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1.1 Introduction

The widespread use of DNA microarray gene expression technology offers
the potential to substantially increase our understanding of cellular pathways
and apply that knowledge in clinical as well as basic biological studies. In
human biology, there are two common types of study performed with expres-
sion arrays. The first involves samples derived from cloned cells in a highly
controlled environment, subject to some designed experimental intervention,
such as up/down regulation of a particular target gene [1, 2, 3] or manipu-
lation of the pH level of the growing environment [4]. Such experiments are
useful in that they are designed to minimize all sources of gene expression
variability except that of the experimental intervention. One result generated
by this type of experiment is the identification of a subset of genes that are
differentially expressed when subject to a given intervention. A list of such
genes, together with the magnitudes by which those genes are differentially
over/under-expressed and additional numerical summaries are said to com-
prise the signature of the intervention. The second, common type of study
involves samples derived from tissue removed from living subjects, such as tu-
mor tissue obtained via biopsy [5, 6, 7, 8, 9, 10, 11, 29]. A central goal of this
second type of study is to find statistical associations between the measured
expression levels in a tissue sample and clinical variables associated with the
subject, e.g. survival time or metastasis.

Much of our interest in recent and current studies lies in relating these two
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types of experiments. We concentrate in this chapter on studies in cancer
genomics, though the general questions of cross-study projection of genomic
markers, and the more general questions of trans-study and trans-platform
integration of genomic data and analysis results, are central to all human
disease studies with genomic methodologies (e.g., [13]). In cancer genomics,
for example, a designed in vitro experiment in cultured cells may identify a
list of genes that are differentially expressed in the presence of an up-regulated
oncogene; we might then focus on data on the same genes in a collection of
tumor tissue samples to determine the extent to which each tumor exhibits
signs of de-regulation of that oncogene. One way to accomplish this is to make
use of the oncogene signature derived from the controlled study to compute an
appropriately weighted average of the relevant gene expression levels observed
in the tumor tissue samples. This technique has been shown to be useful for
quantifying pathway activity in a variety of different settings (e.g., [3]).

However, there are at least two difficulties with this approach. First, it
is exceedingly rare to find that the exact patterns of differential expression
discovered in the designed experiment are conserved in the tissue samples.
Second, the highly controlled setting of the designed experiment results in a
very limited representation of the various sources of variability in gene expres-
sion that are likely to affect expression in tissues grown in vivo. Returning
to the example of up-regulation of a particular gene, consider an example of
the MYC gene (myelocytomatosis viral oncogene homolog) in mammalian cell
developmental processes. MYC is a transcription factor that is well-known to
be involved in programmed cell death, cellular differentiation, proliferation,
and potentially a number of other biological pathways. Myc is not, however,
the only gene associated with each of these pathways, and therefore a tis-
sue sample which exhibits high levels of expression of MYC may not exhibit
high levels of activity of all of its associated downstream pathways due to the
activity of other genes, especially other transcription factors. For the same
reason, there will be genes in the MYC pathways that are not discovered by
the simple MYC upregulation experiment due to low levels of expression of
co-regulators. In short, the designed experiment lacks information pertaining
to possible synergistic or antagonistic activity between MYC and other genes
of the sort likely to be encountered in vivo.

Translation of patterns of differential gene expression derived from in vitro
experiments to in vivo tissue studies therefore requires a methodology for
decomposing an experimental signature into functional sub-units, each re-
flecting modular but interacting components of a larger cellular process. This
chapter overviews and exemplifies our approach to this general problem area
using sparse factor models, an approach that has been used effectively in a
number of applications in cancer genomics and other contexts. Here we fo-
cus on the application to trans-study analyses connecting in vitro expression
discovery to in vivo contexts in cancer. Based on formal Bayesian models
for both contexts, we describe methodology for projection and then evolving
experimentally derived signatures into sets of interacting sub-signatures, as
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represented by multiple latent factors in formal latent factor models of obser-
vational human cancer data. We demonstrate how latent factors can be linked
to components of known cellular pathways, as well as how latent factors can
be predictively related to clinical outcomes. Issues of data calibration and
other practicalities are also addressed in this formal factor model framework
for in vitro to in vivo translation of biological markers.

