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Summary.The paper adapts sparse factor models for exploring covariation in multivariate binary
data, with an application to measuring latent factors in US Congressional roll-call voting pat-
terns.This straightforward modification provides two advantages over traditional factor analysis
of binary data. First, a sparsity prior can be used to assess the evidence that a given factor
loading may be exactly 0, realizing a principled unification of exploratory and confirmatory fac-
tory analysis. Second, incorporating sparsity into existing factor analytic probit models effects a
favourable bias–variance trade-off in estimating the covariance matrix of the multivariate Gauss-
ian latent variables. Posterior summaries from this model applied to the roll-call data provide
novel metrics of partisanship of a given Senate.
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1. Introduction

In this paper, we extend the Bayesian multivariate probit model (Chib and Greenberg, 1998)
to encompass a sparse factor analytic approach for inference about the underlying correlation
structure of binary data. We apply the proposed method to study partisan patterns in 60 years of
non-lopsided roll-call votes from the US Senate, refining the similar analyses of Jackman (2001)
and Clinton et al. (2004a). Our results show that the role of partisanship has risen distinctly in
the last few decades, after hitting a low around 1970.

Our goal is not to propose a model that explains why senators cast their votes; such a model
would need to consider not only party membership but also geography, incumbency, commit-
tee membership and much more besides. Rather, we undertake an exploratory analysis of the
Senate roll-call data. Our statistical approach differs from previous methods in that it allows
practitioners to assesses whether individual elements of the factor loadings matrix—intuitively,
the mapping between latent traits and observed votes—are identically equal to 0. In substan-
tive terms, an inferred 0 in the .j, g/ entry of the factor loadings matrix corresponds to the
judgement that the gth latent trait plays no discernible role in predicting whether senators are
likely to vote for or against bill j. In our approach, moreover, such judgements need not be
encoded beforehand. Instead, they emerge naturally in the final analysis, assuming that they are
supported by the data.
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The individual components of our model are the multivariate probit model, Gaussian factor
models and point mass sparsity priors, each of which have been introduced in previous liter-
ature. In extending this literature by incorporating sparsity priors within a probit model, our
paper has two motivating goals.

(a) One-pass factor analysis: factor analysis has traditionally been used in two distinct modes,
an exploratory phase, which is used to generate further hypotheses about the forces at
play in the data, and a confirmatory phase where elements of the factor loadings are set to
0 to reflect presumed conditional independences. Our Bayesian framework with sparsity
priors collapses these methods into a one-pass approach using ideas from Bayesian model
averaging (Hoeting et al., 1999).

(b) Regularization: imposing a factor structure on a covariance matrix stabilizes estimation,
which is critical when the number of variables p is large relative to the sample size n (Raj-
aratnam et al., 2008). Such regularization is even more crucial when the estimated covari-
ance matrix corresponds to an unobservable latent variable as it does in a multivariate
probit model. Accordingly, our sparse factor model increases the degree of regularization
by shrinking the elements of the factor loadings matrix towards 0. A simulation study
demonstrates that sparse factor models effect a highly favourable bias–variance trade-off.
This favourable trade-off persists even when there is no particular reason to suspect an
underlying factor structure.

1.1. Background: latent factor probit models
The latent factor probit model that is described in this section is well known in some research
communities, going by various names—ideal point estimation and item response modelling
being two of the most common. Use of such models is currently widespread in many fields:
political science (Jackman, 2001, 2009; Clinton et al., 2004a; Quinn, 2004), statistics (Song and
Lee, 2001, 2005), biostatistics (Bock and Gibbons, 1996) and marketing (Elrod and Keane,
1995). Two fine general references are Johnson and Albert (1999) and Bartholomew (1987).

Our presentation focuses on a normal latent variable representation and the associated covari-
ance estimation problem because this perspective is well suited to the computational methods
that we employ. On this view, the model may be thought of as a Gaussian factor model embed-
ded inside a multivariate probit model. But our approach can equally well be construed as an
individual level model; as Clinton et al. (2004a) observed, our probit model corresponds to the
assumption that individual senators have a quadratic utility function with normal errors and
occupy specific locations (or ‘ideal points’) in a multi-dimensional Euclidean space.

1.1.1. Multivariate probit model
Let Y = .y1. . . yn/T, where each yi = .yi,1, . . . , yi,p/T represents p binary observations on a sin-
gle subject. The multivariate probit model (Chib and Greenberg, 1998; Ashford and Sowden,
1970) induces a probability distribution on yi via an unobserved continuous quantity (utility)
zi, which is given a multivariate Gaussian distribution:

zi ∼N.α,Σ/,

yij|zij ≡
{

0 if zij �0,
1 if zij > 0.

