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Abstract

In this paper we investigate whether or not the conventional wisdom that stocks are more

attractive for long horizon investors hold. Taking the perspective of an investor, we evaluate

the predictive variance of k-period returns for different models and prior specifications and con-

clude, that stocks are indeed less volatile in the long run. Part of the developments include an

extension of the modeling framework to incorporate time varying volatilities and covariances in

a constrained prior information set up.

1 Introduction

The view that stocks represent safer and more attractive investment for long horizon portfolios

is widespread. This conventional wisdom is key in justifying the large allocations in stocks

suggested by financial advisors with regards to retirement portfolios, and the now very popular,

target-date mutual funds. This notion has been explored and validated through the years in

various empirical studies. Siegel [2008] provides a comprehensive assessment of the behavior of

stock portfolios with an extensive dataset of equity returns in the U.S. dating back to 1802 and

concludes, rather emphatically, that stocks are indeed very attractive to long horizon portfolios.

A number of the studies that attempt to characterize the variance of stocks over different

horizons can be viewed as incomplete for they ignore the effects of estimation risk. They also

fail to consider the perspective of a forward looking investor that relies on all available current

information to evaluate the predictive variance of stocks. Note that dealing with this problem

from the investor perspective requires the integration of all sources of uncertainty with regards

to the current information set, i.e., the posterior distribution of all unknowns. Therefore, taking

1



a Bayesian perspective is not a choice but rather a necessity in answering this question. In

addition, due to the low signal-to-noise ratio in modeling returns, sensible priors that really

capture the available information are needed.

To our knowledge only 3 papers explore this question from the investor’s perspective while

simultaneously accounting for the effects of parameter uncertainty (estimation risk). First, Bar-

beris [2000] works with the predictive regression framework [Stambaugh, 1999] and his results are

in line with the conventional view. Pettenuzzo and Timmermann [2011] work in the same pre-

dictive regression framework and incorporate model instability through structural breaks; their

results contradict conventional wisdom and suggest that the potential for future structural breaks

significantly increases the predictive variance in the long run. Finally, Pástor and Stambaugh

[2012] using a very flexible model (the predictive systems framework of Pástor and Stambaugh

[2009]) conclude that once all sources of uncertainty are taken into account stocks are actually

more volatile over longer horizons. The last two papers are based on more realistic models for

stocks returns, use the same data as Siegel [2008], and their results cast doubts on a number of

investment strategies that rely on the conventional wisdom being correct.

Our paper attempts to settle this disagreement by carefully exploring the effects of priors

and model specifications in the estimation of the predictive variance. We work with a similar

model framework as in Pástor and Stambaugh [2012] and try to isolate and understand the

effects of priors on different parameters in the final results. Taking a conservative approach we

start our analysis by ignoring the potential predictability, via covariates, of expected returns and

focus solely on the temporal properties of the time series of returns. This strategy allow us to

more easily isolate the effects of a small set of parameters and assumptions. We them extend

our analysis to incorporate predictors and a very important element ignored in previous papers:

time varying variances and covariances. This modification requires a significant innovation in

modeling multivariate stochastic volatiles in the presence of prior constraints and associated

computation strategy for posterior sampling.

Our conclusion is that conventional wisdom is correct after all. Unless investors possess very

unusual beliefs about key quantities in the model the predictive variance per period of stocks

decreases as a function of the investment horizon. This result is very robust and can be achieved

in a variety of settings including the very flexible time varying volatilities and covariances. The

paper starts by describing the basic problem and main model framework in Section 2 followed

by an extensive empirical analysis in Section 3. Section 4 explore some extensions to the basic
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framework and describes the time-varying modeling strategy for the covariance matrix of returns,

expected returns and predictors.

2 The Basic Model

A state-space model provides a simple yet realistic representation of the data generating process

for stock returns. The model takes the form:

rt+1 = µt + ut+1

µt+1 = α+ βµt + wt+1 (1)

with  ut+1

wt+1

 ∼ N(0,Σ) and Σ =

 σ2u σuw

σwu σ2w

 , (2)

where rt+1 denotes the continuously compounded excess return from time t to t+1, and µt is the

expected return (equity premium) conditional on all information at time t. Notice that unlike

traditional state-space models the observation equation connects rt+1 to µt in order to emphasize

the fact that µt represents the expectation for returns at time t + 1 given the information set

at time t. In addition, it is common to assume a stationary process for expected returns with

β ∈ (0, 1) and the correlation between shocks

ρuw =
σuw
σuσw

∈ (−1, 0).

Although very simple, this model encompasses what is now seen as facts in the literature (see

Cochrane [2005] for a comprehensive review): (i) expected returns are time varying and mean

reverting and (ii) contemporaneous shocks to expected returns are negatively correlated with

shocks to returns, i.e., when expected returns go up, returns tend to go down. This is due to

the fact that asset prices tend to fall as discount rates (expected returns) rise (see Pástor and

Stambaugh [2009]).

