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Partial Factor Modeling: Predictor-Dependent
Shrinkage for Linear Regression

P. Richard HAHN, Carlos M. CARVALHO, and Sayan MUKHERJEE

We develop a modified Gaussian factor model for the purpose of inducing predictor-dependent shrinkage for linear regression. The new
model predicts well across a wide range of covariance structures, on real and simulated data. Furthermore, the new model facilitates variable
selection in the case of correlated predictor variables, which often stymies other methods.

KEY WORDS: g Prior; Prediction; Shrinkage estimators; Variable selection.

1. INTRODUCTION

This article considers modifications to a Gaussian factor
model, which make it better suited for regression and variable
selection. These purpose-specific modifications make the new
model of interest not only as a new Bayesian factor model
(Aguilar and West 2000; Lopes 2003; West 2003), but also as a
novel regularized regression technique and as a new model for
Bayesian variable selection. Our model differs from previous
work on Bayesian variable selection (Mitchell and Beauchamp
1988; George and McCulloch 1997; Clyde and George 2004) in
that it explicitly accounts for predictor correlation structure.

The factor regression framework may be written in two parts,
as a linear regression model for a scalar response variable Yi

and as a marginal model for a p-dimensional column vector of
predictor variables Xi . Specifically, for Gaussian factor models

(Yi | Xi ,β, σ 2) ∼ N
(
Xt

iβ, σ 2
)
, (1)

with marginal predictor model

Xi = Bfi + νi , νi ∼ N(0,�)

fi ∼ N(0, Ik),
(2)

where B is a p × k real-valued matrix. If � is assumed diag-
onal, the elements of Xi are conditionally independent given
the k-vector of common unobserved (latent) factors fi , so that
νi represents idiosyncratic errors. Without loss of generality we
assume throughout that our response and predictor variables are
centered at zero.

This article asks the question: how should the prior on β de-
pend on B and �? Two prevailing approaches represent extreme
answers to this question. At one extreme, a pure linear regression
model ignores the marginal distribution of the predictors, π (X),
entirely, which is equivalent to setting π (β | B,�) = π (β).

P. Richard Hahn is Assistant Professor of Econometrics and Statistics,
Booth School of Business, University of Chicago, Chicago, IL 60637 (E-mail:
richard.hahn@chicagobooth.edu). Carlos M. Carvalho is Associate Professor
of Statistics, McCombs School of Business, The University of Texas, Austin,
TX 78712 (E-mail: carlos.carvalho@mccombs.utexas.edu). Sayan Mukherjee
is Associate Professor of Statistics, Departments of Statistical Science, Com-
puter Science, Mathematics, and Institute for Genome Sciences Policy, Duke
University, Durham, NC 27708 (E-mail: sayan@stat.duke.edu). P. Richard
Hahn thanks Dan Merl for helpful discussions. Carlos M. Carvalho thanks the
McCombs School of Business Research Excellence Grant. Sayan Mukher-
jee acknowledges AFOSR FA9550-10-1-0436, NSF DMS-1045153, and NSF
CCF-1049290 for partial support. Sayan Mukherjee acknowledges Mike West,
Anirban Bhattacharya, and David Dunson for useful comments. The authors
thank the referees for helpful suggestions.

At the other extreme, a pure factor model approach assumes
that each Yi depends linearly on the same k latent factors that
capture the covariation in Xi and is conditionally independent of
Xi given these factors: π (Yi | Xi , fi , θ ) = π (Yi | θ , fi) and more
specifically E(Yi | θ, fi) = θ fi , where θ denotes a 1 × k vector
of regression coefficients. This entails that β can be written as
a deterministic function of B and �:

β t = θBt (BBt + �)−1. (3)

This very strong prior can lead to poor estimates of β if the cho-
sen k is too small; specifically it may be mistakenly inferred that
the response is entirely uncorrelated with any of the predictors if
Yi is in fact independent of Bt (BBt + �)−1Xi , the projection of
the predictors onto the k-dimensional subspace defined by B and
�. An analogous problem in principal component regression is
well known; the least-eigenvalue scenario is when the response
is associated strongly with only the least important principal
component (Hotelling 1957; Cox 1968; Jolliffe 1982).

Placing a prior over k, allowing the number of factors to be
learned from the data, is an obvious way around this difficulty.
However, specifying a prior over k that respects the goal of
prediction within the framework of the joint distribution is non-
trivial (see the example in Section 1.2). The joint likelihood is
dominated by predictor matrix X, even if our practical goal is to
use the Xi to predict the corresponding Yi . Our solution is in-
stead to construct a hierarchical model, which is centered at the
Bayesian factor regression model (conditional on some fixed
number of factors):

E(β t | B,�, θ ) = θBt (BBt + �)−1. (4)

Permitting deviations from the pure factor model safeguards
inference against misspecification in the sense that for any fixed
values of B, �, and θ , our prior on β has full support in Rp,
unlike the point-mass prior of the usual factor model (Equation
(3)).

The rest of the article is organized as follows. The remainder
of this section briefly reviews previous work and demonstrates
the challenges of factor model selection in terms of obtain-
ing good regression parameter estimates. Section 2 develops
the new partial factor model in detail and compares its out-of-
sample prediction performance to common alternatives, such
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as ridge regression, partial least squares, principal component
regression (Hastie, Tibshirani, and Friedman 2001), and the
lasso (Tibshirani 1996). Section 3 adapts the new model for
the purpose of variable selection in the presence of correlated
predictors. Section 4 concludes with a brief discussion about
further connections and generalizations.