.1/

In this way each of the 2p possible binary vectors is associated with an orthant in Rp and
assigned probability according to the corresponding multivariate Gaussian cumulative distri-
bution function. Marginally,
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yij ∼Ber.ρj/,

ρj =Pr.zij > 0/:
.2/

Note that Σ is identified only up to its correlation structure, because scaling the latent utilities
preserves the distribution of yi as can be deduced from expression (1). Without loss of generality,
we denote the mean of zi by α, with the understanding that this may be a conditional predictor
involving covariates (i.e. αi ≡α.xi/).

The multivariate probit model reduces the problem of estimating 2p probabilities to the
problem of estimating the p.p−1/=2 pairwise correlations which compose Σ. The price of this
reduction is the normality assumption on the latent utilities, which implies (among other things)
a linear dependence structure. For many applications these assumptions are unobjectionable,
and indeed the multivariate probit model is widely used (see, for example, the examples that
were discussed in Lesaffre and Molenberghs (1991)).

1.1.2. Gaussian factor models
Whereas inference in a multivariate probit model is reduced to estimation of a correlation
matrix, this task presents challenges of its own. Standard estimators are liable to be unstable
when p is large compared with n and can provide a distorted picture of the eigenstructure of Σ
(Sun and Berger, 2006). These difficulties are magnified in the multivariate probit model, where
the covariance matrix corresponds to an unobserved random variable.

A popular approach to address this instability is by imposing a factor structure, letting

cov.zi/=BBT +Ψ, .3/

where Ψ is p × p diagonal with non-negative elements and rank.B/ = k < p. We may rewrite
this model by augmenting the representation to include latent factor scores fi. Conditional on
B and fi, the elements of zi are independent:

zi =α+Bfi + "i, "i ∼N.0,Ψ/,

fi ∼N.0, Ik/:
.4/

For Σ = BBT + Ψ to have a unique solution in B, B must be constrained in some man-
ner. In particular, two sorts of unidentifiability must be addressed: sign indeterminacy and
rotational indeterminacy. Traditional solutions to this problem include forcing B to have mutu-
ally orthogonal columns or BTΨB to be diagonal. Another approach, which was popular-
ized in the Bayesian community by Geweke and Zhou (1996) and adopted here, is to con-
strain B to be zero for upper triangular entries {bjs = 0 : s > j} for s � k (addressing rotational
indeterminacy) and positive along the diagonal {bjj > 0} for all j (addressing sign indetermi-
nacy).

It is additionally possible to permit correlated factors so that fi ∼ N.0, V/. In this case the
covariance is expressible as Σ= BVBT +Ψ and identification of B and V can be achieved by
setting certain k.k−1/=2 additional elements of B to 0 (Bartholomew, 1987). Correlated factors
are often preferable from the standpoint of interpretability. We revisit this topic in Section 2,
where correlated factors combine with sparsity priors to provide valuable a priori biases towards
easily interpretable factor rotations.

Factor models have been a topic of research for more than 100 years. A seminal reference is
Spearman (1904), whereas Press (1982) and Bartholomew (1987) are key contemporary refer-
ences. Bayesian factor models for continuous data have been developed by many researchers,
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including Geweke and Zhou (1996), Aguilar and West (2000) and West (2003). A comprehensive
bibliography may be found in Lopes (2003).

1.1.3. Latent factor probit models
Putting these pieces together—by assuming that the covariance parameter in a multivariate
probit model admits a factor decomposition as in equation (3)—yields a latent factor probit
model. This is equivalent to the individual level model

Pr.yij =1|αj, bj, fi/=Φ{.αj +bT
j fi/=

√
ψj}, .5/

where Φ.·/ denotes the standard normal cumulative distribution function and bj denotes the
jth row of B.

In this context, the factor decomposition allows a simple identification strategy for the cor-
relation structure, which is to let Ψ= I. Priors on element bjs of B then induce a prior dis-
tribution on the correlation coefficient ρjs for j �= s (Rossi et al., 2006); the magnitudes of
these elements describe the amount of the variation attributable to the factor structure as op-
posed to idiosyncratic noise. Thus, the scale of the prior distribution governs prior expectations
about the strength of the factor structure in terms of describing observed patterns of covaria-
tion.

