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Abstract: We propose an efficient solution to the problem of direct sam-
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1. Introduction

[3] proposed a general method to direct sample from the hyper-inverse Wishart
for both decomposable and non-decomposable graphs. The approach is based
on the compositional form of the joint distribution over a sequence of subgraphs
defined by the junction tree as if Σ ∼ HIWG(b,D), where G = (V,E), and for a
sequence of perfectly ordered prime components {P1, S2, P2, . . . , Pk} the density
takes the form

p(Σ|b,D) = p(ΣP1
)

k
∏

i=2

p(ΣPi
|ΣSi

). (1)

The efficiency of the proposed sampling strategy derives from the fact that all
matrix operations are done at the component level and therefore the complex-
ity of the algorithm is dependent only on the dimension of the largest prime
component of G.

In decomposable graphs their methodology follows directly from basic condi-
tioning results of normals and Wishart distributions and it works perfectly. For
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non-decomposable graphs, however, they used the general distributional theory
for the Cholesky decomposition of a hyper-inverse Wishart defined by [2] in
conjunction with their decomposition idea. In this paper, we identify two prob-
lems in their approach and propose a direct sampling solution that preserves the
computational efficiencies associated with matrices computations being carried
out at the level of the prime components.

For clarity of presentation we assume from this point forward that G = (V,E)
can be decomposed into two prime components and one separator {P1, S2, P2}.
Assume further that the subgraph GP1

is complete and GP2
is not. This implies

no loss of generality as the proposed sampling process can be repeated down
the junction tree in the presence of both complete and incomplete additional
components.

2. Sampling in a single non-decomposable prime component

Let us start by focusing on sampling from the marginal distribution of the
p × p covariance matrix ΣP2

∼ HIWP2
(b,DP2

). Remember that GP2
is a non-

decomposable subgraph of G.
Define K = Σ−1

P2
so that K ∼ WGP2

(b,DP2
), a G-Wishart distribution with

density

p(K | GP2
) ∝ |K|(b−2)/2 exp

{

−
1

2
tr(KDP2

)

}

1{K∈M+(GP2
)}. (2)

Write D−1
P2

= T ′T and K = Φ′Φ as Cholesky decompositions and define Ψ =

ΦT−1. Following the nomenclature of [2], the free elements of Φ are those φij
such that (i, j) is an edge in P2. From Theorem 1 and equation (38) of [2], these
free elements have density defined by

p[ψ2
11, . . . , ψ

2
pp, {ψij}(i,j)∈E

i<j

]

∝ exp

{

−
1

2

∑

(i,j)/∈E
i<j

ψ2
ij

}

p
∏

i=1

χ2
b+νi(ψ

2
ii)

∏

(i,j)∈E
i<j

n(ψij | 0, 1) (3)

where p is the cardinality of subgraph GP2
and the ψijs, for (i, j) /∈ E and i < j,

are well-defined functions of the free elements of GP2
.

Based on expression (3), Section 4.3 of [2] suggested a direct algorithm to
sample K using chi-squares and normal random variables. This suggestion was
adapted in [3] in the context of the decomposition in (1). This is where the
first problem with their approach appears. The derivations of [2] are correct but
the sampling suggestion used in [3] is not. According to (3), the free elements
are not independent normal and chi-square random variates; they are implicitly
dependent through the term of exp

{

− 1
2

∑

(i,j)/∈E
i<j

ψ2
ij

}

. We suggest the following

rejection sampling modification [7] as a fix for the problem:
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1. Sample Ψ following the Step 1 and 2 in Section 4.3 of [2], and u ∼ U[0, 1].
2. Check whether u < exp

{

− 1
2

∑

(i,j)/∈E
i<j

ψ2
ij

}

. If this holds, accept Ψ as a

sample from (3); if not, reject the value of Ψ and repeat the sampling
step.

3. Construct a sample of K following Step 3 and 4 in Section 4.3 of [2].

The algorithm in [3] only has Step (i) and (iii). However, a sample of Ψ in
Step (i) is not from equation (3), but from the instrumental distribution:

f [ψ2
11, . . . , ψ

2
pp, {ψij}(i,j)∈E

i<j

] =

p
∏

i=1

χ2
b+νi(ψ

2
ii)

∏

(i,j)∈E
i<j

n(ψij | 0, 1).

