is there a premium for houses in neighborhood 3 ?
3. Is there an extra premium for brick houses in neighborhood 3 ?
4. For the purposes of prediction could you combine the neighborhoods 1 and 2 into a single "older" neighborhood?

There may be more than one way to answer these questions.
(1) To begin we create dummy variable Brick to indicate if a house is made of brick and N_{2} and N_{3} to indicate if a house came from neighborhood two and neighborhood three respectively. Using these dummy variables and the other covariates, we ran a regression for the model

$$
\begin{aligned}
Y=\beta_{0} & +\beta_{1} \text { Brick }+\beta_{2} N_{2}+\beta_{3} N_{3}+\beta_{4} \text { Bids } \\
& +\beta_{5} \text { SqFt }+\beta_{6} \text { Bed }+\beta_{7} \text { Bath }+\epsilon, \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right) .
\end{aligned}
$$

and got the following regression output.

Coefficients:								
	Estimate	Std. Error	t value P	$\operatorname{Pr}(>\|t\|)$				
(Intercept)	2159.498	8877.810	0.243	0.808230				
BrickYes	17297.350	1981.616	8.7291.	$1.78 \mathrm{e}-14$	***		2.5 \%	97.5 \%
N2	-1560.579	2396.765	-0.651 0.	0.516215				
N3	20681.037	3148.954	6.568	$1.38 \mathrm{e}-09$	***	(Intercept)	-15417.94711	19736.94349
Offers	-8267.488	1084.777	-7.621 6	$6.47 \mathrm{e}-12$		BrickYes	13373.88702	21220.81203
SqFt	52.994	5.734	9.2421	$1.10 e^{-15}$		N2	-6306.00785	3184.84961
Bedrooms	4246.794	1597.911	2.658	0.008939		N3	14446.32799	26915.74671
Bathrooms	7883.278	2117.035	3.724	0.000300		Offers	-10415.27089	-6119.70575
---						SqFt	41.64034	64.34714
						Bedrooms Bathrooms	$\begin{aligned} & 1083.04162 \\ & 3691.69572 \end{aligned}$	$\begin{array}{r} 7410.54616 \\ 12074.86126 \end{array}$
Signif. codes	. 0	$0.001 * *$. 01.05	. 0.1				
Residual standard error: 10020 on 120 degrees of freedom								
Multiple R-squared: 0.8686, Adjusted R-squared: 0.861								
F-statistic: 113.3 on 7 and 120 DF, p-value: < $2.2 \mathrm{e}-16$								

To check if there is a premium for brick houses given everything else being equal we test the hypothesis that $\beta_{1}=0$ at the 95% confidence level. Using the regression output we see that the 95% confidence interval for β_{1} is [13373.89, 21220.91]. Since this does not include zero we conclude that brick is a significant factor when pricing a house. Further, since the entire confidence interval is greater than zero we conclude that people pay a premium for a brick house.
(2) To check that there is a premium for houses in Neighborhood three, given everything else we repeat the procedure from part (1), this time looking at β_{3}. The regression output tells us that the confidence interval for β_{3} is $[14446.33,26915.75]$. Since the entire confidence interval is greater than zero we conclude that people pay a premium to live in neighborhood three.
(4) We want to determine if Neighborhood 2 plays a significant role in the pricing of a house. If it does not, then it will be reasonable to combine neighborhoods one and two into one "old" neighborhood. To check if Neighborhood 2 is important, we perform a hypothesis test on $\beta_{2}=0$. The null hypothesis $\beta_{2}=0$ corresponds to the dummy variable N_{2} being unimportant. Looking at the confidence interval from the regression output we see that the 95% confidence interval for β_{2} is $[-6306,3184]$, which includes zero. Thus we can conclude that it is reasonable to let β_{2} be zero and that neighborhood 2 may be combined with neighborhood 1 .
(3) To check that there is a premium for brick houses in neighborhood three we need to alter our model slightly. In particular, we need to add an interaction term Brick \times N3. This more complicated model is

$$
\begin{aligned}
Y=\beta_{0} & +\beta_{1} \text { Brick }+\beta_{2} N_{2}+\beta_{3} N_{3}+\beta_{4} \text { Bids } \\
& +\beta_{5} \text { SqFt }+\beta_{6} \text { Bed }+\beta_{7} \text { Bath }+\beta_{8} \text { Brick } \cdot N_{3}+\epsilon, \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right) .
\end{aligned}
$$

To see what this interaction term does, observe that

$$
\frac{\partial E\left[Y \mid \text { Brick, } N_{3}\right]}{\partial N_{3}}=\beta_{3}+\beta_{8} \text { Brick. }
$$

Thus if β_{8} is non-zero we can conclude that consumers pay a premium to buy a brick house when shopping in neighborhood three. The output of the regression which includes the interaction term is below.