1.2. Model for roll-call votes
Political scientists have long sought to understand the historical forces leading to the entrenched
partisan rancour of modern American politics. Untangling the relative contributions of various
polarizing factors is the subject of a vigorous scholarly debate, one that is too vast to recapitulate
here. A recent book length treatment and a long list of references may be found in McCarty
et al. (2006). An important first step, which is the present focus, is simply to measure (rather
than to explain) ideological polarization.

For example, if we know that the majority whip votes against a particular bill, then we may
believe that most other members of the majority will vote against it, also. The goal then becomes
to quantify the strength of this association by estimating the amount of variation in observed
voting records that can be accounted for by a so-called ‘partisanship factor’. For this, we analyse
publicly available US Congressional roll-call data, restricting our attention to votes in the US
Senate between 1949 and 2009.

In our analysis we let yi = .yi,1, . . . , yi,p/T denote the vector of yea (1) or nay (0) votes of
senator i. Our main data set contains the 30 closest votes in each 2-year Senate term (p= 30).
The close votes are typically the most interesting and also allow us to sidestep the many near-
unanimous votes which tend to be wholly unrelated to major policy decisions (Jackman, 2001).
Missing data in the form of ‘no’ votes are easily handled in our framework, as will be described
later.

Often party affiliation is not included specifically in a factor analysis of roll-call votes;
rather it emerges implicitly in that senators from different parties tend to cluster in factor
space (Jackman, 2001; Clinton et al., 2004a). Our approach is to include this information
explicitly by forcing the first factor f1i to be left or right truncated depending on senator i’s
party affiliation. This ensures that the first factor is ‘pure’ partisanship. Note that this ap-
proach is equivalent to a factor model with p + 1 observed dimensions, the first of which is
a pseudovote recording each senator’s party affiliation, where the residual variance on that
element is set to 0 (ψ1 = 0); then z1i = f1i up to a scale factor. To distinguish this privileged
role, we denote the partisanship factor for senator i by γi and the remaining latent factors by
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fi. Similarly, we relabel the factor loadings column that is associated with γ as λ, so that

E.zi|fi,γi,α,λ, B/=α+λγi +Bfi,

and we define the dummy vote Ri recording whether senator i is a Republican as Ri = 1.γi >

0/.
Under this parameterization, large positive entries in λ can be interpreted as a constellation

of Republican-supported issues whereas large negative loadings on λ correspond to Demo-
crat-supported issues. Likewise, the inferred γs for each senator can be interpreted as indi-
vidual measures of partisanship: a large positive γi indicates a tendency for senator i to vote
for Democrat-supported issues with high probability. Meanwhile B encodes commonalities in
voting behaviour that are independent of party membership. These patterns can be used to
generate hypotheses about why senators vote the way that they do, irrespective of party affilia-
tion.

2. Sparse factor probit model

A sparse model is one in which certain of the parameters are permitted to be exactly 0. The
canonical example is a linear model in which subsets of the regression coefficients may be
estimated to be 0. The sparsity framework spans the areas of regularized prediction, hypoth-
esis testing and model selection, depending on whether it is viewed as a means, an end or
both.

Sparsity can be achieved in a variety of ways, such as direct testing or thresholding. Here
we take an implicit testing approach via sparsity priors which affix a point mass probability
at zero (George and McCulloch, 1993; Mitchell and Beauchamp, 1988). A detailed discussion
of this and similar Bayesian approaches to model selection in linear regression can be found
in Ishwaran and Rao (2005). Our development closely follows West (2003) and Carvalho et al.
(2008), who developed sparse factor models for continuous data in the context of gene expres-
sion studies. These models assume that each latent factor will be associated with only a small
number of observed variables, yielding a more parsimonious covariance structure. Specifically,
the prior on the loadings matrix B takes the form

.bjs|νs, qs/∼qs N.0, νs/+ .1−qs/δ0.bjs/, .6/

νs ∼ IG.cs=2, csds=2/, .7/

qs ∼beta.1, 1/ .8/

where there is a different variance component vs and prior inclusion probability qs associated
with each column (s = 1, . . . , k/ of the loadings matrix. Here IG refers to an inverse gamma
distribution. The second term in the mixture, δ0.bjs/, denotes a point mass measure at bjs =0.
The hyperparameters cs and ds modulate prior expectations about the scale of each column.