Therefore, the Accept-Reject method in Step (ii) is necessary to ensure that
this sample is from the true distribution of Ψ, that is, equation (3). Note that
exp

{

− 1
2

∑

(i,j)/∈E
i<j

ψ2
ij

}

≤ 1. Then

p[ψ2
11, . . . , ψ

2
pp, {ψij}(i,j)∈E

i<j

] ≤ Cf [ψ2
11, . . . , ψ

2
pp, {ψij}(i,j)∈E

i<j

]

where C is the inverse of the normalizing constant of the distribution of equa-
tion (3). By Corollary 2.17 and Algorithm A.4 of [7], we can generate a correct
sample of Ψ using the rejection sampling of Step (ii).

3. Sampling HIW distributions for non-decomposable graphs

With the correct mechanism to sample from a single non-decomposable prime
component available, we can revisit the decomposition strategy of [3] to draw
samples of Σ in all of G. It should be clear that sampling ΣP1

is a simple task
as ΣP1

∼ IW(b,DP1
) so the problem is reduced to sampling from the condi-

tional distribution p(ΣP2
| ΣS2

) as ΣS2
is a complete subset of ΣP1

. The second
mistake in [3] was the suggestion that obtaining samples from this conditional
distribution in non-decomposable graphs could be done by matching elements
of the Cholesky decomposition of the Σ−1

P2
with the ones obatained from the

decomposition of Σ−1
S2

[see 3, Section 3.3]. We now fix this problem by defining
the appropriate conditioning strategy.

Write ΣP2
and K = Σ−1

P2
as

ΣP2
=

(

ΣS2
ΣS2,R

ΣR,S2
ΣR

)

and K = Σ−1
P2

=

(

KS2
KS2,R

KR,S2
KR

)

where ΣR,S2
= Σ′

S2,R
and KR,S2

= K ′
S2,R

. Also define

ΣR·S2
= ΣR − ΣR,S2

Σ−1
S2

ΣS2,R and ΓR·S2
= ΣR,S2

Σ−1
S2
.
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By noting that S2 is complete so that the subgraph GP2
is collapsible onto

S2 ⊆ P2 Corollary 1 of [8] implies that (ΣR·S2
,ΓR·S2

) ⊥⊥ ΣS2
. Moreover, note

that KR = Σ−1
R·S2

and KS2,R = −Γ′
R·S2

Σ−1
R·S2

implying further that

(KR,KS2,R) ⊥⊥ ΣS2
. (4)

The independency result in (4) allow us to define the sampling scheme for
p(ΣP2

| ΣS2
) as follows:

1. Sample K ∼WG(b,DP2
) using the rejection sampling of Section 2 provid-

ing values to the submatrices KR and KS2,R;
2. Compute ΣR·S2

= K−1
R and ΓR·S2

= −ΣR·S2
KR,S2

;
3. Compute the implied values of ΣR = ΣR·S2

+ΣR,S2
Σ−1

S2
ΣS2,R and ΣR,S2

=
ΓR·S2

ΣS2
which combined with ΣS2

create a sample of ΣP2
.

With samples from ΣP1
, ΣS2

and ΣP2
available, the remaining elements of Σ

where (i, j) /∈ E can be computed via the completion operation derived in [5]
and presented in equation (6) of [3].

4. A simulated example

We consider one simulated example that involves a two prime component non-
decomposable graph G in Figure 1. The simulation method was applied to gen-
erate 5000 samples from the hyper-inverse Wishart distribution HIWG(203, D)
where

D =















35.93 0.73 4.68 1.77 0.87 4.35 6.20
0.73 30.88 4.47 1.87 -0.39 2.30 2.05
4.68 4.47 19.31 2.60 -0.89 0.29 1.57
1.77 1.87 2.60 14.78 1.58 0.31 0.14
0.87 -0.39 -0.89 1.58 18.03 2.91 1.48
4.35 2.30 0.29 0.31 2.91 9.85 6.21
6.20 2.05 1.57 0.14 1.48 6.21 9.55















.

To demonstrate the efficacy of the our sampler, we first compute the theoret-
ically exact value of E(ΣE | D, d,G), where ΣE denotes the free elements of Σ.

Fig 1. The underlying non-decomposable graph in the simulated example. The prime compo-
nents and separators are P1 = {1, 2, 3, 7}, S2 = {3, 7}, and P2 = {3, 4, 5, 6, 7}.
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The Corollary 2 of [8] implies that this expectation can be calculated as

E(ΣE | D, d,G) = DE/(d− 2).