1.1 Bayesian Linear Factor Models

We briefly provide details of a typical Bayesian linear factor
model. Any multivariate normal distribution may be written in
factor form as in (2). As above, B is a p × k matrix and � is
assumed diagonal. The matrix B is referred to as a loadings ma-
trix, the elements of � are referred to as idiosyncratic variances,
and the fi are called as factor scores. Conditional on B and fi ,
the elements of each observation are independent. Integrating
over fi , we see

cov(Xi) ≡ �X = BBt + �. (5)

When k ≥ p − 1, this form is unrestricted in that any positive
definite matrix can be written as (5). We say that a positive
definite matrix admits a k-factor form if it can be written in
factor form BBt + �, where rank(B) ≤ k. Note that BBt + �

has full rank whenever the idiosyncratic variances are strictly
positive, while B, which encodes the covariance structure, may
have much lower rank.

If we further assume that the p predictors influence each
response Yi only through the k-dimensional latent variable fi ,
we arrive at the Bayesian factor regression model:

Yi = θ fi + εi, εi ∼ N(0, σ 2)

� = cov

(
Xi

Yi

)
=

[
BBt + � Vt

V ξ

]
,

V = θBt ,

ξ = σ 2 + θθ t .

(6)

As the norm of � goes to zero, this model recovers singular
value regression (West 2003). Again, θ is a 1 × k row vector;
effectively it is an additional row of the loadings matrix (θ ≡
bp+1 and Yi = Xp+1,i).

Factor models have been a topic of research for over a
century, with increased recent interest spurred by the ready
availability of computational implementations. A seminal ref-
erence is Spearman (1904); Press (1982) and Bartholomew and
Moustaki (2011) are key modern references. Bayesian factor
models for continuous data have been developed by many au-
thors, including Geweke and Zhou (1996) and Aguilar and
West (2000). A thorough bibliography can be found in Lopes
(2003). Notable applications include finance (Chamberlain
1983; Chamberlain and Rothschild 1983; Fama and French
1992, 1993; Aguilar and West 2000; Bai 2003; Lopes and
Carvalho 2007; Fan, Fan, and Lv 2008) and gene expression
studies (Carvalho et al. 2008; Merl et al. 2009; Lucas et al.
2012). The area continues to see new methodological develop-
ments focusing on a variety of issues: prior specification (Ghosh
and Dunson 2009), model selection (Lopes and West 2004;
Bhattacharya and Dunson 2011), and identification (Fruhwirth-
Schnatter and Lopes 2012). In this work, we highlight the use
of factor models for prediction and variable selection.

1.2 The Effects of Misspecifying k

If k is chosen too small, inferences can be unreliable as a trivial
consequence of misspecification. Less appreciated, however, is
that minute misspecifications in terms of overall (joint) model fit
can drastically impair the suitability of the regression induced
by the joint model. The following example demonstrates that
the evidence provided by the data may be indifferent between
two-factor models that differ only by the presence of one factor,
even though the larger model is clearly superior in terms of
prediction.

Example 1. Consider the 10-dimensional two-factor Gaus-
sian model with loadings matrix

Bt =
[

0 −4 0 −8 −4 −6 1 −1 4 0
1 0 0 −1 0 1 0 1 0 1

]

and idiosyncratic variances ψjj = 0.2 for all j ∈ {1, . . . , p}.
Now consider the one-factor model that is closest in
Kullback–Leibler divergence to this model, with loadings
matrix

At = [0.0004 −3.9967 0 −7.9713 −3.9967

−5.9778 0.9990 −0.9960 3.9967 −0.0004]

and idiosyncratic variances given by the vector

D = [1.2000 0.1871 0.2000 1.5032 0.1871 1.3762

0.1996 1.2054 0.1872 1.2000].

Observe that the one-factor loadings matrix A is very nearly
equal to the first factor of B, but that the idiosyncratic vari-
ances are notably different. In particular, consider the problem
of using the one-factor approximation to predict future obser-
vations of the 10th dimension of X, which does not load on the
first factor. The true idiosyncratic variance is ψ10 = 0.2, but the
approximate model has D10 = 1.2, suggesting that prediction
on this dimension will be inaccurate. However, as measured
by the joint likelihood, the one-factor model is an excellent
approximation. These mismatched conclusions are reflected in
Figure 1, which plots the difference in mean squared prediction
error (MSPE) between the two models against the difference in
log-likelihood; each point represents a realization of 10 obser-
vations. Above zero on the vertical axis favors the true model,
while below zero favors the one-factor approximation. The
horizontal axis represents approximation loss due to the miss-
ing factor. The average likelihood ratio is approximately one,
while prediction performance is always worse with the smaller
model.

More importantly, this discrepancy does not fade as more data
are used. With only 10 observations, the likelihood ratio favors
the true model only 47% of the time; with 100 observations
this number creeps up to 51% and at 1000 observations it stays
at 51%. By the likelihood criterion the two models are nearly
identical. However, in terms of predicting X10, the one-factor
approximation is literally useless: the inferred conditional and
marginal variances are virtually identical.

Thus, we see that relying on a prior distribution to correctly
choose between a one- versus two-factor model is a difficult
task: the prior would have to be strong enough to overwhelm
more than 1000 observations worth of evidence, which favors
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Figure 1. Points denote realizations from the true two-factor model.
For points above the dashed horizontal line, the likelihood ratio favors
the true model. The distance to the right of the dashed vertical line
measures how much worse than the true model the one-factor approxi-
mation did in terms of predicting X10. Model selection based on the full
likelihood favors the larger model half the time, while model selection
based on predictive fit favors the larger model nearly always.

the wrong model about half the time. Moreover, to work appro-
priately it would need to be a prior, which favored more factors
a priori. Observe also that model averaging does not improve
the situation, as inclusion probabilities would hover around 1/2
for each model, resulting in a prediction halfway between the
prediction of the correct model and zero, the prediction of the
incorrect model; the problem grows worse as the number of
possible values of k increases.

By contrast, a cross-validation approach would uncover the
predictive superiority of the two-factor model directly. While
a joint distribution allows one to borrow information from the
marginal predictor distribution, which may be useful for predic-
tion, using an unmodified high-dimensional joint distribution
subordinates the prediction task to the more difficult task of
high-dimensional model selection.

