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Moving past 1930’s

The Effect of Corporate Governance on Investment 363

Table 5 ! Firm value as a function of governance.

Dependent
Variable: Firm q (1) (2) (3) (4) (5)

Property Type q 0.497 0.418 0.403 0.412 0.382
(14.33)∗∗∗ (7.64)∗∗∗ (7.65)∗∗∗ (7.16)∗∗∗ (10.44)∗∗∗

EBITDA 0.403 0.456 0.444 0.444 0.163
(5.31)∗∗∗ (5.17)∗∗∗ (5.11)∗∗∗ (5.00)∗∗∗ (7.21)∗∗∗

UPREIT −0.001 −0.006 −0.023 −0.018
(0.02) (0.09) (0.36) (0.28)

Interest Coverage 0.057 0.060 0.043 0.038 −0.004
(0.74) (0.83) (0.63) (0.57) (0.15)

Mkt Cap 0.127 0.078 0.087 0.096 0.014
(2.73)∗∗∗ (1.85)∗ (1.96)∗ (2.11)∗∗ (0.39)

Excess Comp −0.002 0.000 −0.002 −0.020
(0.03) (0.01) (0.05) (0.85)

Instl Ownership 0.053 0.078 0.085 0.101
(1.00) (1.48) (1.50) (2.55)∗∗

Block Ownership −0.046 −0.041 0.013
(1.38) (1.23) (0.59)

D&O Ownership 0.106 0.105 0.072
(1.57) (1.55) (2.08)∗∗

Ln(Board Size) −0.044 −0.097
(0.77) (2.86)∗∗∗

Outside Board 0.029 0.021
(0.75) (0.93)

Maryland −0.026
(0.53)

Fixed Effects? No No No No Yes
Observations 882 882 882 882 882
R2 0.53 0.55 0.56 0.56 0.60
p value from F test of

null that all
governance
coefficients are
zero

0.61 0.21 0.50 0.00∗∗∗

Note: This table reports results of regressions of Firm q on governance and control
variables for a sample of 882 observations of equity REITs from 1995 to 2004. All
variables are as defined in Tables 1 and 4 and have been standardized to have mean of
zero and unit variance. t statistics for each coefficient are in parentheses, where standard
errors have been corrected for clustering within firms over time. Indicator variables for
the year of the observation are included in all regressions, but these coefficients are
not reported. The table also presents the number of observations and the R2 for each
regression. At the bottom of the table are p values for F tests of the null hypothesis that
the coefficients on all governance variables equal zero.
∗statistical significance at the 0.10 level; ∗∗statistical significance at the 0.05 level; ∗∗∗

statistical significance at the 0.01 level.
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Regularization

Y = f (X1, . . . ,Xp) + εi ,

when predicting Y with a bunch of X ’s via f (·) we know that...

A fundamental idea in modern statistics (machine leaning) is the use of
regularization to explore the bias-variance trade-off

Various flavors: penalized likelihood, priors, smoothing, etc, etc.... 3



Everyone knows...

It is well-known that unmeasured confounders can lead to biased
estimates of regression coefficients.

Suppose we’re interested in the treatment effect of dietary kale intake.

And want to know how effective it is at lowering cholesterol, which is our
outcome variable.

Unfortunately, we have only observational data (i.e., not a randomized
study).

4



Is it kale or is it gym?

Our bad luck, only gym-rats seem to eat much kale. And exercise is
known to lower cholesterol: the “direct” effect is confounded.

Yi = β0 + αDi + εi ,

Because cov(Di , εi ) 6= 0, we can write

Yi = β0 + αDi + ωDi + ε̃.

Since cov(Di , ε̃i ) = 0, we mis-estimate α as α + ω.
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Easy fix...

The good news is, we can control for weekly exercise, Xi , by including it
in the regression:

Yi = β0 + αDi + βXi + εi .

This “clears out” the confounding: conditional on Xi , cov(Di , εi ) = 0 and
we’re good to go.