1.2 Modeling Gene Expression

In general, for experiments performed on cloned cells under strictly con-
trolled conditions, our models utilize multivariate regression and analysis of
variance with a fixed, known design to describe observed expression patterns.
We use the notation of [15]. Suppose gene expression assay has p genes (probe
sets on a DNA microarray) and we perform the experiment on n samples, and
let X be the p × n data matrix of observed expression values with elements
xg,i. Let the r× n matrix H be the transpose of the design matrix; so H has
elements hj,i running over treatments/factors j = 1 : r (rows) and expression
array samples i = 1 : n (columns). We model the measured expression values
(on a log base 2, or fold-change scale) as:

xg,i = µg +
r∑
j=1

βg,jhj,i + νg,i, νg,i ⊥⊥ N(νg,i|0, ψg)

or, in vector form,

xi = µ+Bhi + νi, (i = 1 : n),

where µ is the p−vector of baseline average expression levels µg for all genes,
B is the p × r matrix of regression coefficients with elements βg,j , hi is the
r−vector column i of H, νi is the p−vector of gene-specific experimental noise
terms νg,i with individual normal error variances ψg and Ψ = diag(ψ1:g). In
matrix form,

X = µ1′ +BH +N

where 1 is the n−vector of 1s and N the p× n error matrix with columns νi.
Depending on the experimental context, the rows of H will include 0/1 en-

tries reflecting main effects and interactions of treatment factors, genetic or
environmental interventions and so forth, with the corresponding βg,j values
representing the changes in average expression for each gene g as a function
of design factor j. The design matrix may also include measured values of
regressor variables. In most of our studies, we generally include values of
sample-specific control information constructed from housekeeping probe sets
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on the array; these covariates carry assay artifact information reflecting ex-
perimental bias and errors that are often reflected at least sporadically, if not
in some cases substantially, across the samples. Ignoring the potential for
such assay artifacts to corrupt expression on a gene-sample specific level can
lead to false discovery and/or obscure biological variation, and our approach
to gene-sample specific normalisation using housekeeping gene data is gen-
erally applicable to at least partially address this in the automatic analysis
[14, 15, 16]. These references also describe model fitting and evaluation un-
der specified priors, and describe – with a number of examples – the MCMC
implementation in the Bayesian Factor Regression Models (BFRM) software,
available at the Duke Department of Statistical Science software web page.

1.2.1 Sparsity Priors

In the case of very high-dimensional genomic assays, we expect that most
genes will not show differential expression in association with any particular
design factor - biology is complex, but not that complex. That is, any column
j of B will be sparse, with typically many, many zeros. Our studies over
the last several years have demonstrated the importance of sparsity prior
modeling utilising the class of prior distributions [14] that reflect this inherent
biological view that, in parallel for all j = 1 : r, many genes g have zero
probability of a non-zero βg,j . That is, the priors utilise the standard Bayesian
zero point-mass/mixture form in which each βg,j has an individual probability
πg,j = Pr(βg,j 6= 0), but now the extension allows some (typically many) of
the πg,j themselves to be zero, inducing a more aggressive shrinkage of the
βg,j to zero. Specifically, the hierarchical sparsity prior model is (see [14])

βg,j ∼ (1− πg,j)δ0(βg,j) + πg,jN(βg,j |0, τj),
πg,j ∼ (1− ρj)δ0(πg,j) + ρjBe(πg,j |ajmj , aj(1−mj)),

with hyper-priors on the elements ρj and τj . We refer to such distributions
interchangeably as sparsity priors and variable selection priors. Our assump-
tion is that the probability of any particular probe associating with a given
design factor is quite low, so that we assign the priors Be(ρj |st, s(1− t)) with
s is large and t is small. The priors on the τj , conditionally conjugate in-
verse gamma priors, are specified in context of the design and, critically, the
know range of (log base 2) expression data (see many details and examples in
[14, 15, 16] and the BFRM software web site linked to the latter paper, under
the Duke Department of Statistical Science software web page).