Although qs is a prior probability that is shared by elements in the sth column of B, this
common prior parameter does not result in shared posterior inclusion probabilities across ele-
ments in a given column (excepting the uninteresting extremal cases of qs = 0 or qs = 1, which
preclude posterior learning of sparsity patterns altogether). Even with a shared prior inclusion
probability, different elements of the sth column of B will emerge with distinct posterior prob-
abilities. By treating the prior inclusion probabilities as model parameters to be estimated from
the data, this model induces a strong multiplicity correction, automatically adjusting for the
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multiple-testing problem that is implicit in trying to learn the non-zero entries in each column
of B (Scott and Berger, 2006, 2010). Analogous priors are placed on the elements of λ (which
is simply a renamed column of B).

Note also that, in the context of sparsity, allowing correlated factors confers an additional
advantage beyond possible ease of interpretation, which is that a greater range of covariance
structures admit sparse representations in B if cov.fi/ = V is free to differ from the identity.
To see this, observe that under the lower triangular identification scheme we may move freely
between independent factors and dependent factors via the transformation

B̃=BL .9/

where V = LLT denotes the (lower) Cholesky decomposition of the factor covariance. Both
B̃ and B are lower triangular, because the group of lower triangular matrices is closed under
multiplication, and the two models are equivalent because

BVBT = B̃B̃
T

: .10/

But, in general, B̃ will be much less sparse, i.e., if B̃ is sparse, setting V = I gives a sparse B,
whereas a sparse B does not similarly yield a sparse B̃. The columns of B̃ are linear combinations
of those of B and sums of sparse vectors need not be sparse.

Thus, sparsity priors on B, combined with a prior on V centred at the identity matrix, serve to
capture the inherent trade-off between parsimonious factor loadings and independent factors,
automatically shrinking estimates towards more interpretable configurations.

As suggested in the previous section, we chose to let the partisanship factor be independent
of all other factors, while allowing those additional factors to be correlated:(

γi

fi

)
∼N.0, Ṽ/,

Ṽ =
(

1 0
0 V

)
,

.11/

where V is an arbitrary correlation matrix. Though this approach may result in a potentially
non-sparse partisanship loading λ, it has the interpretive advantage that a zero element of λ
means that partisanship is wholly non-predictive of the corresponding roll-call vote. Mean-
while, allowing the remaining partisanship-independent factors to be correlated fosters sparser
loadings, as described above.

We may think of the resulting inferences as coming from a mixture over different candidate
‘confirmatory’ models, where each model is weighted by its ability to describe the observed
data (Hoeting et al., 1999). Crucially, by fixing certain elements of B to 0 for identification
purposes, we guarantee that all the models being mixed over observe these same constraints.
This means that, although different patterns of sparsity may emerge during posterior sampling,
the interpretation of the factors within each of these models (as defined by the identification
constraints) remains fixed.

2.1. Synopsis: the sparse factor model
For ease of reference we write down the full model here, including prior distributions and hy-
perparameter specifications. The model can be thought of as having three parts: the data Y =
.y1, y2, . . . , yn/ given the latent utilities Z= .z1, z2, . . . , zn/, the latent factors F= .f1, f2, . . . , fn/

and γ= .γ1,γ2, . . . ,γn/ given the model parameters and hyperparameters {α= .α1, . . . ,αp/T,
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B, V, λ= .λ1, . . . ,λp/T, q = .q1, . . . , qk/, ν= .ν1, . . . , νk/}, and finally the prior over the model
parameters. Altogether, for j =1, . . . , p, i=1, . . . , n and s=1, . . . , k, we have

Ri =1.γi > 0/,

yi|zi =1.zi > 0/,

zi ∼N.α+λγi +Bfi, Ip/,

fi ∼N.0, V/,

γi ∼N.a, 1/,

αj ∼N.0, να/,

a∼N.0, νa/,

V ∼ IW.V0, h/,

.bjs|νs, qs/∼qs N.0, νs/+ .1−qs/δ0.bjs/,

νs ∼ IG.cs, csds=2/,

qs ∼beta.1, 1/,

.λj|νλ, qλ/∼qλN.0, νλ/+ .1−qλ/δ0.λj/,

νλ∼ IG.cs, csds=2/,

qλ∼beta.1, 1/:

Here IW.V0, h/ denotes an inverse Wishart distribution with mode matrix V0 and degrees of
freedom h. Note that Φ.a/ can be interpreted as the latent fraction of Republicans among
hypothetical senators.

Recall that this model has structural 0s in B for identification purposes. For example, in
a three-factor model (k = 3), the identification structure could be achieved by setting ele-
ments b41, b52 and b61 to 0, allowing Σ = BVBT + I to be solved uniquely for B and V,
given Σ. Having 1s on the diagonal permits V to be a covariance matrix, rather than be-
ing restricted to a correlation matrix. One should note that fixing this structure beforehand
is convenient notationally but renders the ordering of the votes a non-trivial modelling deci-
sion.