Taking the perspective of an investor that is focused on the k−period return and has infor-

mation up to time T (denote the information set DT ), the question of whether or not stocks are

more attractive in the long run is answered by calculating the predictive variance per period of
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the random variable

rT,T+k = rT+1 + rT+2 + · · ·+ rT+k,

denoted by var(rT,T+k|DT ). If

var(rT,T+k|DT )

k
< var(rT,T+1|DT ), (3)

for k corresponding to relevant investment horizons, and given that E(rT,T+k|DT ) grows ap-

proximately linearly in k, investors would be more attracted to stocks in the long run as the

Sharpe-ratio (a measure of risk adjusted return)

E(rT,T+k|DT )√
var(rT,T+k|DT )

(4)

would grow with the horizon k.

This paper’s main goal, from this point forward, is to evaluate var(rT,T+k|DT ) under alterna-

tive model specifications and different prior assumptions in order to check whether the inequality

in (3) holds. This evaluation is done with respect to the investor’s joint posterior distribution

of all states and parameters of the model so to incorporate all sources of uncertainty. Note

that, unlike the three papers referenced in the introduction, our initial model does not rely on

any predictor for µt and looks to model the univariate series of returns. It is our view that

understanding the time series patterns of returns and expected returns is a necessary first step

in studying the main quantities and assumptions driving the resulting predictive variance. If

one can show that the inequality in (3) holds without the use of predictors it follows that con-

ditioning on any additional information capable of predicting expected returns can only reduce

the resulting predictive variance.

To help facilitate the understanding of the main quantity of interest it is useful to look at

a simpler version of the model in (1) where µt = µ (for all t) so that returns are i.i.d. normal

with mean µ and variance σ2u. This simple assumption is associated with stock prices following

a random walk. By denoting θ = (µ, σ2u) the predictive variance is computed via

var(rT,T+k|DT ) = Eθ [var(rT,T+k|DT , θ)] + varθ [E(rT,T+k|DT , θ)]

= Eθ(kσ
2
u) + varθ(kµ)

= kEθ(σ
2
u) + k2varθ(µ) (5)
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so that (1/k)var(rT,T+k|DT ) increases with the horizon k and, in turn, falsifies the inequality in

(3).

Applying the same logic to the time-varying model in (1), Pástor and Stambaugh [2012]

decompose the predictive variance into 5 components and observed that ρuw < 0 is a necessary

condition for the inequality in (3) to hold (see Appendix 1). This decomposition is very useful

in understanding the sources of uncertainty faced by the investor and we explore this notion

in the empirical examples that follow. In the meantime, we can summarize the main variables

that affect the predictive variance: β and ρuw. Simply put, β close to 1 means “momentum”,

i.e., abnormally large expected returns today lead to likely abnormally large expected returns

tomorrow and this high persistence leads to very high unconditional variance for µt which in

turn, leads to quick growth in the predictive variance of k-period returns. A strong negative ρuw

offsets the “momentum” effect as abnormally large expected returns today are associated with

negative shocks to observed returns tomorrow, mitigating the growth of the predictive variance

with the horizon. In essence, the answer to the question of whether or not stocks are good for

the long run is a function of the investor’s posterior distribution on β and ρuw and our main

objective in the first part of the paper is to understand how much information in the data is

available about these two quantities.

2.1 Priors and Data

Our analysis focus on the annual data used in Pástor and Stambaugh [2012] consisting of ob-

servations from 1802 to 2007 as compiled by Siegel [2008]. The returns are annual real (excess)

log returns from the U.S. equity markets. The evaluation of the predictive variance from the

investor’s perspective can only be achieved by integration over the posterior distribution of all

unknowns. The problem in hand is a notoriously low-signal environment in which carefully

chosen priors play a central role in the analysis. Our objective here is to compute our tar-

get, the predictive variance var(rT,T+k|DT ), by working with a few different prior specifications

that reasonably represent the investor’s beliefs. For robustness of analysis, we attempt to be as

“non-informative” as possible even when we believe this may represent an overstatement of the

uncertainty faced by the investor. Using the same rationale, we assume the investor does not

observe any potential predictive variable for returns. This is a simplification to the model used

in Pástor and Stambaugh [2012] that reduces the investor’s information set and can only bring

more variance for the long run. As mentioned above, this provides a more clean framework in
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which to evaluate the role of different parameters in determining the long run predictive variance.

The basis for our analyses is the model defined by (1) and (2). Throughout we define un-

informative priors for the initial state µ0 and for both α and β while respecting the constraint

that β ∈ (0, 1) (see draws in Figure 1). As for Σ, we use a Cholesky prior that results in a very

uninformative prior for σ2u but somewhat informative for σ2w. This is due to the understanding

that we are dealing with a very low signal-to-noise ratio time series and the prior consensus belief

that expected returns are significantly less volatile than actual returns.