1.2.2 Signature Scores

Assume a model has been fitted to a given experimental data set, gener-
ating posterior summaries from the MCMC computations. We can explore,
characterize and summarise significant aspects of changes in gene expression
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expression with respect to design factors in a number of ways. Of particu-
lar interest in studies that aim to connect the results of such in vitro studies
to data from human observational studies is the definition and evaluation of
a summary numerical signature score for any set of genes that are taken as
defining a signature of one of the design factors.

Suppose that for the design variable j there are a number of genes with
very high values of π∗g,j ; one typical approach is to threshold the probabilities
to identify a set of most highly significant genes, and then define a weighted
average of expression on those genes as a signature score. In a number of
studies we have used this approach with the weightings defined as follows.

Consider a potential future sample xnew with a fixed and known value
hnew. For each g, j and conditional on all model parameters, the likelihood
ratio p(xg,new|βg,j 6= 0)/p(xg,new|βg,j = 0) depends on xg,new monotonically
and only through the term

sg,jxg,new with sg,j = ψ−1
g βg,j .

Hence the future observation will be more consistent with non-zero effects on
design factor j for larger values of the sum of these terms over all genes g, the
sum being implied by the conditional independence of the xg,· given all model
parameters. This leads to the obvious signature score for design factor j as

sigj,new =
p∑
g=1

sg,jxg,new = s′jxnew

for the signature j weight vector sj = (s1,j , . . . , sp,j)′. In practice, we can
estimate the signature weight vectors sj by posterior estimates based on the
MCMC samples of the observed data, and use these to evaluate the score
on any future samples – i.e., to project the signature measure of the activity
levels of genes related to design factor j onto the new sample, predictively.
This can be done within the MCMC analysis by saving and summarising pos-
terior samples of the set of sj , or as an approximation after the analysis by
substituting posterior estimates for the parameters in the expression for sg,j ,
such as by plugging-in posterior means π∗g,j = Pr(βg,j 6= 0|X), posterior esti-
mates of residual variance ψ∗g for each gene g, and posterior estimates of effects
B∗ = (β∗g,j) where β∗g,j = E(βg,j |X,βg,j 6= 0). This latter approach leads to
the defined signature scores sig∗j,new used here, in which sg,j is estimated by

s∗g,j = π∗g,jβ
∗
g,j/ψ

∗
g .

Further, we may modify this definition to sum over just a selected set of
signature genes for which π∗g,j exceeds some specified, high threshold. This is
important for communication and transfer to other studies, as it generates a
more manageable subset of signature genes rather than requiring the full set.
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1.2.3 Sparse, Semi-Parametric Latent Factor Models

Some of our major applications in recent studies of observational data sets
in cancer, as in other areas, have utilised large-scale Bayesian latent factor
models [17, 18], either alone or as components of more elaborate latent factor
regression models [14, 15]. The value of latent factor models to reflect multiple
intersecting patterns underlying observed variations in gene expression data
across samples of, for example, lung cancers is clear. It is also relevant in
some experimental contexts. The model as described above assumes that all
sources of variation in expression are known and represented by the fixed
design, though imprecision in the design specification and other aspects of
biological activity may lead to influences on expression reflected in common
patterns in multiple subsets of genes that may be captured by latent factors.

The extension of the model to include latent factors is simply

X = µ1′ +BH +AΛ +N

where the k×nmatrix Λ represents the realised values of k latent factors across
the n samples, having elements λj,i for factor j = 1 : k on sample i = 1 : n.
Λ is a now uncertain analogue to the known matrix H from the design. The
columns of the p × k factor loadings matrix A = αg,j are the weights or
coefficients of genes on factors (analogous to the regression coefficients in B).
In observational cancer studies with known covariates, we will generally use
the full model above; in other studies, either of the design or factor component
may be absent, depending on context.