These difficulties persist even with the use of sophisticated
nonparametric model selection priors for factor models (Bhat-
tacharya and Dunson 2011), because they are logically distinct
from any particular prior, the problem lying rather with the as-
sumption that the latent factors fi explain all of the variability in
both the predictors and the responses. That is, the problem lies
in the particular latent variable representation rather than the
prior over k—it is the implied prior over the regression coeffi-
cients as a function of the observed predictors that is ultimately
at issue. This issue is clearly illustrated in the simulation study
of Section 2.1.

In the next section, we surmount this obstacle directly, by
relaxing the assumption that the latent factors capturing the
predictor covariance are sufficient for predicting the response.

2. PARTIAL FACTOR REGRESSION

Our new model—referred to here as the partial factor
model—circumvents the prior specification difficulties de-
scribed in the previous section by positing a lower-dimensional

covariance structure for the predictors, but permitting the rela-
tionship between the predictors and the response to be linear
in up to the full p dimensions. This is achieved by using the
following covariance structure for the joint normal distribution:

(
Xi

Yi

)
∼ N(0,�)

� =
[

BBt + � Vt

V ξ

]
. (7)

The difference between (6) and (7) is simply that in (7) V is not
required to exactly equal θBt . The matrix B is still a p × k matrix
with k < p − 1 so that the p × p predictor covariance matrix is
constrained to the BBt + � form, but the full covariance matrix
� is not simultaneously restricted. This way, the response can
depend on directions in predictor space, which are not dominant
directions of variability, but inference and prediction still benefit
from structural regularization of �X.

Just as crucially, the prior on V may be conditioned on �X.
Specifically, we may suggest via the prior that higher variance
directions in predictor space are more apt to be predictive of
the response. Unlike principal component regression or factor
models, the prior furnishes this bias as a hint rather than a rigid
assumption.

The hierarchical specification arises from the jointly normal
distribution between Xi , Yi , and the k latent factors, which have
covariance:

cov

⎛
⎜⎝

Xi

fi
Yi

⎞
⎟⎠ =

⎡
⎢⎣

BBt + � Bt Vt

B Ik θ t

V θ ξ

⎤
⎥⎦. (8)

Again, recall that V is not constrained as in (6). From this
covariance, the conditional moments of the response can be
expressed as

E(Yi | fi , Xi) = θfi +
{
(V − θBt )�− 1

2
}{

�− 1
2 (Xi − Bfi)

}
(9)

var(Yi | fi , Xi) = ξ − [V θ ]�−1
X,f [V θ ]t ≡ σ 2. (10)

To center at a standard factor model, our prior for V, conditional
on θ , B and � is

vj ∼ N
(
θBt , ω2w2

jψ
2
j

)
, (11)

for element j, implying that a priori the error piece plays no role
in the regression. Here, ω2 is a global prior variance and w2

j

is a predictor-specific prior variance, following work on robust
shrinkage priors (Carvalho, Polson, and Scott 2010); ψ2

j is the
jth diagonal element of �. This effect is perhaps easiest to see
via the following reparameterization: define

� = (V − θBt )�− 1
2 . (12)

Then

λj ∼ N
(
0, w2ω2

j

)
(13)

is equivalent to (11).
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Using this formulation (along with some additional hyperpa-
rameters), the model may be expressed as

Xi | B, fi ,� ∼ N(Bfi ,�)

Yi | Xi , B, θ ,�, fi ,�, σ 2 ∼ N
(
θ fi + �

{
�− 1

2 (Xi − Bfi)
}
, σ 2

)
λj ∼ N

(
0, ω2w2

j

)
, (14)

fi ∼ N(0, Ik)

θh ∼ N
(
0, τ 2q2

h

)
bjh ∼ N

(
0, τ 2t2

jh

)
, h = 1, . . . , k,

j = 1, . . . , p.

Independent half-Cauchy priors are placed over τ and ω and
the individual elements of the vectors t, w, and q. This cor-
responds to the so-called horseshoe priors (Carvalho, Polson,
and Scott 2010) over the elements of B, θ , and �, respec-
tively. The residual standard deviations (σ and each element
of �1/2) are given Strawderman–Berger priors with density
p(s) ∝ s(1 + s2)−3/2. The model can be fit using a Gibbs sam-
pling approach; computational details are deferred to Appendix
A.

Appendix B describes a brief simulation study focusing on
how priors over the elements of � affect posterior estimates
of β.

2.1 Out-of-Sample Prediction Simulation Study

This section considers the predictive performance of the par-
tial factor model relative to the two models between which it
strikes a compromise: a pure linear regression model and a full
factor model. To anticipate the results below, the partial fac-
tor model predicts as well as a factor model and outperforms
a pure regression model when the factor structure is informa-
tive of the response, and it predicts as well as a pure regres-
sion model and outperforms the factor model when the factor
structure is only weakly predictive. This profile is consistent
with that of the multiple-shrinkage principal component regres-
sion model of George and Oman (1996), which has a similar
motivation—seeking to mimic principal component regression
but to protect against the least-eigenvalue scenario—but is not
derived from a joint sampling model.

For this simulation study, we draw Xi from a k = 10 factor
model with p = 80 and n = 50. We simulated 100 datasets
according to the following specifications. For j = 1, . . . , p and
g = 1, . . . , k

B ≡ AD
aj,g ∼ N(0, 1)

dg ≡ 1 + |εg|, s.t. |dg| ≥ |dg′ | if g < g′,
εg ∼ t(0, df = 5)

ψj =
√

bj bt
j /uj , uj ∼ Unif(1/4, 15),

(15)

where D is a k-by-k diagonal matrix with diagonal elements
dg . This procedure allows direct control over the signal-to-noise
ratio for each dimension of Xi in terms of uj . We similarly draw
Yi from the factor model (6), considering two cases. In the first
case, the first and most dominant factor (in the sense of |dg,g|
being largest) is solely predictive of Yi :

θ = (1, 0, . . . , 0).