To be specific, we follow the Cholesky representation in Daniels and Pourahmadi [2002] and

rewrite the joint distribution of (ut+1, wt+1)
′, as

ut+1 = σuz1

wt+1 = φwuut+1 + σwz2

where z1 and z2 are N(0, 1). Under this parametrization, ρuw = φwuσuσ
−1
w so we can easily

enforce ρuw ∈ (−1, 0) by the use of a truncated normal prior for φwu. The results presented in

the next Section are based on two implied priors for ρuw. In what we call “weak prior” regime,

ρuw is approximate uniformly distributed between -1 and 0 while the “strong prior” regime refers

to a prior where ρuw is concentrated around -0.8 (a strong but yet plausible belief in the literature

see Barberis [2000], Pástor and Stambaugh [2012]). In both cases we use the priors

σ−2u ∼ Ga(5, 0.15) and σ−2w ∼ Ga(5, 0.002)

with φwu ∼ N(−0.016, 0.072)1φwu<0 and φwu ∼ N(−0.097, 0.072)1φwu<0 in the “weak” and

“strong” prior specifications respectively. Draws from the priors of β and Σ in both specifications

are presented in Figures 1 and 2.

3 Results

Figure 1 presents draws from priors and posteriors for the mean reversion coefficient β and the

standard deviations of the innovations (σu,σw) under three model/prior specifications. The first

row of plots refers to a model where ρuw = 0 whereas the second and third rows are the results

for the “weak prior” and “strong prior” specifications, respectively. Notice that in all cases the

information in the data about σu and σw are very robust validating our initial beliefs about the
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signal-to-noise ratio in the problem. As for β, the story is quite different as very little information

is available in the data so that posterior learning is very weak. However, a few things can be

noted: first, by forcing ρuw = 0, β is inferred to be much smaller than when we allow ρuw < 0.

Second, in all cases, there is little posterior evidence for β > 0.9. As we show below, this has a

great impact in the resulting computation of the predictive variance.

Figure 2 shows prior and posterior draws for ρuw in both “weak prior” (left panel) and “strong

prior” (right panel) setup. In both cases the data is suggestive of a somewhat strong negative

correlation between the error terms. As noted before, whether or not stocks are less volatile and

more appealing to long horizon investors depends, in one direction, on how large β is and, how

negative ρuw is the other. The results from these analysis show that β is unlikely to be very high

and that ρuw is probably smaller than −0.5.

Turning to our main quantity of interest, Figure 3 presents the resulting predictive standard

deviation per period, i.e., √
var(rT,T+k|DT )

k

in all model specifications presented so far plus the addition of the a few benchmarks and a time

varying Σt specification to be described later (see Section 4). Two important benchmarks are the

i.i.d. model (black line) and the standard state-space model where ρuw = 0; The former can be

seen as an upper bound for the predictive variance as it is associated with the a random walk for

stock prices. The latter is the simplest, standard state-space model that does not take advantage

of the economic motivated prior that ρuw < 0. Not surprisingly, the results for these models

are quite similar to each other. By ignoring the important economic fact that innovations to

expected returns and innovations in returns are negatively correlated, the noise level of returns

makes it very hard to filter out the path of expected returns and therefore β is inferred to be

quite small. In other words, without the important prior information that ρuw < 0 the inferences

in the state-space model indicate the 207 observations available look essentially like independent

normal draws and therefore the predictive variance (red line) grows with the horizon as in the

derivation in equation (5). Now turning to the results where ρuw < 0, both the “weak prior”

and “strong prior” specification lead to the conclusion that stocks are attractive for the long

run investor as their predictive variance per period decays (up to a point) as a function of the

horizon. We have seen that in posterior for β is very similar in both cases so the difference in the

results is solely due to the prior on ρuw – the stronger the investor’s belief about the negative

correlation the more attractive stocks are for his/hers long run portfolio. It is also important
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to notice that both the blue and green curves eventually start to climb up (for horizons of 30

years or more) as future uncertainty about expected returns eventually outpaces the effects of

ρuw. However, even looking at 50 year horizons, the inequality in (3) still holds.

A final point to notice out of the right panel in Figure 3 is the grey line labeled “uncondi-

tional”; this is a model-free assessment of the volatility per period at different horizons showing

the in-sample variance of 1-year, 2-years, 3-years returns and so on. This is computed based

on a rolling sum of k-period returns. This line is often used as the justification for the con-

ventional wisdom (see Siegel [2008]) that long run stock portfolios are relatively less risky than

short horizon ones. This line is obviously problematic as it ignores many sources of uncertainty,

in particular as the horizon grows (the sample size for its computation decreases with horizon).

However, it is also very reassuring to see that at least looking at 10 or 20 years horizons this

model-free assessment is in qualitative agreement with the results from the blue and green line.

Once all the uncertainty about parameters are taking into account we see a shift up from the sim-

plistic unconditional line however, in all settings where the economic information about ρuw < 0

is used, the resulting predictive variance line still decreases with horizon and the inequality in

(3) holds.

To check that these results are not an artifact of the model specification that forces ρuw to

be negative, the left panel in Figure 3 shows the prior predictive variance per period plotted

along with the posterior predictive in the “strong prior” case. The result is clear: under this

model/prior specification the investor’s initial belief is that stocks are very bad for long run

portfolios but after observing 207 years of data, he/she concludes the opposite – so we conclude

that no, these results are not an artifact of the model/prior specification but rather a function of

the information in the data. Additionally, we randomly shuffled the 207 observations 1000 times.