The elements of A are given sparsity priors as described for βg,j . Our mod-
els for latent factor space utilise non-parametric components to allow for what
may be quite non-Gaussian patterns in these common, underlying patterns
that reflect underlying “gene pathway” activities influencing gene expression.
It is common to observe genes in subsets that are unexpressed in some sam-
ples but clearly expressed at possibly various sets of levels across others, for
example; subtle examples include expression in the presence/absence of a ge-
netic mutation, in diseased versus non-diseased patients, or before and after
treatment. In these situations, and others, a standard normal latent factor
model would be lacking. Our models assume a Dirichlet process component
for this. With λi representing the k−vector column of Λ, we have

λi ∼ F (·),
F ∼ DP (αF0),

F0(λ) = N(λ|0, I)

with total mass α > 0. This encourages latent factor-space clustering of the
samples with relation to gene expression patterns and can lead to cleaner
separation when expression differences are due to binary or categorical phe-
notypes when appropriate, as well as allowing for adaptation to multiple other
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non-Gaussian aspects. The model and MCMC computational extensions are
routine and implemented in BFRM [16].

Consider now a potential future observation, xnew at a known design vector
hnew, and set znew = xnew − BH. Conditional on all model parameters and
any realised Λ values (the full set of conditioning values being simply denoted
by ◦ below) it then routinely follows that

(λnew|znew, ◦) ∼ cnewN(λnew|d,D) +
n∑
i=1

ciδλi(λnew),

where δe(·) is the Dirac delta function representing a point mass at e; the cq
are probabilities given by defined by

cnew = αCN(znew|0, AA′ + Ψ),
ci = CN(znew|Aλi,Ψ), i = 1 : n

where C is a constant of normalisation; and

d = DA′Ψ−1znew and D−1 = I +A′Ψ−1A.

We know, incidentally, that the λi cluster into subsets of common values, and
hence the sum above collapses to a simpler sum over the distinct values; that
fact and its implications is central to efficient MCMC computation though
not immediately relevant for this specific theoretical discussion.

As with in vitro defined signature projection, we are often interested in
predicting factor variability in a new sample, and the above distributions show
how this is done. Given full posterior samples of the model parameters – now
including Λ – based on the observed data X, we can at least approximately
evaluate the terms defining the predictive distribution for λnew. Plugging-in
posterior estimates of model quantities as a practicable approximation leads
to the ability to simulate λnew, and also to generate point estimates such as
those used in our examples below, viz.

λ∗new = c∗newd
∗ +

n∑
i=1

c∗i λ
∗
i (1.1)

where λ∗q are the MCMC posterior means of the λi and the the terms c∗· and
d∗ are as theoretically defined above but now evaluated at posterior estimates
of the model parameters and latent factors set at posterior means.

1.3 Signature Factor Profiling Analysis

Signature Factor Profiling Analysis (SFPA) refers to the overall enterprise
of evaluating in vitro defined gene expression signatures of biological or envi-
ronmental interventions, projecting those signatures into observational data
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sets – such as a sample of arrays from breast cancer tissues – and then using
latent factor models to explore and evaluate the expression patterns of signa-
ture genes, and other related genes, in the cancer data set. The complexity
of in vivo biology compared to controlled experiments on cultured cells in-
evitably means that projected signatures involve genes that are simply not
expressed in the cancer samples, and others that show far more complex and
intricate patterns in the cancer samples. Thus factor analysis of a signature
gene set can generate multiple (k) factors that reflect this increased complex-
ity; this represents the k−dimensional in vivo profile of the one-dimensional
in vitro signature.