The theoretically exact value and the Monte Carlo estimate based the sample
mean of the 5000 simulated covariance matrices are















0.1787 0.0036 0.0233 · · · 0.0309
0.0036 0.1536 0.0223 · · · 0.0102
0.0233 0.0223 0.0961 0.0130 · · 0.0078

· · 0.0130 0.0735 0.0078 · ·
· · · 0.0078 0.0897 0.0145 ·
· · · · 0.0145 0.0490 0.0309

0.0309 0.0102 0.0078 · · 0.0309 0.0475















and














0.1790 0.0038 0.0234 · · · 0.0308
0.0038 0.1536 0.0222 · · · 0.0101
0.0234 0.0222 0.0962 0.0130 · · 0.0078

· · 0.0130 0.0737 0.0078 · ·
· · · 0.0078 0.0897 0.0146 ·
· · · · 0.0146 0.0490 0.0309

0.0308 0.0101 0.0078 · · 0.0309 0.0475















,

respectively, where · denotes non-free elements to highlight structure.
The mean and median number of samples required to accept one sample in

the rejection sampling of Step (ii) in Section 2 is 1.35 and 1 respectively.

5. Final remarks

We have identified and fixed two problems involving the sampling of hyper-
inverse Wishart random variables conditional on non-decomposable graphical
models as proposed by [2] and [3]. Their ideas are still used in our approach and
it now clear that direct samples can be obtained in a computationally efficient
way by using the junction tree of a graph. Finally, we would like to point the
reader to two recently proposed alternative solutions to this problem: [1], [6] and
[4]. It is important to highlight, however, that all of these strategies are based on
iterative Markov chain Monte Carlo and therefore have to rely on the eventual
convergence of the chain. Our method is a direct sampling strategy that, at each
step, delivers exact samples from the hyper-inverse Wishart distribution. Upon
publication of this note, a R-package for sampling from general hyper-inverse
Wishart distributions will be available at the author’s website.

References

[1] Asci, C. and Piccioni, M. (2007). Functionally Compatible Local Char-
acteristics for the Local Specification of Priors in Graphical Models. Scan-
dinavian Journal of Statistics 34 829–840. MR2396941

http://www.ams.org/mathscinet-getitem?mr=2396941


H. Wang and C.M. Carvalho/Simulation of hyper-inverse Wishart distributions 1475

[2] Atay-Kayis, A. and Massam, H. (2005). The marginal likelihood for de-
composable and non-decomposable graphical Gaussian models. Biometrika

92 317–35. MR2201362
[3] Carvalho, C., Massam, H. and West, M. (2007). Simulation of hyper-

inverse Wishart distributions in graphical models. Biometrika 94 647–659.
MR2410014

[4] Dobra, A., Lenkoski, A. and Rodriguez, A. (2010). Bayesian inference
for general Gaussian graphical models with application to multivariate lat-
tice data Technical Report, University of Washington.

[5] Massam, H. and Neher, E. (1998). Estimation and Testing for Lat-
tice Conditional Independence Models on Euclidean Jordan Algebras. Ann.
Statist. 26 1051–82. MR1635442

[6] Mitsakakis, N., Massam, H. and Escobar, M. (2010). A Metropolis-
Hastings based method for sampling from G-Wishart distribution in Gaus-
sian graphical Models Technical Report, University of Toronto.

[7] Robert, C. and Casella, G. (2010). Monte Carlo Statistical Methods,
2 ed. Springer-Verlag, New York. MR2080278

[8] Roverato, A. (2002). Hyper-Inverse Wishart Distribution for Non-
decomposable Graphs and its Application to Bayesian Inference for Gaus-
sian Graphical Models. Scandinavian Journal of Statistics 29 391–411.
MR1925566

http://www.ams.org/mathscinet-getitem?mr=2201362
http://www.ams.org/mathscinet-getitem?mr=2410014
http://www.ams.org/mathscinet-getitem?mr=1635442
http://www.ams.org/mathscinet-getitem?mr=2080278
http://www.ams.org/mathscinet-getitem?mr=1925566

	Introduction
	Sampling in a single non-decomposable prime component
	Sampling HIW distributions for non-decomposable graphs
	A simulated example
	Final remarks
	References