Our analysis of the roll-call data (which is summarized in Section 3) was performed with
να = νa = 10, h = 6, V0 = Ik and cs = 2 and ds = 1 for all s. We used a three-factor model (the
partisanship factor γ, plus k =2 additional factors). Larger models are possible, but in practice
we did not encounter a case where a fourth factor exhibited significant loadings.

2.2. Posterior sampling
We employ a Gibbs sampler to draw correlated samples from the joint posterior distribution
of all parameters (Gelfand and Smith, 1990; Geman and Geman, 1984). In what follows we
describe how to sample from each of the full conditional distributions.

Step 1: draw the latent observation matrix Z= .zij/ by drawing each .zij|−/∼N.αj +λjγi +
bjfi, 1/ truncated above at 0 if yij =0 and below at 0 if yij =1.
Step 2: sample γi as .γi|−/∼N[.1 +λTλ/−1{ν−1

a a +λT.zi −α− Bfi/}, .1 +λTλ/−1], trun-
cated above at 0 if senator i is Republican and below at 0 if senator i is Democrat. Handling
Independents is as simple as treating the sign of their latent partisanship as missing data and
simply bypassing the truncation.
Step 3: sample a as .a|−/∼N{.ν−1

a +n/−1Σiγi, .ν−1
a +n/−1}.

Step 4: sample the elements of α as .αj|−/∼N.mj, M/ with
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z̃i =Ψ1=2.zi −λγi −Bfi/,

M = .ν−1
α +n/−1,

mj =M
∑
i

z̃ji:

⎫⎪⎪⎬
⎪⎪⎭

.12/

Step 5: sample the vectors of factor scores independently as .fi|−/∼N.m, M/, with

M =V −VTBT.BVBT + Ip/−1BV,

= .V−1 +BTB/−1,

m=MBT.zi −α−λγi/:

Step 6: sample .V|−/∼ IW.V0 +FFT, n+h/.
Step 7: to sample the unconstrained loadings of column s, define z̃i = zi −α−λγi −B−sf−s,i
where B−s is B with column s removed and f−s,i is the vector of factor scores for individual i
with factor score s removed. Sample

.bjs|−/∼ .1− q̂js/δ0 + q̂js N.b̂js, ν̂js/,

where

ν̂js =
(

n∑
i=1

f 2
s,i +ν−1

s

)−1

,

b̂js = ν̂js

(
n∑

i=1
fs,iz̃ij

)
,

r̂js = N.0|0, νj/

N.0|b̂js, ν̂js/
,

q̂js = r̂js

.1−qs/=qs + r̂js
:

Step 8: let ms be the number of (unconstrained) elements in Bs currently set to non-zero. Draw

νs ∼ IG{.cs +ms/=2, .csds +BT
s Bs/=2}:

Step 9: draw .qs|−/∼Be.1+ms, 1+ m̃s −ms/, where ms is as in the previous step and m̃s is the
maximum possible number of non-zero elements for column s (given the fixed identification
constraints).
Step 10: the elements of λ are drawn analogously to those of the Bs: define z̃i = zi −α−Bfi

and samples

.λj|−/∼ .1− q̂λ,j/δ0 + q̂λ,j N.λ̂j, ν̂λ/,

where

ν̂λ,j =
(

n∑
i=1

γ2
i +ν−1

λ

)−1

,

λ̂j = ν̂λ,j

(
n∑

i=1
γiz̃ij

)
,

r̂λ,j = N.0|0, νλ/

N.0|λ̂j, ν̂λ/
,

q̂λ,j = r̂λ,j

.1−qλ/=qλ+ r̂λ,j
:
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Step 11: likewise, let mλ be the number of elements in λ that are currently set to non-zero,
and draw

.νλ|−/∼ IG{.cλ+mλ/=2, .cλdλ+λTλ/=2}:

Step 12: again, similarly, draw .qλ|−/∼Be.1+mλ, 1+p−mλ/.

In this sampler, as highlighted in Song and Lee (2005) in the context of an analogous EM
algorithm, it is not necessary to draw from a high dimensional truncated multivariate normal
distribution; all the dependence between the elements of zi is encoded in B so the truncations
arising from the observed data yij can be handled independently, leading to a series of easier
univariate truncations.

As with independent senators, missing data (uncast votes, in this case) may be accommodated
by simply drawing the corresponding latent utilities without truncation in the first step of the
sampler, under the assumption of non-informative missingness. Informative missingness may
also be incorporated by truncating with some predetermined probability, possibly as a function
of additional covariates.