This is an attempt to to break its dynamics and turn the data into approximately i.i.d. draws.

The left panel of Figure 4 shows a histogram of draws from the posterior of ρuw using data from

one of the shuffled data sets. As expected, the posterior evidence is that ρuw is likely to be close

to 0 (contrast with Figure 2). The right panel shows the different predictive variances (grey area)

obtained by this exercise under the “weak” prior setting. It is clear that the results obtained

from the “weak” and “strong” prior settings are indeed a function of the dynamic patterns in

the actual, observed data.

The analyses above give us enough evidence that the conventional wisdom behind larger

allocations in stocks for long horizon investors is not so wrong after all and puts the results from
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Pástor and Stambaugh [2012] into question. Using what is a very simple but representative model

for returns we see that the inequality in (3) holds even for investors that have very uninformative

priors about the crucial parameters in the model. Our view is that the results in Figure 3 are

enough to validate the notion that stocks are safer for the long run but a deeper understanding

of the trade-offs associated with the assumptions is necessary and explored further below.

Figure 5 uses the decomposition of the predictive variance presented in Pástor and Stambaugh

[2012] (see Appendix 1) to help us understand the relevance and magnitude of the different sources

of uncertainty in determining the predictive variance. Again, the only source of reduction of the

predictive variance as a function of the horizon is the component labeled “mean reversion”,

i.e., the effect associated with ρuw whereas the uncertainty about “future µ” is the main driver

bringing the predictive variance up. Recall that µ is modeled as a mean-reverting auto-regressive

quantity and therefore its future uncertainty in primarily determined by the mean reverting

coefficient β (see Appendix 1). The closer β is to one, the larger the uncertainty about future µ’s

will be1. By comparing the two panels we can see that the difference between the results in the

“weak prior” (left) versus the “strong prior” (right) set up is the “mean reversion” component –

the stronger negative beliefs about ρuw result in a lower mean reversion component leading to a

reduction in the long run predictive variance.

Second, we investigate the effects of β. One particular interesting aspect of the results so

far is the lack of information in the data about β and therefore the investor’s prior about this

quantity will be particularly influential in the computation of the predictive variance. To further

our understanding about the role of β, Figure 6 shows the predictive volatility per period in the

“weak prior” set up for a variety of fixed values of β. The plot on the left emphasizes the notion

mentioned before that higher β’s lead to higher predictive variance. In particular, we see that if

an investor believes in very persistent expected returns (say β > 0.94) stocks are not attractive

for the long run as the inequality in (3) doesn’t hold. On the other hand, the panel on the right

shows that fast mean-reversion also makes stocks less attractive for long horizons. Increasing β

from 0.1 to 0.85 makes stocks more and more attractive but at some point (see the red line where

β = 0.875) the high persistency starts increasing the long run volatility. From this analysis, one

can conclude that if 0.1 < β < 0.93 conventional wisdom is right. The analysis so far has shown

that even with very little information available in the data, the posteriors for β in Figure 1 are

concentrated in this range. In simple terms, it’s hard to learn about β but we learn that β is not

1In the limit of β = 1, µ turns into a random-walk which would lead to a diverting uncertainty about future µ.
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too high nor too small which in turn provides additional evidence that stocks are indeed good

for long run portfolios.

To explore this point further Figure 7 displays (left panel) the predictive distribution of µT+30

when β = 0.945 (dashed line) and when β is free to vary under the “weak prior” set up. It also

shows the resulting predictive variance decomposition when β = 0.945. It is clear that the reason

for the growth of the predictive variance as a function of the horizon is the resulting uncertainty

about future µ. Using the non-informative setting of the “weak prior” regime, a investor faces a

95% predictive interval for expected returns in T +30, between -3% and 15%whereas if β = 0.945

the interval is significantly wider: -6.5% to 19%. One could argue that either case results in too

wide of an interval. As mentioned before, we believe that the “weak prior” set up is too vague and

most likely overstates the uncertainty faced by the investor, but even in that case, the resulting

predictive variance per period decreases with the horizon.

It is important to note that our results are in direct contradiction with the strong claims in

Pástor and Stambaugh [2012]. In this basic model, without predictors, the only different between

their approach and ours is the prior distribution over Σ. We believe the Cholesky prior used here

is a natural, interpretable and flexible choice. Nonetheless, in an attempt to better understand

the nature of the differences in our results if compare to Pástor and Stambaugh [2012] we re-ran

the analysis using the “non”, “less” and “more” informative inverse-Wishart priors with hyper

parameters described in a series of their papers. Figure 8 and 9 present the results obtained

from both theirs and our prior specifications. The “non” informative specification does not

impose the information that ρuw < 0 and therefore the noise overwhelms the signal leading

to results similar to the standard dynamic model in our analysis where ρuw = 0. The other

specifications, “less” and “more” informative, impose the negative correlation and the results

are in qualitative agreement with our results presented so far. Once again, unless the investor

possesses very unusual views a priori, or ignores the fundamental economic fact that ρuw < 0, the

data consistently points in the direction that stocks are more attractive to long run portfolios.