Our factor modelling uses the evolutionary computational method for model
search and gene inclusion that was introduced and described in [15]. Begin-
ning with a small set of signature genes, MCMC analysis is used to fit an
initial factor model, evolving the model in terms of the number of latent fac-
tors included. At the next step the model predicts outside that initial set of
genes to evaluate all other (thousands of) genes on the array to assess con-
cordance in expression of each of these genes with estimated latent factors in
the “current” model. Of those genes showing high concordance, we can then
select a subset to add to the initial set of genes and refit the factor model,
potentially increasing the number of factors. Many examples are given in the
references. In the current context, the biological focus is perfectly reflected
in this evolutionary analysis: we are initally concerned with the “simple” ex-
pression signature of intervention on a single biological pathway – the design
factor in question elicits that pathway response in vitro. When moving into
observational cancer samples, biological action involving multiple other, in-
tersecting pathways will generally be evident in the tumour data set. Thus
(i) we will be interested in identifying other genes that seem to show pat-
terns of related expression; and (ii) as we add in such additional genes, we are
moving out of the initial signature pathway into intersecting pathways that
will lead to the need for additional latent factors to reflect the increasingly
rich and complex patterns observed. Operationally, this evolutionary process
is allowed to continue until a certain number of factors has been found, un-
til a certain number of genes have been added, or until no more factors or
genes can be added based on thresholds on estimated posterior gene-factor
loading probabilities (for details, see [15]). By restricting the termination re-
quirements, we can control how closely the final list of factors remains to the
initial set of probes, or how rich it can in principle become by exploring the
biological neighbourhood of the original in vitro response.
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1.4 The E2F3 Signature in Ovarian, Lung, and Breast
Cancer

The E2F family of transcription factors is central to cell cycle regulation
and synthesis of DNA in mammalian cells, playing roles in multiple aspects
of cell growth, proliferation and fate [19, 20]. Deregulation of E2F family
members is a feature of many human cancers [21]. Two of the family members,
E2F1 and E2F3, are among the genes investigated in experiments defining
in vitro signatures of oncogene deregulation in human mammary epithelial
cells (HMEC) [3]. In these oncogene experiments, expression profiles were
collected from cloned HMECs with each experimental group consisting of
replicate observations from the same cloned HMECs after transfection with a
viral plasmid containing a known oncogene. A series of control samples were
also generated; see [14] for additional insights and examples using one-way
Anova models under sparsity priors, as well as for discussion of the extension
of this analysis to include assay artifact control regression variables. The
nine oncogenes transfected were MYC, Src, Akt, P110, E2F1, E2F3, Ras,
β-catenin, and p63. From among these, we focus here on E2F3 and explore
the E2F3 signature projection to human cancers to exemplify signature factor
profiling. The analysis generates biological connections in the E2F pathways
consonant with known biology, as well as new and novel biological insights
relevant to the oncogenic role of E2F3 when deregulated.

To define our initial signature gene set for evolutionary factor analysis, we
reanalysed the full set of oncogene expression data (Affymetrix u133) in a
one-way Anova design under sparsity priors. For design factor j = E2F3, the
βg,E2F3 then represent the average changes in expression on genes g due to
upregulation of E2F3. We identify those probe sets g for which π∗g,E2F3 > 0.99
in this analysis.

Our interest here is in projecting the E2F3 signature to three different
human cancer data sets: lung cancer [3], ovarian cancer [22], and breast cancer
[11], also all on Affymetrix arrays. Of the initially screened genes, we first
identified all of those probsets on the Affymetrix arrays used in each of the
cancer studies; from among these, we then selected the 100 genes with the
largest positive expression changes β∗g,E2F3 in the experimental context. This
defined our in vitro E2F3 signature gene set and the corresponding signature
weight vector s∗E2F .