2.3. Simulation study
This section shows via simulation that sparse factor models result in a highly favourable bias–
variance trade-off. We compare three models of the covariance structure: the Wishart model,
a k = 6 factor model and a k = 6 sparse factor model. We examine the performance of each of
these models under four distinct regimes:

(a) data drawn with underlying covariance matrix which has a factor structure with three
factors;

(b) data drawn with underlying covariance matrix which has a factor structure with 10 factors;
(c) data drawn with underlying covariance matrix with no factor structure (equivalently, with

the number of factors equal to the number of dimensions);
(d) data drawn with underlying covariance matrix given by the identity matrix.

Specifically, for a given covariance matrix Σ and mean vector α, we let

C=D−1=2ΣD−1=2, .13/

D=diag.Σ/, .14/

zi ∼N.α, C/, .15/

yi =1.zi > 0/: .16/

In all regimes α was drawn as N.0, 0:2I/.
For all simulations the number of observations was fixed at n=50. An estimated correlation

matrix R̃ was obtained for p = 20 and p = 100 and the mean Frobenius and Stein losses were
computed over 100 replications. Frobenius and Stein losses are given respectively as

LF.C̃, C/= tr{.C̃−C/2}, .17/

LS.C̃, C/= tr.C̃C−1/− ln{det.C̃C−1/}−p: .18/

The regimes that are examined here include cases where p > n and also n > p, cases where the
assumed factor structure has both too few and too many included factors, and both the factor
models (sparse and non-sparse) and the Wishart model are centred at the identity matrix (since
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Table 1. Mean Stein and Frobenius losses suffered in reconstructing the true correlation
matrix R in various configurations

Loss function True model Losses for the following fitted models:

Wishart 6 factor Sparse 6 factor

Stein p=20, k =3 74.7 13.9 9.9
p=20, k =10 91.0 24.0 29.7
p=20, k =20 53.8 12.1 18.0
p=20, identity 3.6 2.9 0.4

Frobenius p=20, k =3 89.6 14.6 12.9
p=20, k =10 40.3 12.3 14.0
p=20, k =20 37.6 14.6 13.0
p=20, identity 8.1 6.7 0.89

Stein p=100, k =3 503.1 136.7 43.4
p=100, k =10 1323.2 357.4 394.2
p=100, k =100 827.8 454.2 667.3
p=100, identity 28.3 26.2 1.0

Frobenius p=100, k =3 2573.8 430.5 234.0
p=100, k =10 1143.1 403.8 410.0
p=100, k =100 305.7 275.7 160.9
p=100, identity 94.6 136.3 2.1

E.B/=0). As such, this battery provides a good snapshot of the performance of the three models
across a range of plausible real data scenarios. Results are reported in Table 1.

The differences between the various models when n>p are modest, but the factor model is seen
to dominate the Wishart model. Meanwhile, the difference between sparse versus non-sparse
factor models can be attributed to which of these models is closest a priori to the generating
model—so the sparse model performs better for the identity and for the k = 3 true models,
whereas the non-sparse model does better for the k = 10 and k = 20 generated data. However,
with p=100 and n=50 the slight penalty that the sparse model incurs for underestimating the
number of factors is shown to be relatively minor. In this setting, the benefit over the Wish-
art distribution becomes more stark. Naturally, whichever model favours the truth (a priori)
still comes out on top. For instance, the sparse model on the identity matrix gives outstanding
performance.

That said, the p = 100, k = 10 (second row), results are most interesting: since six factors
are insufficient to reconstruct Σ perfectly in this case, it is striking that the factor model still
outperforms the Wishart model. Furthermore, incorporating the sparsity component does not
suffer much at all in this case, whereas we can see that, when the true number of factors is less
than 6, adding the sparsity offers a substantial benefit (first row). In short, it would appear that
the bias that is induced by the factor structure assumption is more than compensated by the
reduced variance when p>n.

3. Analysis of US Senate roll-call votes, 1949–2009

3.1. Overview of approach
Our analysis of US Senate roll-call votes focuses on three different, complementary methods for
characterizing partisan voting behaviour. First, we can rank individual senators by partisanship,
along the lines of Clinton et al. (2004b). This is done by examining the posterior distribution
of each senator’s partisanship factor score, p.γi|Y/. We observe that there are typically large
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differences between senators in both the mean of this distribution as well as the associated
uncertainty (see, for example, Fig. 1).

Second, we can ascertain which roll-calls—if any—were plausibly free of party influence. We
do this by examining the posterior probabilities that each roll-call loads on each of the k + 1
factors.