In the second case, the least dominant factor is the one that is
solely predictive of Yi :

θ = (0, 0, . . . , 1).

In each case, we set σ = 1/5 (for a 5-to-1 signal-to-noise ratio),
so that if relevant the factor can be accurately inferred, it is
highly predictive of the response.

In addition to the partial factor model, we fit a factor
model employing the model selection prior of Bhattacharya and
Dunson (2011), and a pure regression model using the horse-
shoe prior of Carvalho, Polson, and Scott (2010). We compare
the out-of-sample prediction in terms of two metrics, first the
relative (to optimal) MSPE

MSPE(βest) = E
(
(Yn+1 − Xn+1βest)2

)
E

(
(Yn+1 − Xn+1βtrue)2

) , (16)

where the expectation is taken over (Yn+1, Xn+1). The denomi-
nator can be computed analytically using the known parameter
values; the numerator is computed via Monte Carlo simulations.
Second, we record how frequently a given method performed
better than the other two, which we denote by Pr(optimal).

For this simulation, the number of factors in the partial factor
model was chosen using the following heuristic: either chose the
value between 1 and n that gives the largest difference in consec-
utive singular values of X, or 3, whichever is smaller. We do not
advocate this heuristic in general; rather this simulation study
highlights the strength of the partial factor model in mitigating
the price one pays in terms of predictive degradation when the
number of factors is underestimated. This robustness allows one
to safely choose the lowest plausible number of factors based
on subject matter knowledge or to use a crude heuristic without
risking leaving a lot of predictive power on the table. Within
this context, choosing a particular value of k induces a certain
prior on the implied regression coefficients, β. Incorporating
model selection priors such as Bhattacharya and Dunson (2011)
within the partial factor framework is a potentially fruitful line
of future research.

Different simulation schemes will highlight the strengths of
different methods; the scheme described here serves to commu-
nicate what can go wrong when one banks too heavily on factor
structure being predictive of a response variable. Numerical
results are displayed in Tables 1 and 2. Because the factor struc-
ture is always present in this simulation (k = 10 being much less
than p = 80), we observe that the pure regression model does
not adequately capitalize on this structure. However, when it
happens that the factor structure is less strongly predictive, the
strong bias of the factor model can degrade predictions more
than necessary relative to the pure regression model. So, even
in the favorable case where the factor model is best 50% of

Table 1. Case one: when the factor structure is highly predictive of
the response, the partial factor model performs on par with the learned

factor model

Method MSPE Pr(optimal)

Partial factor regression 1.31 0.33
Bhattacharya et al. 1.33 0.58
Carvalho et al. 1.49 0.09
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Table 2. Case two: when the factor structure is less predictive of the
response, partial factor regression performs on par with the pure
regression model, while the full factor model suffers dramatic

overshrinkage

Method MSPE Pr(optimal)

Partial factor regression 1.59 0.54
Bhattacharya et al. 5.86 0.41
Carvalho et al. 1.84 0.05

the time, when it is not best it can be far from optimal. This
pattern becomes more pronounced in the less favorable case
where the prediction error can be dramatically suboptimal. The
simulation results demonstrate that the partial factor model suc-
cessfully avoids this pitfall, while still capitalizing on strong
factor structure when it is evident.

2.2 Out-of-Sample Prediction Applied Example

In this section, we extend our comparisons to additional meth-
ods and to the case of real data. We compare partial factor re-
gression to five other methods: principal component regression,
partial least squares, lasso regression (Tibshirani 1996), ridge
regression, and unadjusted Bayesian factor modeling using the
model selection prior of Bhattacharya and Dunson (2011). We
observe the same pattern of robust prediction performance as
in the simulation study. Partial factor regression shows itself to
be the best or nearly the best among the methods considered in
terms of out-of-sample MSPE.

Five real datasets in the p > n regime are analyzed; the data
are available from the R packages pls (Mevik and Wehrens
2007), chemometrics (Varmuza and Filzmoser 2009), and
mixOmics (Cao, Gonzalez, and Dejean 2009). These data were
selected because they are publicly available and fall within the
p > n regime that is most germane to our comparisons.

To test the methods, each of the datasets is split into training
and test samples, with 75% of the observations used for train-
ing. Each model is then fit using the training data, with tuning
parameters for the four non-Bayesian methods chosen by ten-
fold cross-validation on only the training data. Out-of-sample
predictive performance on the holdout data is measured by sum
of squared prediction error.

As shown in Table 3, the partial factor model outperforms
the other models on three of the five datasets and is never much
worse than the best in the remaining cases. By comparison the

final column shows that the unadjusted Bayesian factor regres-
sion using a modern factor selection prior does very poorly at
recovering a satisfactory regression model for prediction; its
tendency to radically overshrinkage is illustrated by the yarn
data shown in row three.

3. SPARSITY PRIORS FOR VARIABLE SELECTION

In this section, we consider adapting the partial factor model
for the purpose of variable selection. Variable selection is a per-
vasive problem in applied statistics, see, for example, George
and Foster (2000), Liang et al. (2008), and references therein.
Notable Bayesian approaches to this problem in the canonical
normal linear regression setup include Zellner (1971), George
and McCulloch (1997), Liang et al. (2008), Clyde and George
(2004), among many others. With the additional assumption that
the predictors and the data come from a joint normal distribution,
the variable selection problem becomes a question of inferring
exactly zero entries in (a particular row of) the associated pre-
cision matrix �−1

X,Y , bringing the problem into the territory of
Gaussian graphical models (Dempster 1972; Speed and Kiiveri
1986; Dawid and Lauritzen 1993). Previous work has also advo-
cated covariance regularization for variable selection problems
(Jeng and Daye 2011).

Here, intuitive representations of the regression vector β will
follow directly from the generative structure of the partial factor
model and prove helpful in a variable selection context. The
guiding intuition is simply this: if a subset of predictors is mu-
tually dependent, then they should either all be in or out of the
model as a group.