But what if we don’t know what we need to control for?

Note: I will assume from this point forward that a subset inside of a large
set of variables is enough to identify the treatment effect... i.e. don’t ask
me about instruments today!!!
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Regularize?

Yi = β0 + αDi + X′iβ + εi .

I Let’s regularize using priors... shrinkage prior on β should do it...
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Something goes wrong

GoodBayes NaiveBayes OLS Oracle
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It turns out that this “obvious” approach is really bad at getting
reasonable estimates of the treatment effect α.
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Bad bias versus good bias

Assume that:
Di = Xt

i γ + εi .

Now substitute a shrunk estimate, β −∆, in place of the true (unknown)
β vector:

Yi = αDi + Xt
i (β −∆) + [νi + Xt

i ∆].

This implies that νi is taken to be νi + Xi∆, which gives

cov(νi + Xt
i ∆,X

tγ + ε) 6= 0.

Biasing β towards zero biases cov(D, ε) away from zero!
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OLS forces deconfoundedness

It is well-known that in the presence of the “correct” controls,

ε̂ols ⊥ D.

However, this is not true for regularized estimates

ε̂reg 6⊥ D.

We refer to this as Regularization-induced Confounding.
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The typical parametrization

Selection Eq.: D = Xtγ + ε, ε ∼ N(0, σ2
ε ),

Response Eq.: Y = αD + Xtβ + ν, ν ∼ N(0, σ2
ν).

These equations correspond to the factorization of the joint distribution

f (Y ,D | γ, β, σε, σν) = f (Y | D, β, σε)f (D | γ, σν).

This factorization implies a complete separation of the parameter sets:
independent priors on the regression parameters

π(β, γ, α) = π(β)π(γ)π(α)

imply that only the response equation is used in estimating β and α.
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Our reparametrization: a latent error approach

We reparametrize as

 α
β + αγ
γ

→
 α
βd
βc

 .

which gives the new equations

Selection Eq.: D = Xtβc + ε, ε ∼ N(0, σ2
ε ),

Response Eq.: Y = α(D − Xtβc) + Xtβd + ν, ν ∼ N(0, σ2
ν).

We can now shrink βd and βc with impunity!

12



Simulation study

Selection Eq.: D = Xtβc + ε, ε ∼ N(0, σ2
ε ),

Response Eq.: Y = α(D − Xtβc) + Xtβd + ν, ν ∼ N(0, σ2
ν).

Set var(D) = var(Y ) = 1 and center and scale the columns of X.

Define the `2 norms of the confounding and direct effects as ρ2 = ‖βc‖22
and φ2 = ‖βd‖22 so that

var(D) = ρ2 + σ2
ε

var(Y ) = κ2 + φ2 + σ2
ν ,

with σ2
ε = 1− ρ2 and σ2

ν = 1− α2(1− ρ2)− φ2 and κ2 = α2(1− ρ2).
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ρ2 Bias Coverage I.L. MSE

0.1 New Approach -0.0032 0.943 0.2357 0.0037
OLS -0.0016 0.951 0.2477 0.004
Naive Regularization -0.0112 0.895 0.2089 0.0037
Oracle OLS 0.0023 0.946 0.2173 0.0031

0.3 New Approach -0.0047 0.95 0.2751 0.0047
OLS -0.0018 0.951 0.2808 0.0052
Naive Regularization -0.0355 0.848 0.2293 0.0057
Oracle OLS 0.0026 0.946 0.2464 0.004

0.5 New Approach -3e-04 0.963 0.3345 0.0066
OLS -0.0022 0.951 0.3323 0.0072
Naive Regularization -0.0768 0.746 0.2631 0.012
Oracle OLS 0.0031 0.946 0.2915 0.0056

0.7 New Approach 0.0084 0.964 0.4374 0.0113
OLS 0.0024 0.944 0.4303 0.0123
Naive Regularization -0.1559 0.543 0.3292 0.0346
Oracle OLS 0.004 0.946 0.3764 0.0093