In summary, the past 207 years of data provides enough evidence that the inequality in (3)

holds and therefore the conventional wisdom for larger allocation in stocks for long run portfolios

is justified. In order to violate (3) an investor has to hold very strong beliefs about the mean

reversion coefficient β – beliefs that (i) are not supported by the data and (ii) imply an artificial

amount of uncertainty regarding future expected returns as seen in Figure 7.
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3.1 Portfolio Implications

To illustrate the implications of the different results obtained so far we present a stylized portfolio

problem. Assume a buy-and-hold investor that can only choose between the stock index or a

risk free bond. The investor’s initial wealth is WT = 1 and ω is the allocation to stocks so that

the terminal wealth at horizon H is defined by:

WT+H = (1− ω) exp (rfH) + ω exp (rfH + rT,T+H)

where rf is the risk-free rate. The investor’s preferences over terminal wealth is defined as in

Barberis [2000] and Pástor and Stambaugh [2012] by a constant relative risk-aversion power

utility function of the form

u(W ) =
W 1−δ

1− δ

so that when looking to determine its allocation to stocks the investor solves the following

problem:

max
ω

E

{
[(1− ω) exp (rfH) + ω exp (rfH + rT,T+H)]1−δ

1− δ

}
(6)

where the expectation is taken with respect to the predictive distribution of rT,T+H .

In our example we set rf = 0.02 (2% a year) and δ = 5 (without loss of generality and following

the examples in both Barberis [2000] and Pástor and Stambaugh [2012]). Using simulated draws

from the posterior of all unknowns of each model we are able to evaluate the expectation in (6)

via Monte Carlo and consequently determine the investor’s optimal allocation. Figure 10 shows

the allocations as a function of the horizon under 3 different model specifications. The results are

clear: a 30-year horizon investor that believes stock returns are i.i.d. will hold roughly 50% of

their portfolio in stocks while the investors that uses the model in (1) with beliefs that β = 0.945

will hold a little less than 50% in stocks. Meanwhile, the 30-year investor with beliefs described

by our “strong prior” setting will hold more than 70% is stocks, a result very much in line with

the current conventional wisdom with benefits well cataloged in Siegel [2008].

4 Model Extensions

In this section we extend the analysis conducted so far in a two directions. First we add predictive

variables to the analysis using the predictive systems framework of Pástor and Stambaugh [2012].
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The addition of conditional information can only help reduce the predictive variance and therefore

we are simply trying to evaluate how much this information helps reduce the variability of stocks

in the long run. It is important to notice that the conclusions in Pástor and Stambaugh [2012]

that stocks are more volatile into long run are based on a model with predictors, a conclusion

we were able to refute without this additional information.

The second extension is allowing the covariance matrix to vary in time. The fact that volatility

of stocks returns changes in time has been extensively documented in the literature and we seek

to understand how this feature affects the predictive variance of long run portfolios.

4.1 Adding Predictors

Working with a simple yet comprehensive model, we have concluded that the predictive variance

per period of a k-period return decreases with the horizon. In other words, the inequality

in (3) holds even if an investor has very vague initial beliefs. We now extend the analysis to

incorporate predictors of expected returns. There is a vast literature on return predictability (see

for example Welch and Goyal [2008], Johannes et al. [2014], Pettenuzzo and Ravazzolo [2014])

but to maintain the coherence of the analysis we follow the predictive systems approach as in

Pástor and Stambaugh [2012]. This is done through the following state-space model:

rt+1 = µt + ut+1

µt+1 = α+ βµt + wt+1

xt+1 = A + Bxt + vt+1 (7)

with 
ut+1

wt+1

vt+1

 ∼ N(0,Σ) and Σ =


σ2u σuw Σux

σwu σ2w Σwx

Σxu Σxw Σx

 ,

where xt+1 is a vector of variables (predictors) related to expected and realized returns. This

follows the specification of Pástor and Stambaugh [2012] and provides a framework where in-

vestors use the information in the variables x to learn about expected returns (and returns) via

the model in (7). Pástor and Stambaugh [2012] call this a “imperfect predictors” framework

as, unlike most of the predictability literature, expected returns are not solely a linear function

of the x’s but a latent variable (µ) that is informed by the predictors via Σ. As in the models
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in Section 2, we assume that β ∈ (0, 1), ρuw < 0 and that B is a diagonal matrix with entries

bii ∈ (−1, 1) for all i so to guarantee stationarity.

In our empirical analysis, we use the exact same predictors as Pástor and Stambaugh [2012].

They are: dividend yield on U.S. equity, a measure of bond yields and a measure of term spread

as defined in Pástor and Stambaugh [2012]. We also extend the Cholesky prior to the now (5×5)

covariance matrix Σ with the same implied priors for σ2u, σ2w and ρuw as defined in the “weak

prior” and “strong prior” specification in our previous analysis. In addition, a very uninformative

prior is implied for the remaining elements of Σ.