Consider the parameterization of the partial factor model
given in Equation (12), whence the latent regression
(conditional on fi) follows as

Yi = θ fi + ��− 1
2 (Xi − Bfi) + εi, εi ∼ N(0, σ 2). (17)

Fixing � to a vector of zeros represents a pure factor model. If
λj = 0, predictor Xj appears in the regression of Yi only via its
dependence on the latent factors.

Accordingly, positive a priori probability of zero elements
in �, θ , and B implies positive probability of zero elements in
β. For instance, a point-mass prior at zero (sometimes called a
two-groups model or a spike-and-slab model) on the jth element
of � can be written as

π (λj | αλ) = αλN
(
λj ; 0, ω2w2

j

) + (1 − αλ)δ0(λj ), (18)

Table 3. PFR: partial factor regression. RIDGE: ridge regression. PLS: partial least squares. LASSO: lasso regression. PCR: principal
component regression. BFR: Bayesian factor regression

Average out-of-sample error

Dataset n p PFR RIDGE PLS LASSO PCR BFR

Nutrimouse 40 120 377.3 (27%) 296.2 418.5 (41%) 492.3 (66%) 391.2 (32%) 517.73 (75%)
Cereal 15 145 31.8 41.86 (32%) 51.30 (61%) 42.97 (35%) 45.01 (42%) 62.34 (96%)
Yarn 28 268 0.29 0.50 (72%) 0.37 (28%) 0.30 (3%) 0.42 (45%) 7.80 (260%)
Gasoline 60 401 0.54 0.68 (26%) 0.74 (37%) 0.81 (50%) 0.70 (30%) 0.71 (31%)
Multidrug 60 853 183.0 (18%) 154.0 164.0 (6%) 220.4 (43%) 170.6 (11%) 212.13 (38%)

NOTE: Percentages shown are amount worse than the best method, reported in bold type.
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where δ0 denotes a point mass at zero. Analogous priors are
placed on the elements of B and θ , with corresponding hyper-
parameters αb and αθ :

π (θh | αθ ) = αθN
(
θh; 0, τ 2q2

h

) + (1 − αθ )δ0(θh),

π (βjh | αβ) = αβN
(
βjh; 0, τ 2t2

jh

) + (1 − αβ)δ0(βjh).
(19)

Sparsity of β is then induced via the identity

β t = (
θ − ��− 1

2 B
)
Bt (BBt + �)−1 + ��− 1

2 . (20)

Unlike the prediction context, which we used to motivate the
partial factor model, in the variable selection setting, identifia-
bility of B becomes a relevant concern. A complete investigation
of the identification issues associated with linear factor models
is Fruhwirth-Schnatter and Lopes (2012). Presently, we develop
the sparse partial factor model on the working assumption that
inferences concerning B are being handled in an appropriate
fashion; for our simulation study we adopt the convenient lower-
triangular restriction of Geweke and Zhou (1996).

Zeros in β arise only when �X has a block diagonal structure
(or can be permuted to have such a structure) via elements of
B being exactly zero. Each block then represents a subset of
the predictors, which is jointly independent of the remaining
elements, and each block can be associated with its own set of
latent factors. For d such groups, we have

B=

⎡
⎢⎢⎢⎢⎢⎣

B1 0 0 · · ·
0 B2 0 · · ·
0 0

. . .

...
... Bd

⎤
⎥⎥⎥⎥⎥⎦ , � =

⎡
⎢⎢⎢⎢⎢⎣

�1 0 0 · · ·
0 �2 0 · · ·
0 0

. . .

...
... �d

⎤
⎥⎥⎥⎥⎥⎦ ,

(21)

and � = (�1 �2 . . . �d ), θ = (θ1 θ2 . . . θd ) represent
conformable partitions. From these definitions it fol-
lows straightforwardly that β also partitions as β t =
(β t

1 β t
2 · · · β t

d ), with each group being defined as in (20):

β t
l = (

θ l − �l�
− 1

2
l Bl

)
Bt

l

(
BlBt

l + � l

)−1 + �l�
− 1

2
l . (22)

This equivalence follows from the fact that the inverse of a
block diagonal matrix is the block diagonal matrix composed
of the inverses of the original block components. From this
expression, one observes that the regression coefficient group
β l is a zero vector precisely when �l and θ l are both zero
vectors. If any one element of these subvectors is nonzero, then
the whole block becomes nonzero via their interdependence.
The partial factor model gives nonzero prior probability to an
exactly zero regression coefficient for a given predictor only
if the response variable is independent of any latent factors
governing that predictor (θ l = 0) and is also unrelated to that
predictor residually (�l = 0).

Arguably this approach to sparsity is more intuitive than a
pure regression model in cases of correlated predictors in the
following sense. In a linear regression, a zero coefficient in β

may arise (in principle) if a given variable has (say) a negative
effect, but is correlated with another variable having an exactly
countervailing effect. The partial factor model of sparsity as-
signs zero prior probability to such implausible balancing acts.

Figure 2. Elements of β1 are solid. Elements of β2 are dashed.
� = (0 0.1 0 0 0 0). Note that the elements of β2 all converge at
the origin.

Instead, the induced sparsity in β has to happen “directly” via
sparsity of θ , B, and �.

Example 2. Consider a partial factor regression (7) with the
following parameters:

Bt =
[

−0.25 0.1 0.1 c 0 0

0 0 0 −0.8 0.2 −0.2

]
, � = 0.5I

� = (0 0.1 0 0 0 0), θ = −0.5 0). (23)

Now consider how β changes as a function of c, noting that
when c = 0 we have the desired block independence of Xi . Con-
sider the following partitioning: θ = (θ1 θ2), � = (�1 �2),
and β = (β1 β2). Specifically �1 = (�1 �2 �3), �2 =
(�4 �5 �6) and β1 = (β1 β2 β3)t , β2 = (β4 β5 β6)t .
We see that because θ2 = 0 and �2 = 0, the only way elements
of β2 become nonzero is via nonzero c. When c = 0, all the
elements of β2 equal zero, as seen in Figure 2. Information
from predictor dimensions four through six becomes informa-
tive about the response via correlation with predictor dimensions
one through three; in this example, when c = 0 there is no such
informative correlation.