Third, we can study historical changes in the importance of partisanship for predicting roll-
call votes for the Senate as a whole (rather than for individual senators, as above). This can be
operationalized in two ways for each Senate:

(a) as the percentage of variation in roll-call votes attributable to the partisanship factor and
(b) as the fraction of non-zero elements in the partisanship factor loadings vector λ.

In principle, this permits two different notions of increasingly partisan behaviour to be detected:
individual roll-calls becoming more severely partisan, versus more roll-calls overall becoming
at least somewhat partisan.

3.2. Partisanship over time
The three characterizations of partisanship that were sketched above may be estimated for any
Congress in aggregate by considering the posterior distribution of quantities involving all votes.
Specifically, for each of the last 30 Congresses, spanning the 60-year period from 1949 to 2009,
we consider the posterior distributions of the following quantities:

(a) the overall proportion of variation attributable to partisanship, defined as

p−1 ∑
j

λ2
j

λ2
j +bjVbT

j +1
; .19/

(b) the overall probability of a non-zero partisanship loading, given by the parameter qλ;
(c) the average dimensionality across the bills, defined as

p−1 ∑
j,g

1.bjg �=0/: .20/

These summaries provide a snapshot of time varying partisanship. A key feature of the inferred
partisanship trajectory that is shown in Fig. 2(a) is that Senate voting patterns of the 1960s
and 1970s suggest forces at play beyond those captured by party affiliation; this much has long
been recognized. Our analysis shows, however, that, as partisanship has fluctuated noticeably,
the dimensionality of the voting landscape has remained relatively stable. Justifying this finding
from a theoretical political science perspective would be an interesting line for future inquiry.

An important issue in high dimensional Bayesian analysis is prior sensitivity. Throughout, our
focus has been on specifying a default, or conventional, set of hyperparameters in an attempt to
minimize the influence of prior inputs. These choices follow closely along the lines of Carvalho
et al. (2008). In many cases such default choices are natural—e.g. a uniform distribution for the
prior inclusion probabilities qs. It is important to observe that improper priors cannot be used
for the variances νs for each column of the factor loadings matrix, since these variances enter an
implicit Bayes factor computation in the sparse model. In a very real sense, no ‘objective’ choice
for this prior is possible. In this case our use of an IG(1,1) prior recognizes the need for propriety,
while simultaneously attempting to exhibit as little influence as possible over the final answers.

Space—and the sheer combinatorial explosion of hyperparameters—both preclude a full
discussion of prior robustness, but we observe two important generalities. First, the prior for qs
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(the prior inclusion probabilities) makes the greatest amount of difference in posterior infer-
ence, which is consistent with the findings of Scott and Berger (2006) in the parallel context of
multiple-hypothesis testing. In our experiments, we observed that changing the hyperparame-
ters that govern qs could predictably change the corresponding posterior inclusion probabilities,
but very rarely change other measures of partisanship such as percentage variation explained.
Given the existence of an obvious default (uniform) prior for qs, this would seem untroubling.
Second, results for later Congresses are less sensitive to the prior than results for earlier Con-

(a)

(b)

(c)

Fig. 2. Three measures of partisan behaviour in Senate roll-call votes, 1949–2009: (a) variation attributed
to partisanship by year; (b) probability of non-zero partisanship loading; (c) average dimension of a bill
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(a) (b)

Fig. 3. Greyscale depictions of the relative magnitudes of posterior mean factor loadings: (a) the 86th Sen-
ate has two prominent factors unrelated to partisanship, whereas (b) the 111th Senate shows that party
affiliation accounts for the majority of variation in the observed votes

gresses. This is fully consistent with the notion that the statistical signature of partisanship has
become more pronounced.

3.3. Comparing the 86th and 111th Congresses
Within a given congress, individual senators and individual bills can be evaluated and ranked
in terms of their inferred partisanship. In terms of ranking senators, we recapitulate the basic
findings of Clinton et al. (2004a) for the 108th Congress. Our findings differ from theirs mainly
in the larger posterior intervals, probably owing simply to the fewer number of votes that we
considered, but also perhaps to the increased flexibility of our sparse model. We also include
the most recent 111th Congress for comparison as an on-line supplementary file.