0.9 New Approach -0.004 0.972 0.7403 0.0292
OLS 0.0045 0.954 0.7469 0.0351
Naive Regularization -0.4482 0.231 0.4779 0.2391
Oracle OLS 0.0069 0.946 0.6519 0.0278

Table: n = 100, p = 30, k = 3. κ2 = 0.05. φ2 = 0.7. σ2
ν = 0.25.
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ρ2 Bias Coverage I.L. MSE

0.1 New Approach 0.0082 0.918 0.3632 0.0105
OLS -0.0017 0.944 0.4785 0.0144
Naive Regularization -0.0068 0.835 0.2957 0.0097
Oracle OLS -0.001 0.952 0.3235 0.0065

0.3 New Approach -1e-04 0.94 0.4203 0.0128
OLS -0.002 0.944 0.5425 0.0186
Naive Regularization -0.035 0.837 0.3191 0.0126
Oracle OLS -0.0011 0.952 0.3668 0.0084

0.5 New Approach -0.0047 0.93 0.5183 0.0196
OLS -0.0023 0.944 0.6419 0.026
Naive Regularization -0.0869 0.738 0.3555 0.0222
Oracle OLS -0.0014 0.952 0.434 0.0117

0.7 New Approach 0.0056 0.937 0.6926 0.0341
OLS 0.0046 0.934 0.8204 0.0478
Naive Regularization -0.189 0.539 0.4033 0.0565
Oracle OLS -0.0018 0.952 0.5604 0.0195

0.9 New Approach -0.0772 0.959 1.1572 0.0804
OLS -0.0156 0.931 1.4347 0.1402
Naive Regularization -0.5419 0.102 0.4868 0.3297
Oracle OLS -0.003 0.952 0.9706 0.0585

Table: n = 50, p = 30, k = 3. κ2 = 0.05. φ2 = 0.7. σ2
ν = 0.25.
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Empirical example: Levitt abortion reanalysis

According to “Freakonomics”:

I unwanted children are more likely to grow up to be criminals,

I therefore legalized abortion, which leads to fewer unwanted children,
leads to lower levels of crime in society.

To investigate, they conduct three analyses, one each for three different
types of crime: violent crime, property crime, and murders.
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Donohue III and Levitt data

Y is per capita crime rates (violent crime, property crime, and murders)
by state, from 1985–1997, and D, is the “effective” abortion rate.

The control variables, X, are:

I prisoners per capita (log),

I police per capita (log),

I state unemployment rate,

I state income per capita (log),

I percent of population below the poverty line,

I generosity of AFDC (lagged by fifteen years),

I concealed weapons law,

I beer consumption per capita.

Including state and year dummy variables brings the total number of
control variables to p = 66 (with n = 624).
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Replication

Property Crime Violent Crime Murder
2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

OLS -0.110 -0.072 -0.171 -0.090 -0.221 -0.040
Our way -0.113 -0.073 -0.182 -0.098 -0.222 -0.039
naive -0.075 -0.010 0.079 0.301 -0.186 0.085
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An augmented control set

Our expanded model includes the following additional control variables:

I interactions between the original eight controls and year,

I interactions between the original eight controls and year squared,

I interactions between state effects and year,

I interactions between state effects and year squared.

When allowing for this degree of flexibility, estimation becomes quite
challenging, with just n = 624 observations and p = 176 control
variables.
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Augmented analysis results

Property Crime Violent Crime Murder
2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

OLS -0.226 0.019 -0.374 0.336 -0.125 1.763
Our way -0.038 0.014 -0.114 0.053 -0.081 0.279
naive 0.007 0.129 0.011 0.412 -0.227 0.116
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Nonlinear/heterogeneous regressions for deconfounding

Consider the nonlinear model

Yi = f (Xi ,Di ) + εi .