Evolutionary factor analysis was applied to each of the three cancer data
sets separately, initialising based on this signature gene set. The analyses
evolved through a series of iterations, at each stage bringing in at most 25 ad-
ditional genes most highly related to the “current” estimates of latent factors,
and then exploring whether or not to add additional latent factors re-fitting
the model and evaluating the estimated gene-factor loadings π∗g,j for all genes
g and factors j in the model. Thresholding these probabilities at 0.75 was
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used for both new gene inclusion and adding factors; an additional factor was
added to the model only when at least 15 genes showed π∗g,j > 0.75. The evolu-
tionary analysis was run in the context of allowing expansion to no more than
1000 genes and 20 factors. The analyses terminated with (p = 1000, k = 15)
for lung, (p = 1000, k = 14) for ovarian and (p = 1000, k = 13) for breast can-
cer. Consistent with our strong belief that factors represent small collections
of genes, the prior on ρj was a beta distribution with mean .001 and prior
observations 1000. Both τj and Ψj were given diffuse inverse gamma priors.

In the remaining discussion, we describe some aspects of the resulting factor
analyses of the three data sets and explore how these signature factor profiles
relate across cancers and also relate to some underlying biological pathway
interconnections. We refer to posterior means λ∗j,i as, simply, factor j or, the
value of factor j, on sample i in any data set. Referring to the full vector
of factors on sample i implicitly denotes the approximate posterior mean
λ∗i . Further, in discussing genes related to a specific factor we refer to genes
being involved in the factor, or significantly loaded on the factor, based on
π∗g,j > 0.99. in the corresponding analysis.

1.4.1 Indications of E2F3 Co-Regulation with NF-Y

To begin, Figure 1.1 shows the high correlation between the first factor
discovered in the ovarian cancer data (x-axis) compared to projections into
the ovarian data of the first factors from each of the lung and breast analyses.
This is done, according to equation 1.1, by projection of the estimated factor
loadings of lung and breast factor 1 into the ovarian data set.

The first factor can be expected to represent the in vitro instantiation of key
aspects of the projected E2F3 signature, suggesting that at least some, key
aspects of E2F3 pathway activation across the cancer types is reflective of that
seen in the experimental context. The consonance of the structure across the
three cancers suggests a strong and meaningful biological underlying function
is picked up in this component of the projected signature factor profile. This
can be explored by simply looking at the names of genes identified as being
highly loaded on factor 1 in each analysis.

If we look more closely at the three factors 1 in the different cancer types
we see that, while the lung cancer data set yields a factor that highly loads
substantially more genes than those discovered in breast and ovarian cancer,
there is substantial overlap in highly loaded genes (Figure 1.2). If we look
at the standardized expression levels of the genes in the intersection of these
three factors in each of the three data sets, we see that there is a clear, shared
pattern of expression across cancer types (Figure 1.3).

With the strongly conserved nature of the first factor across all three data
sets, it is natural to ask whether there is a coherent biological structure one
might attach to the associated genes. We used GATHER [23] to search for
significant association between the 109 probes (representing 83 genes) in the
intersection of the three factors and other known gene lists. All E2F’s are
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involved in cell cycle regulation, so it is of no surprise that this factor shows a
strong association with the cell cycle pathway (38 of the 83 genes, GATHER
Bayes’ factor of 65). More remarkable is the fact that 50 of the 83 genes are in
a list of 178 genes known to have binding sites for the transcription factor NF-
Y in their promoter region [24]. There is strong evidence for the association
between NF-Y and E2F; there is known to be a high correspondence between
the presence of E2F3 and NF-Y binding sites in the promoter regions of many
genes [25]. These two genes are also known to work in concert to regulate
Cyclin B and the beginning of G2/M phase of cell proliferation [20, 26]. Thus
there is strong evidence that this factor represents co-regulation of the cell
cycle by E2F3 and NF-Y.

1.4.2 Adenocarcinoma versus Squamous Cell Carcinoma

The lung cancer data set (from [3]) is comprised of some tissues from pa-
tients with squamous cell carcinoma, and some from patients with adenocarci-
noma. These are significantly different types of non-small cell lung carcinoma
(as defined histologically) and we expect that many pathways would show dif-
ferential expression between these two groups. To explore this, we generated
binary regression models with the lung cancer sub-type as response and the
15 estimate factors λ∗i in lung cancer as candidate predictors. Bayesian model
fitting and exploration of subset regressions on these factors used Shotgun
Stochastic Search (SSS) of [27, 28] – following previous uses of SSS method-
ology in “large p” regression in genomics [29, 30, 31] – to search over models
involving factors which distinguish between squamous cell and adenocarci-
noma.