Observe, if we keep the same setup as above, but set
� = (0 0.1 0 0 0 0.25), the picture changes dramati-
cally, as shown in Figure 3. This perhaps is counterintuitive
because λ6 represents the “residual” dependence of the sixth
predictor variable, but we must remember that this interpre-
tation is conditional on the latent factors. Because in practice
the latent factors are unobserved and must be inferred from the
data, nonzero elements of �2 dictate that the response depends
on the corresponding predictors in complicated ways defined
by expression (20). The partial factor model provides the fol-
lowing new functionality: if the data provide evidence that λj

is nonzero, the posteriori probability that βj is exactly zero
becomes correspondingly less likely.

3.1 Variable Selection Simulation Study

To demonstrate the effectiveness of the sparse factor model
for variable selection, we compare it to three alternatives. First
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Hahn, Carvalho, and Mukherjee: Partial Factor Modeling 1005

Figure 3. Elements of β1 are solid. Elements of β2 are dashed. The
convergence at the origin noted in the previous plot is no longer evident
now that � = (0 0.1 0 0 0 0.25).

is a two-groups regression model with an independent prior
on β:

π (βj | vj , ν) = 1

2
δ0(βj ) + 1

2
N

(
0, ω2w2

j

)
,

ω ∼ C+(0, 1),

wj ∼ C+(0, 1).

(24)

This prior is an amalgam of the usual two-groups model (with
normal density for the continuous portion) and a shrinkage
model called the horseshoe (Carvalho, Polson, and Scott 2010).

The second model we consider is a two-groups model with a
g prior on the nonzero regression coefficients:

π (βM | X,M) = N
(
0, g−1(XMXt

M
)†)

, (25)

whereM picks out which elements of the regression are nonzero
and † denotes the Moore–Penrose pseudoinverse. This model
was fit using the R package BAS (Liang et al. 2008; Clyde,
Ghosh, and Littman 2011). Under this model the prior inclusion
probability α is given a uniform hyperprior; the hyper g prior
setting is used with the recommended default hyperparameters.

Third, we use the elastic net model described in Zou and
Hastie (2005), which compromises between a lasso l1 penalty
and a ridge l2 penalty. Like the partial factor model, the elastic
net has the property that related predictors will group in and out
of the model together (see Zou and Hastie 2005, sec. 2.3).

For the partial factor model, the individual elements of θ , B,
and � are given horseshoe point-mass priors as in (24). However,
different prior probabilities are chosen (fixed): αb = 0.5, αλ =
0.1, and αθ = 0.9 (for all elements of the indicated parameter).
These choices encode the prior beliefs that any given predictor
is as likely to depend on any given latent factor as not, but that
it is much more likely that Y depends on the common latent
factors than it is to depend on any of the individual predictors
residually.

We compare performance according to three metrics:

• the usual mean squared error (SE) of regression coefficient
estimates: p−1 ∑

j (βj − β̂j )2,

Table 4. SE: squared error. ME: misclassification error. PE:
probability estimation error. The mean value across simulations is

reported for each type of error. The blank element in the table is due
to the elastic net not providing inclusion probability estimates

Method SE ME PE

Sparse partial factor 0.10 0.10 0.08
Variable selection g-prior 0.11 0.51 0.32
Two-groups horseshoe 0.10 0.44 0.24
Elastic net 0.15 0.41 –

• the average misclassified error (ME): p−1 ∑
j (1{βj 	=

0} − 1{α̂βj
> 1

2 })2,
• and the squared difference between the posterior inclu-

sion probability and the true model indicator vector, or
the “probability estimate” (PE) error: p−1 ∑

j (1{βj 	=
0} − α̂βj

)2,

where α̂βj
denotes the posterior probability of inclusion. The

mean SE measures overall goodness of the estimate, the aver-
age misclassification error measures performance explicitly in
terms of variable selection and the mean squared probability
error provides a notion of sharpness to accompany the misclas-
sification error.

Data were generated according to a sparse factor model with
k drawn uniformly at random on {0, . . . , 5}. For this study p =
20 and n = 50. Elements of � are drawn from independent
normal distributions with mean zero and variance 0.25, and the
elements of θ are drawn from independent normal distributions
with mean zero and variance 4. This situation corresponds to
there being strong factor structure, which is predictive of the
response. Results are depicted in Table 4.

The partial factor model soundly outperforms these three
widely used methods on our simulated data in terms of misclassi-
fication error. The g prior model and the two-groups model give
similar SE estimation performance to the partial factor model,
but the variable selection performance of the partial factor model
is markedly better. For these data, patterns of covariation in the
predictors are informative about the sparsity of β. The inde-
pendent two-groups model does not account for these patterns
and so performs worse. The g prior model incorporates these
patterns via the prior covariance used for β, but potentially un-
derregularizes low-variance directions in the observed data; this
point is discussed further in Section 4.1. This high variability
similarly causes the SE of the g prior model to be somewhat
(10%) higher than the independent two-groups model. Mean-
while, the elastic net model outperforms the g prior and the
two-groups model on misclassification error, but is by far the
worst in terms of mean SE.