Figure 11 shows the results for the predictive variance in both “weak” and “strong” prior

specifications and compares the results with and without the inclusion of the predictors x. The

results are very similar; in the “weak” prior setting the predictors provide some information and

are able to slightly reduce the the predictive variance of portfolios with horizon longer than 20

years. However, when the “strong” priors are used the predictors appear to be irrelevant as

the resulting long run predictive variances are essentially the same. This fact should come with

no surprise; these predictors, while extensive explored and discussed in the literate are able to

capture a very small fraction of the variation in stock returns and many authors (see Welch and

Goyal [2008]) have pointed to the fact that taking advantage of these signals out-of-sample is a

very hard task.

Once again, these results add evidence to our original conclusions that under mild assumptions

about β and ρuw, conventional wisdom is correct and the inequality in (3) is satisfied, making

stocks very attractive to the long run investor.

4.2 Time-Varying Σt

We now modify the model in (7) with


ut

wt

vt

 ∼ N(0,Σt) (8)
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and follow the specification of Lopes et al. [2014] where the joint distribution of (ut, wt,vt)
′, is

written as a series of regressions

ut = σtuZt1 (9)

wt = φtwuut + σtwZt2

vt1 = φt11ut + φt12wt + σt1Zt3

vt2 = φt21ut + φt22wt + φt23vt1 + σt2Zt4

vt3 = φt31ut + φt32wt + φt33vt1 + φt34vt2 + σt3Zt5

· · ·

vtp = φtp1ut + φtp2wt + φtp3vt1 + . . .+ φtp(p+1)vt(p−1) + σtpZt(p+2)

where all of the Zti are iid N(0, 1). This model provides a one-to-one correspondence between

the parameters (σtu, φtwu, σtw, {φtij}, {σti}) and Σt and is a straightforward vehicle to include

time variation by modeling each row of the system in (9) independently, while guaranteeing a

proper variance covariance matrix as a result. We use the standard stochastic volatility approach

and let

σt,i = exp
(st,i

2

)
, with st,i = di + gist−1,i + hiεt,i.

where the ε are independent standard normal. Similarly, for each (ij) we model

φt,ij = dij + gijφt−1,ij + hijεt,ij .

Assuming the use of standard priors, posterior sampling for the modification in (9) relies

on well studied dynamic linear model [West and Harrison, 1997, Prado and West, 2010] and

stochastic volatility techniques [Jacquier et al., 2002, Chib et al., 2002]. The complication arises

from the fact that in our model we have prior information about the sign of ρt,uw, the correlation

between ut and wt. In order to respect this constraint, we develop a new approach to prior

specification and posterior computation that allow for easy of expression beliefs about ρt,uw.

First, we let

σt,u = exp

(
θt,1
2

)
, σt,w = exp

(
θt,2
2

)
, φtwu = θt,3,

so that at time t, the three key time-varying parameters of interest are θt = (θt,1, θt,2, θt,3).

Note that with our system of regressions setup (9), we can analyze the first two equations
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separately from the others so that we can focus on the two equation system:

(ut, wt)
′ ∼ N(0,Σ(θt)), θt = (θt,1, θt,2, θt,3)

ut = exp

(
θt,1
2

)
Zt1

wt = θt,3 ut + exp

(
θt,2
2

)
Zt2

Viewing the above as our observation equation (in a conditional sense, within the Gibbs sampler),

we now need to complete our model with a state equation. We need to do this so that we can

control the resulting prior on ρt,uw. Note that

ρt,uw = ρ(θt) = ρ(θt,1, θt,2, θt,3) =
θt,3{

θ2t,3 + exp(θt,2 − θt,1)
}1/2

.

We could proceed by specifying dynamics for each θt,i so that the resulting ρt,uw is in accordance

with the our prior beliefs. However, this is complicated due to the non-linear relationship between

ρt and the θt’s. Instead, we modified the standard AR(1) specification to directly inject beliefs

about the correlation at each t. The standard state equation would be given by:

q(θt | θt−1) = Π3
i=1 q(θt,i | θt−1,i),

with each q(θti | θt−1,i) an AR(1)

θt,i = ai + biθ(t−1),i + ciWi,t.

where each W is N(0, 1). We modify q to construct a transition distribution p(θt |θt−1) which

includes direct beliefs about each θt via a function f(·):

p(θt |θt−1) ∝ q(θt | θt−1) f(θt), (10)

with,

f(θt) = exp

{
−(ρ(θt)− ρ̄)2

κ

}
.

The smaller κ is, the more θt is pushed towards values such that ρ(θt) ≈ ρ̄. We can choose

priors on (ai, bi, ci) in the usual way by considering the desired smoothness of the state paths.
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In addition, we can choose κ and ρ̄ to push the θt path towards ones have a desired correlation

level. If q(θ0) was prior choice for the initial state, we can use the same function f to modify it:

p(θ0) ∝ q(θ0)f(θ0). (11)

While this approach makes the prior specification relatively straightforward, it complicates pos-

terior draws since evaluation of the transition distribution involves the normalizing constant in

(10). The computation details are presented in Appendix 2.