Coefficients:					
	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	3009.993	8706.264	0.346	0.73016	
BrickYes	13826.465	2405.556	5.748	7.11e-08	
N2	-673.028	2376.477	-0.283	0.77751	
N3	17241.413	3391.347	5.084	1.39e-06	
Offers	-8401.088	1064.370	-7.893	$1.62 \mathrm{e}-12$	
SqFt	54.065	5.636	9.593	< $2 \mathrm{e}-16$	
Bedrooms	4718.163	1577.613	2.991	0.00338	**
Bathrooms	6463.365	2154.264	3.000	0.00329	**
BrickYes:N3	10181.577	4165.274	2.444	0.01598	
Signif. codes: 0 *** $0.001 * * 0.01 * 0.05$. 0.1 1					
Residual standard error: 9817 on 119 degrees of freedo					
Multiple R-squared: 0.8749, Adjusted R-squared: 0					
F-statistic: 104 on 8 and $119 \mathrm{DF}, \mathrm{p}$-value: $<2.2 \mathrm{e}-1$					

	0.5%	99.5%
(Intercept)	-19781.05615	25801.04303
BrickYes	7529.25747	20123.67244
N2	-6894.11333	5548.05681
N3	8363.62557	26119.20030
Offers	-11187.37034	-5614.80551
SqFt	39.31099	68.81858
Bedrooms	588.32720	8847.99967
Bathrooms	823.98555	12102.74436
BrickYes:N3	-722.17781	21085.33248
	0.5%	99.5%
(Intercept)	-19781.05615	25801.04303
BrickYes	7529.25747	20123.67244
N2	-6894.11333	5548.05681
N3	8363.62557	26119.20030
Offers	-1187.37034	-5614.80551
SqFt	39.31099	68.81858
Bedrooms	588.32720	8847.99967
Bathrooms	823.98555	12102.74436
BrickYes:N3	-722.17781	21085.33248

To see if there is a premium for brick houses in neighborhood three we check that the 95% confidence interval is greater than zero. Indeed, we calculate that the 95% confidence interval is $[1933,18429]$. Hence we conclude that there is a premium at the 95% confidence level. Notice however, that the confidence interval at the 99% includes zero. Thus if one was very stringent about drawing conclusions from statistical data, they may accept the claim that there is no premium for brick houses in neighborhood three.

Problem 8: What causes what??

Listen to this podcast:
http://www.npr.org/blogs/money/2013/04/23/178635250/episode-453-what-causes-what

1. Why can't I just get data from a few different cities and run the regression of "Crime" on "Police" to understand how more cops in the streets affect crime? ("Crime" refers to some measure of crime rate and "Police" measures the number of cops in a city)
2. How were the researchers from UPENN able to isolate this effect? Briefly describe their approach and discuss their result in the "Table 2" below.
3. Why did they have to control for METRO ridership? What was that trying to capture?

The problem here is that data on police and crime cannot tell the difference between more police leading to crime or more crime leading to more police... in fact I would expect to see a potential positive correlation between police and crime if looking across different cities as mayors probably react to increases in crime by hiring more cops. Again, it would be nice to run an experiment and randomly place cops in the streets of a city in different days and see what happens to crime. Obviously we can't do that!

What the researchers at UPENN did was to find a natural experiment. They were able to collect data on crime in DC and also relate that to days in which there was a higher alert for potential terrorist attacks. Why is this a natural experiment? Well, by law the DC mayor has to put more cops in the streets during the days in which there is a high alert. That decision has nothing to do with crime so it works essentially as a experiment. From table 1 we see that controlling for ridership in the METRO, days with a high alert (this was a dummy variable) have lower crime as the coefficient is negative for sure. Why do we need to control for ridership in the subway? Well, if people were not out and about during the high alert days there would be fewer opportunities for crime and hence less crime (not due to more police). The results from the table tells us that holding ridership fix more police has a negative impact on crime.

Still we can't for sure prove that more cops leads to less crime. Why? Well, imagine the criminals are afraid of terrorists and decide not to go out to "work" during a high alert day... this would lead to a reduction in crime that is not related to more cops in the streets. But again, I dont believe that is a good line of reasoning so these results are building a very strong circumstancial case that more cops reduce crime.
4. In the next page, I am showing you "Table 4" from the research paper. Just focus on the first column of the table. Can you describe the model being estimated here? What is the conclusion?

In table 4 they just refined the analysis a little further to check whether or not the effect of high alert days on crime was the same in all areas of town. Using interactions between location and high alert days they found that the effect is only clear in district 1. Again, this makes a lot of sense as most of the potential terrorists targets in DC are in District 1 and that's where more cops are most likely deployed to. The effect in the
other districts is still negative but small and given the standard error in parenthesis we conclude it can still be zero (why? check the confidence interval!).

EFFECT OF POLICE ON CRIME

TABLE 2

Total Daily Crime Decreases on High-Alert Days

	(1)	(2)
High Alert	-7.316^{*}	-6.046^{*}
	(2.877)	(2.537)
Log(midday ridership)		$17.341^{* *}$
		(5.309)
R^{2}	.14	.17

Figure 1: The dependent variable is the daily total number of crimes in D.C. This table present the estimated coefficients and their standard errors in parenthesis. The first column refers to a model where the only variable used in the High Alert dummy whereas the model in column (2) controls form the METRO ridership. * refers to a significant coeficient at the 5% level, ${ }^{* *}$ at the 1% level.

TABLE 4
Reduction in Crime on High-Alert Days: Concentration on the National Mall
$\left.\begin{array}{lccc}\hline \hline & & & \begin{array}{c}\text { Coefficient } \\ \text { (Robust) }\end{array}\end{array} \begin{array}{c}\text { Coefficient } \\ \text { (HAC) }\end{array} \quad \begin{array}{c}\text { Coefficient } \\ \text { (Clustered by Alert } \\ \text { Status and Week) }\end{array}\right]$

Figure 2: The dependent variable is the daily total number of crimes in D.C. District 1 refers to a dummy variable associated with crime incidents in the first police district area. This table present the estimated coefficients and their standard errors in parenthesis.* refers to a significant coeficient at the 5% level, ${ }^{* *}$ at the 1% level.

Problem 9: Don't Take Your Vitamins

Read the following article:
http://fivethirtyeight.com/features/dont-take-your-vitamins/

List a few ideas/concepts that you have learned so far in this class that helps you understand this article.

