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Question

» What is the long-run variance of stock returns?



Stocks for the Long Run: Conventional Wisdom
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Stocks for the Long Run: Conventional Wisdom
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Stocks for the Long Run:
Pastor and Stambaugh 2012 “main result”

Panel A. Predictive variance of stock returns
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Summary

Taking a conditional approach, from the investor's perspective:

> A simple view of the world suggests that stocks are less
volatile over long horizons (Barberis, 2000)...

> ...while a more complex view of the world states that stocks
could be more volatile over long horizons (Pastor and
Stambaugh, 2012)
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1. Which direction is right?
2. Better understand the results sensitivity to prior specification
3. Enrich PS2012 framework to include time-varying volatilities



Summary

Taking a conditional approach, from the investor's perspective:

> A simple view of the world suggests that stocks are less
volatile over long horizons (Barberis, 2000)...

> ...while a more complex view of the world states that stocks
could be more volatile over long horizons (Pastor and
Stambaugh, 2012)

» Our work hopes to address:

1. Which direction is right?
2. Better understand the results sensitivity to prior specification
3. Enrich PS2012 framework to include time-varying volatilities

» Our results indicates that | am not crazy for having 100%
equity in my retirement portfolio, i.e., stocks are indeed less
volatile in the long-run.
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Background

» Returns k periods in the future:

nk=n-+r+mn+--+r

> If returns are i.i.d. r; ~ N(u,0?), i.e., = random walk on
prices:
Var(r ) = ko?

so that the variance per period is constant for any k
investment horizon.
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Background

» However, investor face parameter uncertainty...
> If r ~ N(u,0?) and u is unknown then,

Var(re,e1k|Dr) = E{Var(re 1 klp, D)} + Var {E(re,eulp, D)}

= ko? + k®Var(u|Dy)
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Background

» However, investor face parameter uncertainty...
> If r ~ N(u,0?) and u is unknown then,

Var(re,e1k|Dr) = E{Var(re 1 klp, D)} + Var {E(re,eulp, D)}

= ko? + k®Var(u|Dy)

» Long run volatility (predictive variance) grows linearly with
the horizon
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Background

> If p is mean reverting and

eyl = e+ U
Ber1 = o+ Bur+ Wiy

where Corr(ugy1, wri1) <0,

Var(reei k) = ko [L 4 2Ap,, + B]

13



Background

> If p is mean reverting and

eyl = e+ U
Pit1 = o+ B+ W

where Corr(uzi1, wey1) <0,

Var(reei k) = ko [L 4 2Ap,, + B]

» The effect of p,,, effect can dominate and imply a decreasing
long run risk as both A >0 and B > 0.
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Background

» For stocks... using dividend yield as a proxy for expected
returns:

rho =-0.903




The General Model

el = Ut + Ui41
Pesr = o+ Bus + Wepq
Xer1 = A+ Bxp + vy

where

Ui41
Wti1 ~ N(07 Zt+1)

Vi1
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Priors and Posteriors... “weak prior”
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on p

strong prior”

[

Priors and Posteriors...
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_______

“Strong” Prior on p

fusuag

“Weak" vs.

Figure: Histograms of draws from priors (gray) and posteriors (red) for
Puw in the “weak prior” (left) and “strong prior” (right) specifications.
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Prior and Posterior Predictives
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Long Run Volatilities per Period

Vol per Period (% per year)
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How Robust is the Result?

rho

— weak prior

— iid

s20

T T T
0z'0 S0 010

(123K 12d %) pouad 1ad [oA

i)

///////////////////////////////
ATIIHHEIININRNY
/////////////////////'/////////

///////////////////////////
RMBIMOMININ
A MMM
AN
AN
DO
////////

_

7
77
é
%
.
.
/

_

7

/

/

Horizon (years)

rho

22

Figure: Histograms of draws from priors (gray) and posteriors (red) for
pPuw in the “weak prior” set up where the 207 observations have been

reshuffled so to break its dynamics.



Sources of Variance
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Figure: Decomposition of the predictive variance per period. The left
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The Main Culprit!
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Figure: Predictive volatility per period plotted for different horizons for
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The Main Culprit!