Returning to our empirical application where ρ̄ and κ were chosen to mimic the strong prior

setting used in Section 3 we confirm, once again, that the inequality in (3) is satisfied and the

predictive variance decays with horizon. The predictive variance results are displayed in Figure

3. We also present in Figure 12 the implied prior for two elements of Σt over time, along with

their updated posterior where we see a clear indication of time variation in the variance of

stock returns but a rather stable behavior in ρuw. Again, even when we add an extra layer of

flexibility in the model and let variances and covariances to vary in time our results confirm that

conventional wisdom is right in stocks become more attractive for the typical long run investor.

5 Conclusion

The conclusion from all on the analyses presented are very clear: under mild assumptions about

prior beliefs for a representative investor, the predictive variance per period of equity returns

decrease with horizon. The results validate the conventional wisdom that stocks are more and

more attractive as the investment horizon grows and provide substantial evidence to justify

a number of popular retirement investment strategies currently available. Our claim is based

primarily on flexible, state-space models that look to learn the time series behavior of returns

without the use of conditioning information from predictors. However, our conclusions are robust

to the inclusion of predictors and the added complexity of time-varying variances and covariances

as seen in Section 4.

Our view is that by working with simple but flexible models we were able to identify in what

direction the predictive variance per period moves as a function of the horizon. A more precise

estimation of the predictive variance level, however, can be achieved by the use of a number

of predictors (beyond the 3 considered here) that have been proposed in the literature and

more complex predictive models [Welch and Goyal, 2008, Johannes et al., 2014, Pettenuzzo and
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Ravazzolo, 2014]. The ability to use better conditioning information in the estimation of expected

returns can only reduce the uncertainty faced by the investor in the long run and strengthen the

results presented here. However, as the usual case when dealing with the bias-variance trade-

off in larger models one has to be careful in assessing the impact of prior specification. These

extensions, particularly the use of non-linear models for expected returns, are the focus of our

future work.

Appendix 1: Predictive Variance Decomposition

Let Θ = (α, β,Σ) represent all the fixed parameters in the model defined in (1). Using basic

properties of expectations and variances, the predictive variance in (3), can be written as:

Var (rT,T+k|DT ) = E {Var(rT,T+k|µT ,Θ, DT )}+ Var {E(rT,T+k|µT ,Θ, DT )} (12)

= E {Var(rT,T+k|µT ,Θ, DT )}

+ E {VarµT (E(rT,T+k|µT ,Θ, DT )}+ Var {EµT [E(rT,T+k|µT ,Θ, DT )]} . (13)

The first term of the right hand side can new expanded by using the properties of a MA(∞)

process as describe in the Appendix section of Pástor and Stambaugh [2012] and it takes the

following form:

Var (rT,T+k|µT ,Θ, DT ) = kσ2u
[
1 + 2d̄ρuwA(k) + d̄2B(k)

]
(14)

where

A(k) = 1 +
1

k

(
−1− β 1− βk−1

1− β

)
(15)

B(k) = 1 +
1

k

(
−1− 2β

1− βk−1

1− β
+ β2

1− β2(k−1)

1− β2

)
(16)

d̄2 =
1 + β

1− β
R2

1−R2
(17)

R2 =
σ2w

σ2u(1− β2) + σ2w
. (18)

The remaining terms follow directly from the forecast function of a state-space model and

depend of the posterior mean and variance of µT given DT , mT and CT respectively and can be
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written as:

VarµT {E(rT,T+k|µT ,Θ, DT )} =

(
1− βk

1− β

)2

CT (19)

EµT [E(rT,T+k|µT ,Θ, DT )] = k
α

1− β
+

1− βk

1− β

(
mT −

α

1− β

)
(20)

Therefore we can decompose the predictive variance into 5 interpretable components following

the nomenclature of Pástor and Stambaugh [2012]:

Var (rT,T+k|DT ) = E
{
kσ2u|DT

}
(i.i.d uncertainty) (21)

+E
{
kσ2u2d̄ρuwA(k)|DT

}
(mean reversion) (22)

+E
{
kσ2ud̄

2B(k)|DT

}
(future µ uncertainty) (23)

+E

{(
1− βk

1− β

)2

CT |DT

}
(current µ uncertainty) (24)

+Var

{
k

α

1− β
+

1− βk

1− β

(
mT −

α

1− β

)
|DT

}
(estimation risk) (25)

Each of the terms are evaluated via Monte Carlo taking as inputs the values of mT , CT and

Θ in each step of the MCMC used for model fitting.

Appendix 2: MCMC details: Time-Varying Σt

From Section 4.2, we have the observation equations:

(ut, wt)
′ ∼ N(0,Σ(θt)), θt = (θt,1, θt,2, θt,3)

ut = exp

(
θt,1
2

)
Zt1

wt = θt,3 ut + exp

(
θt,2
2

)
Zt2,

state equation

p(θt |θt−1) ∝ q(θt | θt−1) f(θt), (26)
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and initial state prior

p(θ0) ∝ q(θ0)f(θ0).