Now our deconfoundedness condition is stronger

Di ⊥ εi | Xi .

And our causal estimate is more general

α(Xi ,Di ) =
∂f (Xi ,Di )

∂Di
.

Here we have no option but to regularize!
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How about using our favorite tree model



Trees



Trees
stump
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Basic structure - regression trees

Follow rules down tree to come up with prediction. The resulting f (·) is a
step function! Each region is average of training data.
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Regularization-induced confounding (again)

Nothing in the standard “tree” likelihood that encourages

Di ⊥ εi | Xi .

in that the likelihood takes no heed of the relationship between
Yi − µτ(Xi ) and Di .

In the linear setting a joint propensity-response model solves this
problem:

Selection Eq.: D = Xtβc + ε, ε ∼ N(0, σ2
ε ),

Response Eq.: Y = α(D − Xtβc) + Xtβd + ν, ν ∼ N(0, σ2
ν).

We will apply the same strategy to the regression tree setting.
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A bivariate treed linear model

We again have a regression tree τ(Xi ), but at each leaf we have the joint
likelihood model f (Y | D)f (D)

Yi = α0
τ(Xi )

+ ατ(Xi )Di + εi

Di = µτ(Xi ) + εi .

I and the likelihood asserts that εi ⊥ εi .

I In each leaf, the evaluated counterfactual is based on independent
variation in dosage Di .
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Simulated example

Consider estimating the treatment effect of hours of tutoring Di on a
certain test score Yi .

Hours of study
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Suppose that we control for IQ (X1) and family income (X2), as well as
fifteen additional attributes of the individual test taker.
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Data generating process

The selection process is

Di = exp {arctan(−X1/3) + arctan(X2) + log(8) + 0.3εi}
εi ∼ N(0, 1).

The response process is

Ui = (5 arctan (X2 − 3) + π/2) + 1) arctan(Z ),

Si = (arctan(Ui ) + π/2)/π,

Yi = 100× Φ(Φ−1(Si ) + 0.5εi ),

εi ∼ N(0, 1).

These aren’t as crazy as they look.
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A horse race

We compare four models (n = 500, p = 17)

1. BART a la Hill (2012), (naive approach)

2. Bivariate dose-response treed linear model.

Our estimand will be E(Yi | Xi ,Di = di + 1)− E(Yi | Xi ,Di = di ): the
individual causal effect of one additional hour of test prep.

30



Prediction results
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Treatment effect estimation results

0 1 2 3 4 5 6 7

0
1
2
3
4

Hill (2012)

Treatment effect

E
st
im
at
e

0 1 2 3 4 5 6 7

0
2

4
6

BART Cont. Func.

Treatment effect
E
st
im
at
e

0 1 2 3 4 5 6 7

0
2
4
6
8

Plain treed LM

Treatment effect

E
st
im
at
e

0 1 2 3 4 5 6 7

0
2

4
6

Dose-reponse treed LM

Treatment effect

E
st
im
at
e

0 1 2 3 4 5 6 7

0
1
2
3
4

Hill (2012)

Treatment effect
E
st
im
at
e

0 1 2 3 4 5 6 7

0
2

4
6

BART Cont. Func.

Treatment effect

E
st
im
at
e

0 1 2 3 4 5 6 7

0
2
4
6
8

Plain treed LM

Treatment effect

E
st
im
at
e

0 1 2 3 4 5 6 7

0
2

4
6

Dose-reponse treed LM

Treatment effect
E
st
im
at
e

32



Numbers

Model Prediction RMSE Estimation RMSE
Hill (2012) 4.62 0.98
DR treed LM 4.31 0.46
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Summary

I Regularization-induced confounding is a thing that happens.

I Explicitly modeling the treatment allows regularization to be
imposed robustly.

I This opens the door to the effective use of lots of powerful tools for
the estimation of causal effects!

I Lot’s to do before a stata function is available... :)
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