A model involving lung cancer E2F3 profiled factors 4 and 5 shows a clear
ability to distinguish between the expression patterns of squamous cell car-
cinoma and adenocarcinoma (Figure 1.4). Given that there is no such dis-
tinction among the patients in the ovarian or breast cancer data sets, it is
gratifying to note that the expression pattern exhibited by these genes is not
conserved across the other two cancer data sets (Figure 1.5). This is a nice
example of the use of factor profiling to identify clinically relevant predictive
factor structure, one of the key reasons for interest in these models and the
overall approach and is being used in other applications (e.g., [4, 13, 15]).

1.4.3 Survival and the E2F3 Pathway

The same general strategy was explored to assess whether the E2F3 pro-
filed factors relate at all to tumor malignancy and aggressiveness, proxied by
survival data available in all three cancer studies. Again we used SSS for re-
gression model evaluation, this time using Weibull survival models that draw
on the set of estimated factors as candidate predictors [27, 28]. From each of
the three separate analyses, we then identified those factors with the highest
posterior probabilities of being included in the survival regression across many
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models explored and evaluated on subsets of factors. To exemplify the imme-
diate clinical relevance of these “top survival factors” and their connections
back to the underlying E2F3 pathway related biology, we mention here one of
the top factors from each of the three analyses.

First, it is a measure of the importance of the E2F3/NF-Y pathway that
the long term survival of breast cancer patients depends significantly on the
E2F/NF-Y factor (Figure 1.6), the factor earlier discussed as being highly
consonant across cancer types. Interestingly, from the survival regressions
and follow-on exploration of survival curves, this pathway factor appears to
be only mildly important in connection with ovarian cancer survival and really
unimportant in lung cancer survival.

Survival in ovarian cancer is strongly and most heavily associated with
ovarian factor 5 (Figure 1.7), though 1, 5, and 12 in combination produced
the most probable individual survival model candidate in SSS. Factor 5 sig-
nificantly loads on 129 probe ID’s representing 113 genes. We again utilized
GATHER to identify that 47 of these genes contain known binding sites for
Transcription Factor DP-2 in their promoter region. While this factor does
not share a strong correlation with any factor discovered in the breast or
lung tissues, it is true that the expression pattern of the genes in the factor
are conserved in the other data sets. Transcription Factor DP-2 is a known
dimerization partner of the E2F family [32], and is important in cell cycle
regulation via this interaction and perhaps other roles, and so this suggests a
plausible interpretation of factor 5 as related to the interactions of E2Fs with
DP-2. Again, this factor naturally emerges in the factor analysis as reflecting
key aspects of variation of genes in the E2F3 related pathways, and this very
strong linkage to survival outcomes is novel and a starting point for further
biological investigation.

The most probable Weibull survival model in the lung cancer analysis in-
volved lung cancer factor 9, and some of the strength of association of factor
9 is illustrated in Figure 1.8. This factor contains significant 80 probes rep-
resenting 66 genes. Of these, 44 contain a known binding motif for E74-like
factor 1 (ELF1) [33], a gene known to be important in the interleukin-2 im-
mune response pathway. Additionally, ELF1 binds to the key Retinoblastoma
protein [34]. Rb is a central checkpoint in the Rb/E2F network controlling cell
proliferation, and is also bound by the members of the E2F family [19, 21].
This factor seems specific to lung cancer, and the genes it involves do not
appear to show consistent expression in either breast or ovarian samples. A
possible explanation of this is that the lung tumor tissue may have a higher
level of invasion by immune cells than the other tissues. This possibility is
corroborated by factor 8, which shows a high degree of relatedness (GATHER
Bayes factor >18) to the biologically annotated pathways representing “re-
sponse to biotic stimulus”, “defense response” and “immune response” as cal-
culated by GATHER. If we examine the expression patterns of lung factor 8
genes in the other two tumor tissue types, we find that the signature is visibly
preserved, but the pattern is weaker and contains a higher noise level than in
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lung cancers.