4. CONNECTIONS AND EXTENSIONS

4.1 Relation to Ridge Regression and Zellner’s g Prior

The partial factor model offers robust model-based regular-
ized linear regression. By biasing a full p-dimensional regres-
sion toward a low-dimensional factor model, the partial factor
regression framework represents a principled compromise be-
tween least-square regression and full factor modeling. Indeed,
from the viewpoint of the implied prior over the regression
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parameters β, there arise interesting connections to ridge regres-
sion and to Zellner’s g prior (Zellner 1986; Liang et al. 2008),
two classical linear regression methods. For ease of compari-
son, in what follows set the prior variances q2

hτ
2 = ω2w2

j for
all h, fix wj = 1 for all j, fix the residual variance at σ 2 = 1,
and assume XXt is invertible (similar expressions arise using a
generalized inverse). Then, from expression (20) one finds that
the prior variance of β in terms of B and � is

cov(β) = ω2(BBt + �)−1,

= ω2�−1
X ,

(26)

from which the posterior mean may be expressed as

E(β | Y, X,�X) = (
ω−2Ip + �−1

x XXt
)−1

�−1
X XY. (27)

By comparison, the normal prior used in ridge regression has
prior variance cov(β) = ω2Ip and yields the estimator

Eridge(β | Y, X) = (XXt + ω−2Ip)−1XY. (28)

And finally, the g prior is a normal prior with cov(β) =
g−1(XXt )−1, yielding the posterior estimator

EZellner(β | Y, X) = (1 + g)−1(XXt )−1XY. (29)

The differences between these expressions are instructive. It
is straightforward to show that the ridge estimator downweights
the contribution of the directions in (observed) predictor space
with lower sample variance, from which one may argue that
(Hastie, Tibshirani, and Friedman 2001):

ridge regression protects against the potentially high variance
of gradients estimated in the short directions. The implicit
assumption is that the response will tend to vary most in the
directions of high variance in the inputs.

The g prior, by contrast, shrinks β more in directions of high
sample variance in the predictor space a priori, which has the
net effect of shrinking the orthogonal directions of the design
space equally regardless of whether the directions are long or
short. This reflects the substantive belief that higher variance
directions in predictor space need not influence the response
variable more than the directions of lower variance.

However, these rationales conflate the observed design space
with the pattern of stochastic covariation characterizing the ran-
dom predictor variable. That is, we want the effects of ridge
regression to “[protect] against the potentially high variance of
gradients estimated in the short directions” but we would like
to do so without having to assume that “the response will tend
to vary most in the directions of high variance in the inputs.”
Teasing apart these two aspects of the problem can be done
by conditioning on X and �

X
≡ cov(Xi) individually, which is

what the partial factor model does. This teasing apart may be
observed directly from the form of (27). Because �X and XXt /n

are not in general identical, we still get shrinkage in different
directions, thus combatting the “high variance of gradients esti-
mated in short directions” while not having to assume that any
direction in predictor space is more or less important a priori.

Put another way, one may consider the g prior an approxi-
mate version of the partial factor prior, which uses XXt as a
plug-in estimate of �X. From this vantage, the benefit of the
partial factor model becomes clear, in that it properly handles

the not-inconsiderable uncertainty associated with this often
high-dimensional parameter.

4.2 Beyond the Linear Model

Inference and prediction can often be improved by making
structural simplifications to a statistical model. In a Bayesian
framework, this can be accomplished by positing lower-
dimensional latent variables that govern the joint distribution
between predictors and the response variable, facilitating “bor-
rowing information.” An immediate downside to this approach
is that specifying high-dimensional joint distributions and pri-
ors is difficult, particularly in terms of modulating the degree of
regularization implied for a given conditional density. The par-
tial factor model addresses this problem by parameterizing the
joint sampling model using a compositional form, which allows
the conditional regression to be handled independently of the
marginal predictor distribution. Specifically, this formulation of
the joint distribution realizes borrowing of information via a
hierarchical prior rather than through a fixed structure.

The partial factor model applies these ideas in the classic set-
ting of a joint normal distribution for the purpose of regularized
linear regression, but the conceptual underpinnings are readily
extended. For instance, it is straightforward to extend the method
to a binary or categorical response variable Zi by treating the
continuous response Yi as an additional latent variable (Albert
and Chib 1993). So, if Zi is a binary response variable, one can
write

Zi = 1(Yi < 0),

where Yi is modeled as in (17), inducing a partial factor probit
model for Zi conditional on the vector of predictors Xi .

In fact, the idea of using a compositional representation in
conjunction with a hierarchical prior can be profitably extended
to many joint distributions by specifying the compositional form
explicitly at the initial stages of the modeling process. For ex-
ample, the conditional expectation of the response under the
partial factor model given in (17) suggests the following non-
linear generalization:

E(Yi | fi , Xi) = φ (fi , Xi − E(Xi | fi)) (30)

for an unknown function φ. A more modest nonlinear general-
ization would be to assume additivity:

E(Yi | fi , Xi) = φ(fi) + ϕ(Xi − E(Xi | fi)), (31)

where φ and ϕ denote smooth functions to be inferred from the
data. Crucially, the smoothness assumptions for φ and ϕ can
be chosen individually. In particular, it would be interesting to
consider simple parametric forms for φ while allowing ϕ to be
a smooth nonparametric function.

APPENDIX A: COMPUTATIONAL IMPLEMENTATION

The strategy for sampling from the posterior distribution is essen-
tially a Gibbs sampler; the full conditional sampling steps are given
below. We use the convention that a dash to the right of the conditioning
bar should be read as “everything else.”
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1. Sample the latent factors: (F | – ). Using the joint normal distri-
bution of fi , Xi , and Yi , we draw fi ∼ N(μi, S), where

μi = ( Bt θ t )�−1
X,Y ( Xt

i Yi )
t

S = Ik − ( Bt θ t )�−1
X,Y ( Bt θ t )

t
.

This form comes directly from a block partition of the
covariance matrix in Equation (8); applications of the
Sherman–Woodbury–Morrison identity yield a more cumber-
some expression that is amenable to efficient inversion.