In terms of analysing the bills themselves, we compare inferences from the most recent 111th
Senate and the 86th Senate from 1960–1962 (Fig. 3). As witnessed in the time series above,
we expect to see a less fervent partisanship signature in the 1960s votes, and indeed we do.
By looking more closely at the inferred factor loadings we can venture interpretations of the
non-partisan columns on the basis of the emergent sparsity patterns. In particular we find that
the first non-partisan factor loads heavily on two labour union bills and two bills concerning
appropriations for teachers’ salaries. These findings are reported in Table 2.

4. Discussion

The sparse factor probit model represents a principled approach to bridging the gap between
exploratory and confirmatory factor analyses by using ideas from Bayesian model averaging.
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Table 2. Posterior summaries for the 30 closest Senate votes in
the 86th and 111th Congresses†

Results for 86th Senate Results for 111th Senate

Bill PV PIP MPD Bill PV PIP MPD

166 0.95 1.00 1.37 670 1.00 1.00 1.58
184 0.02 0.32 0.39 377 0.12 0.86 1.42
117 0.01 0.23 1.33 608 1.00 1.00 2.13
123 0.02 0.32 0.60 110 0.98 1.00 2.67
165 0.92 1.00 1.46 113 0.98 1.00 1.94
399 0.01 0.26 1.32 585 0.95 1.00 1.93

36 0.34 1.00 2.92 179 0.95 1.00 2.73
37 0.34 1.00 2.93 548 0.98 1.00 2.43

133 0.01 0.25 1.31 407 0.91 1.00 2.16
191 0.01 0.24 1.34 510 0.98 1.00 2.35
195 0.36 1.00 2.13 54 0.82 1.00 2.30

28 0.07 0.87 1.96 404 0.96 1.00 2.41
153 0.27 1.00 2.08 146 0.97 1.00 2.40

96 0.10 0.83 1.93 632 0.95 1.00 1.99
317 0.01 0.52 1.93 642 0.99 1.00 2.45

70 0.26 0.86 2.11 93 0.99 1.00 2.11
85 0.49 1.00 2.07 567 0.99 1.00 2.05

332 0.05 0.44 1.42 92 0.99 1.00 2.11
342 0.31 1.00 1.26 268 0.92 1.00 1.95
122 0.23 0.97 2.03 433 0.93 1.00 2.00
376 0.38 1.00 1.26 550 0.97 1.00 2.00
190 0.06 0.58 1.67 23 0.98 1.00 2.13
299 0.46 1.00 2.03 218 0.84 1.00 2.40
316 0.01 0.49 1.87 360 0.98 1.00 2.07

55 0.00 0.15 0.25 183 0.97 1.00 1.91
325 0.01 0.21 1.30 265 0.97 1.00 2.14

69 0.38 0.98 1.51 508 0.99 1.00 2.16
225 0.01 0.39 1.51 562 0.97 1.00 2.02
226 0.02 0.39 1.57 616 0.96 1.00 2.27
167 0.94 1.00 1.44 325 0.93 1.00 1.77

†PV, proportion of variation attributed to partisanship; PIP, poster-
ior inclusion probability; MPD, mean posterior dimension.

The result is a one-pass approach to uncovering covariance patterns with ready substantive
interpretations, as our application to US Senate roll-call votes demonstrates.

Our simulations also demonstrate the beneficial regularizing properties of both the factor
structure and the sparsity prior. Together, these allow the multivariate probit model to be effec-
tive even when the dimension p is quite large. Many other approaches to covariance estimation
in this setting, such as banding or l1-regularization, do not offer the interpretational benefits of
our method; nor do they easily accommodate additional modelling structure—e.g. time series
or spatial models.

As noted in Jackman (2001), extending Bayesian models of voting is relatively straightfor-
ward and our sparse model naturally inherits this property. The use of covariates in the linear
predictor α.xi/ could easily be incorporated to sharpen the investigation of hypotheses that are
suggested by an initial analysis. A most interesting extension of the method—in light of our
approach to incorporating partisanship—would be to add an auto-correlation component, be
it spatial or temporal, to the factor scores. This would account for senators serving in consec-



16 P. R. Hahn, C. M. Carvalho and J. G. Scott

utive Congresses, or senators in nearby states, and would intrinsically handle the interesting
(but relatively infrequent) case of senators switching party affiliation (Clinton et al., 2004a).
(In our framework the switched truncation in consecutive Congresses for such a senator, in
combination with temporal auto-correlation, would pull those factor score estimates towards
neutral 0.) This is just one example of how larger models could be constructed that would allow
flexible borrowing of information across spatial and temporal dimensions, all within a factor
analytic framework.

Taken together, these reasons suggest that the sparse factor probit model can be a key explor-
atory tool in the increasingly common situation of high dimensional, correlated categorical
data.
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