Distribution of Expected Returns at T+30

future
<
g |
® o 3
g
- S
© o TN
. N iid
AN 3
/ \ & 8 current w
’ N 5 =]
/ \ 2
003 { \ 045 2
<« o 8 .
/ \ 5 estimation risk
/ \ g g
5 84
/ \ s 2
/ \
\
0.065 ' N\ 019
~ o £ —— . - o
’ \ o
’ \ =]
/ N ?
’ A
o/ N mean reversion
’ N
- ~< 2
o d = - S
T T T T T T T T T T
0.1 0.0 0.1 02 0 10 20 30 40 50

Horizon (years)

Figure: Left panel shows the posterior distribution of 7430 . The solid
line in the right panel results from the “weak” prior set-up while the
dashed line fixes 8 = 0.945. The right panel shows the decomposition of

the predictive variance per period for the case where 5 = 0.945.
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Portfolio Implications
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Replicating P52012
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Figure: Comparison of our results (right) to the results using the priors in
Pastor and Stambaugh 2012 (left).
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Adding Predictors
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Figure: Predictive volatility per period plotted for different horizons when
predictors are added. Results are for the “weak prior” (left) and “strong

prior” set up.
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Closing Comments:

» With reasonable priors (or maybe even unreasonable) and 200
years of data stocks look very attractive for long horizon
portfolios.

> This result appears robust to the added complexity of time
varying relationships between predictors and expected returns
and stochastic volatility.
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Closing Comments:

» With reasonable priors (or maybe even unreasonable) and 200
years of data stocks look very attractive for long horizon
portfolios.

» This result appears robust to the added complexity of time
varying relationships between predictors and expected returns
and stochastic volatility.

» The take home message is that conventional wisdom might
not be so wrong after all...
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Time Variation

Instead of just ¥, we want X, and we want to easily incorporate
the prior belief that

pt = corr(us, wy) < 0, for all t

and possibly other prior beliefs as well.
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Multivariate Stochastic Volatility

We start with the Choleski Stochastic Volatility approach of Lopes,

McCulloch, and Tsay.

With one x we have:

we = exp(011/2) Zn p(we)
ug = O w:+ eXP(9t2/2) Z P(Ut | Wt)
Vi = QWi+ ¢z ur +exp(de1/2) Zes p(ve | we, uy)

At each t, the three 0's and three ¢'s are one to one with ;.

Let's just focus on the 6's because they determine p;.
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Multivariate Stochastic Volatility

We have,

we = exp(0:1/2) Zn
ug = O wr+exp(br2/2) Zeo
03 eXp(Qtl)

Pt = /)(etl, 9t2; 9t3) =
[033 exp(ft1) X exp(@tl)} 1/2
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Multivariate Stochastic Volatility

The usual prior for the ;; series is
O = aj + bj0r_1,i + Si zi

Let's call this q(0y | 0¢—1.,i).

Lettlng Ht = (9t1, 0t276t3)1 |et,

Q(et ‘ 01‘—1) = n?zlqwti ’ 9t—1,i)-

We usually choose the s; so that
successive 6 are not “too different”.
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Prior Formulation

Our prior formulation is

P(et wt—l) o8 Q(et ‘ 9t—1) f(‘gt)-
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Prior Formulation

Our prior formulation is

P(et wt—l) o8 q(et ‘ 9t—1) f(et)-

To get our p; prior, we use,

K

CEELOE /7)2}
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Prior Formulation

Our prior formulation is

P(et ’01‘—1) o8 q(et ‘ 9t—1) f(et)-

To get our p; prior, we use,

CEELOE /3)2}

K

qg:
usual smoothness, don't let #'s jump around to much
f:
have preference for each 6;, small k means each 6; should be such
that p; = p
39



Bivariate Stochastic Volatility with Flexible Prior

(th Ut)/ ~ N(07 Z(‘9t)), Or = (9t17 012, 9t3)

w = exp(6:i1/2) Zn
ur = 9153 Wy + eXp(0t2/2) Zt2

p(O¢0e—1) o< q(0r|0r—1) £(0r)
= q(0:]0:-1) £(0r) K(0e-1)

p(6o) o F(6o) M, p(8io)
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Simple Example

Let w and u be the observed bivariate series consisting of daily
returns from two stocks in the S&P100.
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Prior:

For this data, it is more reasonable to believe that p; > 0!

I'll hide the details about g and show results for
p=.8, k=.01, .25
k = .01: tight prior.

k = .25: loose prior.
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loose prior: draws from prior

black is average draw, others are individual draws

(1,1): pt, (1,2): 641
(2,1): 0t2; (2,2) 9t3
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loose prior: draws from posterior

black is average draw, others are individual draws
(1,1): pt, (1,2): 641
(2,].): 0t2, (2,2) 91’3
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tight prior: draws from prior

black is average draw, others are individual draws

(1,1): pt, (1,2): 641
(2,1): 0t2; (2,2) 9t3
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tight prior: draws from posterior

black is average draw, others are individual draws
(1,1): pt, (1,2): 641
(2,].): 0t2, (2,2) 91’3
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	Simple Example