2. Sample variance components. All of the variance components
have the same update, differing only in how we calculate the
“residuals.” This step is based on the slice sampler described in
Damien, Wakefield, and Walker (1999). Each of these updates is
described in terms of random variables rl , l = 1, . . . , m, which
are distributed independently as N(0, s2) with prior density on
the variance given by p(s) ∝ s2a−1(1 + s2)−(a+1/2). For a = 1/2,
this is a half-Cauchy density and corresponds to the horseshoe
prior on the rl ; for a = 1 it corresponds a Strawdeman–Berger
prior on rl . Define η = 1/s2. Then we sample s as follows.

• Draw (u | η) ∼ Uniform(0, (1 + η)−(a+1/2)).
• Draw (η | r, u) ∼ Gamma((m + 1)/2,

∑m
l=1 r2

i /2) restricted
to be below u−(1/(a+1/2)) − 1.

• Set s = η−1/2.

(a) Sample (� | – ). Let m = n and for each dimension j =
1, . . . , p, define rl(j ) = Xjl − bj fl .

(b) Sample (σ | – ). Let m = n and define rl = Yl − θ fl −
��− 1

2 (Xl − Bfl).
(c) Sample (ω | – ). Let �̃ be the vector of nonzero elements

� and w̃ be the corresponding elements of w. Then let m be
the length of �̃ and define rl = λ̃l/wl .

(d) Sample (w | – ). For each wj , j = 1, . . . , p, let m = 1 and
define r = λj/ω.

(e) Sample (τ | – ). Let B̃ be a vector of the nonzero elements
of {B, θ} and t̃ be a vector of the corresponding elements of
{t, q}. Then let m be the length of B̃ and define rl = b̃l/tl .

(f) Sample (t | – ). For each tjh, j = 1, . . . , p, h = 1, . . . , k,
let m = 1 and define r = bjg/τ .

(g) Sample (q | – ). For each qh, h = 1, . . . , k, let m = 1 and
define r = θh/τ .

3. Sample the residual regression coefficients: (� | – ). Define
Y ∗

i = Yi − θ fi and X∗
i = �−1/2(Xi − Bfi). Sequentially for each

j = 1, . . . , p, define Ỹi = Y ∗
i − �−j X∗

−j and X̃ji = X∗
ji and first

draw λj ∼N(μ, s) with

μ = sX̃Ỹ/σ 2,

s = (
X̃X̃t /σ 2 + ω−2w−2

j

)−1
,

(A.1)

and then set to exactly zero with probability

(1 − αλ)φ(0 | μ, s)

(1 − αλ)φ(0 | μ, s) + αλφ(0 | 0, ω2w2
j )

,

where φ(· | m, s) denotes the normal density function with mean
m and variance s.

4. Sample the factor regression coefficients: (θ | – ). Define Y ∗
i =

Yi − ��−1/2(Xi − Bfi). Sequentially for each h = 1, . . . , k, de-
fine Ỹi = Y ∗

i − θ−hf−h,i and first draw θh ∼ N(μ, s) with

μ = sfhỸ/σ 2,

s = (
f t
hfh/σ 2 + τ−2q−2

h

)−1
.

(A.2)

and then set to exactly zero with probability

(1 − αθ )φ(0 | μ, s)

(1 − αθ )φ(0 | μ, s) + αθφ(0 | 0, τ 2q2
h)

.

Table A.1. As the variance of the prior on � is relaxed, the norm gets
bigger and prediction and inference improves to a point, but eventually
declines. When the prior variance is learned via a hyperprior, one gets

estimation results near the optimal setting among the fixed values

Horseshoe
Metric hyperprior c = 0.0001 c = 0.05 c = 0.1 c = 0.5

MSPE 1.38 5.27 1.53 1.76 2.10
E||�|| 0.42 0.00 0.13 0.38 6.14

5. Sample the factor loadings: (B | – ). The strategy here is to use a
Metropolis-adjusted Gibbs update. Specifically, we use the pos-
terior distribution of B disregarding Y as a proposal distribution:
that is, we draw from

π (B | X) = f (X | B)π (B)∫
f (X | B)π (B)dB

.

Because p(X | B) and π (B) are shared with the true posterior
π (B | X, Y), the probability of transitioning from B to B′ is
expressed as

min

(
1,

∏n
i=1 φ(Yi | B′, X, – )∏n
i=1 φ(Yi | B, X, – )

)
.

Drawing from this proposal is in turn done with a Gibbs sampler
similar to the previous two steps. Sequentially for each h =
1, . . . , k and each j = 1, . . . , p, define X̃ji = Xji − bj,−hf−h,i

and first draw bjh ∼ N(μ, s) with

μ = sfhX̃t
j /ψ

2
j ,

s = (
f t
hfh/ψ2

j + τ−2t−2
jh

)−1
.

(A.3)

and then set to exactly zero with probability

(1 − αb)φ(0 | μ, s)

(1 − αb)φ(0 | μ, s) + αbφ
(
0 | 0, τ 2t2

jh

) .

APPENDIX B: SENSITIVITY STUDY

This section seeks to briefly characterize the quantitative behavior
of the partial factor model as the prior variance of � is varied. To do so,
consider w2

j = ω = c, as c ranges over the set {0.0001, 0.05, 0.1, 0.5}.
Additionally, we consider the “learned” model using the default global-
local horseshoe hyperpriors over ω and wj described in (14). For this
demonstration, we let the true model be a k = 5 factor model with p =
50 and n = 40 drawn as in (15) with θg ∼ N(0, 1) for g = 1, . . . , k.
We use the same heuristic described in Section 2.1 to chose the number
of factors in the factor model.

We examine two quantities, the MSPE (as a fraction of the best
possible) as in (16) and the posterior mean size of � as measured by
the 2-norm. Results are recorded in Table A1.

These results are intuitive: as the prior is tighter about zero, posterior
estimates look more and more like those from a factor model, while
if the prior is loosened estimates get closer and closer to those of a
pure regression model. Similar patterns persist over independent trials
of this exercise.

[Received July 2011. Revised November 2012.]
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