1.5 Closing Comments

Much recent and current expression genomics research has been devoted
to the discovery of lists of genes showing differential expression across some
known phenotypes, or that demonstrate an ability to stratify patients into
different risk groups. While studies of this type have been shown to be useful
in many applications, they have typically relied on the use of clustering and
other simple methods to make the transition between in vitro and in vivo
studies. The overall framework of Bayesian factor regression modelling util-
ising sparsity priors, as implemented in the BFRM software and exemplified
in a range of recent studies, provides a formal, encompassing framework for
such trans-study analysis.

The in vivo factor model profiling of in vitro defined expression signatures
of controlled biological perturbations or environmental changes is a powerful
and statistically sound approach that we have further explored and exem-
plified in the current chapter. Multiple current studies in cancer genomics,
and other areas of both basic and human disease related biology, are using
this approach. The example of the E2F3 signature factor profiling across
three distinct cancer types and sample data sets is a vivid illustration of the
kinds of results that can be expected: factor model refinements of in vitro
signatures define multiple factors that relate to underlying biological pathway
interconnections, generating suggestions for interpretation of factors, biologi-
cally interesting contrasts across cancer types, and suggesting novel directions
for functional evaluation as well as identifying clinically useful predictive fac-
tors as potential biomarkers of cancer subtypes, survival, and other outcomes.
Critically, the methodological framework of Bayesian regression factor mod-
elling under sparsity priors for both designed experiments and observational
samples enables and drives the overall strategy.
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FIGURE 1.1: Scatter plot of estimated values λ∗1,i in the ovarian cancer
data set (x-axis) against scores on the ovarian tumors of the lung and breast
cancer factors 1; these two sets of scores are constructed by projection of the
estimated factor loadings of lung and breast factor 1 into the ovarian data set,
as described in section 1.2.3.
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FIGURE 1.2: A Venn diagram depicting intersections of the gene lists of
factor 1 from breast, lung, and ovarian cancers (total number of genes in each
factor listed outside the circles, the number of genes in each intersection listed
inside). Although the ovarian cancer factor 1 significantly involves a smaller
number of genes that the other cancers, almost all of these (109 of 124) are
common with those in the lung and breast factors.
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FIGURE 1.3: Patterns of expression of the 109 genes in the intersection
group in Figure 1.2. The genes are ordered the same in the three heat-map
images, and the patterns of expression across samples are evidently preserved
across genes in this set.
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FIGURE 1.4: Factors 4 and 5 from the E2F3 signature factor profile in
the lung cancer data set show a clear ability to distinguish between adeno-
carcinoma and squamous cell carcinoma. The figure displays probabilities
of squamous versus adenocarcinoma from binary regression models identified
using SSS.
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FIGURE 1.5: Patterns of expression of the genes in factor 4 in lung cancer.
This factor shows differential expression of 350 genes that distinguish between
squamous cell carcinoma and adenocarcinoma. It is therefore appropriate that
the pattern of expression is clearly not conserved in the ovarian and breast
cancers.

FIGURE 1.6: Kaplan-Meyer curves representing survival in breast cancer
patients with above/below median scores for the E2F/NF-Y factor. Suppres-
sion of the E2F/NF-Y pathway appears to be associated with the decreased
probability of long term survival.
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FIGURE 1.7: Kaplan-Meyer curves representing survival in ovarian cancer
patients with above/below median scores for the E2F/TFDP2 factor. Sup-
pression of the E2F/TFDP2 pathway appears to be associated with decreased
probability of long term survival.
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FIGURE 1.8: Kaplan-Meyer curves representing survival in lung cancer
patients with above/below median scores for the E2F/ELF1 factor. Sup-
pression of the E2F/ELF1 pathway appears to be associated with decreased
probability of long term survival.