As discussed in Section 4.2, q(θt | θt−1) and q(θ0) represent a “standard” specification and the

function f(θt) is used to inject prior beliefs about θt.

While this approach makes the prior specification relatively straighforward, it complicates pos-

terior draws since evaluation of the transition distribution involves the normalizing constant in

26. Recall that the AR(1) parameters in q(θt,i | θt−1,i) are denoted by (ai, bi, ci). Let (a, b, c) =

{(ai, bi, ci), i = 1, 2, 3}. Making (a, b, c) explicit in the above, we have:

p(θt |θt−1, a, b, c) ∝ q(θt | θt−1, a, b, c) f(θt)

= q(θt | θt−1, a, b, c) f(θt) K(θt−1, a, b, c)

where K denotes the normalizing constant. This normalizing constant will be present in draws of

the states {θt} given (a, b, c) and draws of (a, b, c) given the states using the usual Gibbs sampler

approach conditional on everthing else.

Our approach is to discretize each of the three states so that θti ∈ Gi = {gi1, gi2, . . . , gini},

i = 1, 2, 3, giving a three dimensional grid of possible θt vectors. While three dimensional grids

are large, we have found that be carefully keeping track of what has been already computed and

using parallel computation of K when needed (using openmp in C++) we can get draws in a

reasonable amount of time. For each i, we draw the sequence {θti} conditional on the other two

state sequences and (a, b, c) using the forward filtering backward sampling algorithm (cite()).

Notice this is possible because the discretization of the state space enables us to do the forward

filtering and backward sampling exactly. Finally, we use a random walk Metropolis to draw

(a, b, c) using joint proposals for (ai, bi, ci).

19



References

N. Barberis. Investing for the long run when returns are predictable. The Journal of Finance,

55(1):225–264, 2000.

S. Chib, F. Nardari, and N. Shephard. Markov chain monte carlo methods for stochastic volatility

models. Journal of Econometrics, 108(2):281–316, 2002.

J. H. Cochrane. Asset pricing, volume 41. Princeton university press Princeton, 2005.

M. J. Daniels and M. Pourahmadi. Bayesian analysis of covariance matrices and dynamic models

for longitudinal data. Biometrika, 89(3):553–566, 2002.

E. Jacquier, N. G. Polson, and P. E. Rossi. Bayesian analysis of stochastic volatility models.

Journal of Business & Economic Statistics, 20(1):69–87, 2002.

M. Johannes, A. Korteweg, and N. Polson. Sequential learning, predictability, and optimal

portfolio returns. The Journal of Finance, 69(2):611–644, 2014.

H. Lopes, R. McCulloch, and R. Tsay. Parsimony inducing priors for large scale state-space

models. Technical report, 2014.
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Figure 1: Boxplots of draws from priors (red) and posteriors (blue) for β in the first column and σu
(sig11) and σw (sig22) in the second and third columns. The rows are associated with the ρuw = 0,
“weak prior” and “strong prior” specifications respectively. . As a benchmark, the unconditional
sample standard deviations of r in this dataset is equal to 0.175, i.e., 17.5% a year.
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Figure 2: Histograms of draws from priors (gray) and posteriors (red) for ρuw in the “weak prior”
(left) and “strong prior” (right) specifications.
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Figure 3: Predictive volatility per period plotted for different horizons, i.e.,
√

var(rT,T+k|DT )

k
. The left

panel compares the prior predictive with the posterior predictive in the “strong prior” set up. The
right panel compares the different model specifications and benchmarks the results with the i.i.d. case
and the model-free unconditional line.
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Figure 4: Histograms of draws from priors (gray) and posteriors (red) for ρuw in the “weak prior” set
up where the 207 observations have been reshuffled so to break its dynamics.
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Figure 5: Decomposition of the predictive variance per period. The left panel is the results from the
“weak prior” set up while the “strong prior” is in the right panel. The labels (plotted at the same
coordinates in both plots to facilitate the comparison) are the same as the decomposition presented
in the appendix.
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Figure 6: Predictive volatility per period plotted for different horizons (as in Figure 3) for fixed values
of β in the “weak prior” set up.
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Figure 7: Left panel shows the posterior distribution of µT+30 . The solid line in the right panel
results from the “weak” prior set-up while the dashed line fixes β = 0.945. The right panel shows the
decomposition of the predictive variance per period for the case where β = 0.945.
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Figure 9: Comparison of our results (right) to the results using the priors in Pastor and Stambaugh
2012 (left).
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Figure 10: Portfolio Implications: percentage allocated to stocks for different horizon investor under
the i.i.d. model and state-space representation under different prior beliefs.
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Figure 11: Predictive volatility per period plotted for different horizons when predictors are added.
Results are for the “weak prior” (left) and “strong prior” set up.
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Figure 12: Prior (top row) and posterior summaries of σ11,t and ρt in the model with time-varying
Σt. The solid black line in each plot represent the mean of each quantity while the two dashed lines
give the 25th and 75th quantiles of the distributions. The red line are the posterior mean of both
quantities in the static Σ model.
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