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‘We describe studies in molecular profiling and biological pathway analysis that use sparse latent factor and regression models for microar-
ray gene expression data. We discuss breast cancer applications and key aspects of the modeling and computational methodology. Our
case studies aim to investigate and characterize heterogeneity of structure related to specific oncogenic pathways, as well as links between
aggregate patterns in gene expression profiles and clinical biomarkers. Based on the metaphor of statistically derived “factors” as repre-
senting biological “subpathway” structure, we explore the decomposition of fitted sparse factor models into pathway subcomponents and
investigate how these components overlay multiple aspects of known biological activity. Our methodology is based on sparsity modeling of
multivariate regression, ANOVA, and latent factor models, as well as a class of models that combines all components. Hierarchical sparsity
priors address questions of dimension reduction and multiple comparisons, as well as scalability of the methodology. The models include
practically relevant non-Gaussian/nonparametric components for latent structure, underlying often quite complex non-Gaussianity in multi-
variate expression patterns. Model search and fitting are addressed through stochastic simulation and evolutionary stochastic search methods
that are exemplified in the oncogenic pathway studies. Supplementary supporting material provides more details of the applications, as well
as examples of the use of freely available software tools for implementing the methodology.
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1. INTRODUCTION

Gene expression assays of human cancer tissues provide
data that reflect the heterogeneity characteristic of oncogenic
processes. The studies described herein use gene expression
data from human breast cancer tissue samples and aim to im-
prove our understanding of aspects of key cancer-related mole-
cular mechanisms. In mammals, the complex Rb/E2F network
of intersecting molecular pathways is fundamental to the con-
trol of the cell cycle, links the activity of cellular proliferation
processes with the determination of cell fate, and is subject to
many aspects of deregulation related to the development of hu-
man cancers (Nevins 1998). Some of our studies aim to better
characterize the state and nature of a tumor based on expression
patterns associated with this network and also to link this char-
acterization to potential prognostic uses of expression profiles.

Our studies use the framework of sparse multivariate latent
factor models of gene expression data, with extensions for re-
gression and ANOVA components based on explanatory vari-
ables, as well as predictive regression components for measured
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responses. Our approach builds on the framework introduced by
West (2003). In modeling dependencies among many variables,
we use latent factor models in which the factor loadings ma-
trix is sparse; that is, each factor is related to only a relatively
small number of variables, representing a sparse, parsimonious
structure underlying the associations among genes. With genes
related to a set of interacting pathways, one key idea is that re-
covered factors overlay the known biological structure and that
genes appearing to be linked to any specific “pathway charac-
terizing” factor may be known or otherwise putatively linked to
function in that pathway. The modeling approach provides for
the infusion of biological information into the model in vari-
ous ways, but also critically serves as an exploratory analysis
approach to enrich the existing biological pathway representa-
tions. This analysis is enabled through the use of a flexible class
of sparsity-inducing priors that allow the introduction of arbi-
trary patterns of zeros in sets of factor loadings and regression
parameters, so that data can inform on the sparsity structure.

One other key methodological development is the use of non-
parametric model components for the distributions of latent fac-
tors. This allows for flexible adaption to the often radically non-
Gaussian structure in multiple aspects of the high-dimensional
distributions of gene expression outcomes, reflecting aspects of
experimental/technological noise, as well as the more important
non-Gaussianity that relates to biological heterogeneity.

The statistical methodology involves computation using evo-
lutionary stochastic search and Marcov chain Monte Carlo
(MCMC) methods, as we describe and illustrate in our exam-
ples. The evolutionary component uses the theory underlying
MCMC methods for our sparse latent factor models to gener-
ate a variable selection method that is useful in enriching an
existing model with new variables (here genes) that appear to
relate to the factor structure identified by an existing set of
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genes already modeled. In the pathway study context, model-
based analysis of genes linked to a known biological path-
way naturally recommends beginning with genes (variables) of
known relevance and then gradually exploring beyond these ini-
tial variables to include others showing an apparent association
so as to “evolve” the model specification to higher dimensions.
This method meshes with MCMC analysis in the sparse fac-
tor models on a given set of genes. Our examples focus on
the Rb/E2F signalling pathway and also on hormonal path-
ways to illustrate the methodology as an approach to explor-
ing, evaluating, and defining molecular phenotypes of subpath-
way characteristics—for both characterization and prediction—
in this important disease context. We include comments about
software for these analyses, as well as on open issues and cur-
rent research directions.

2. GENERAL FACTOR REGRESSION
MODEL FRAMEWORK

The framework combines latent factor modeling of a high-
dimensional vector x with regression of response variables z,
while allowing for additional regression and/or ANOVA effects
of other known covariates, h, on both x and z. In our gene ex-
pression case studies, X represents a column vector of gene ex-
pression measures on a set of genes in one sample; z represents
a set of outcomes or characteristics, such as survival time after
surgery or a hormonal protein assay measure; and h may repre-
sent clinical or treatment variables or normalization covariates
relevant as correction factors for technical errors or “assay arti-
facts” (see Lucas et al. 2006; app. E).

2.1 Basic Factor Regression Model Structure

Observations are made on a p-dimensional random quantity
x with the ith sample modeled as a regression on independent
variables, combined with a latent factor structure for patterns
of covariation among the elements of x; not explained by the
regression, that is,

x; = u+Bh; +AX; +v;, i=1:n, (D

or, elementwise,
’ /
Xg,i = Mg+ ,th,' —}—oth[ + Vg

k

.
::U«g“"Z:Bg,jhj,i‘f'Zag,j)hj,i + Vg )
Jj=1 Jj=1

for g = 1: p (variables/genes) and i = 1:n (samples), where
w=(u1,...,up)" is the p-vector of intercept terms; B is
the p x r matrix of regression parameters B, j (g =1:p,j =
1:r) with rows ﬁ;’,; A is the p x k matrix of factor loadings
ag i (g=1:p, j=1:k) with rows ocg,; hi =,....h ) is
the r-vector of known covariates or design factors for sample
i;Ai = (\1,..., ;) is the latent factor k-vector for sample
i;and v; = (v14,..., v,,,i)/ is a p-dimensional vector of inde-
pendent, idiosyncratic noise terms, with v; ~ N(0, ¥), where
W =diag(Y1, ..., ¥p).

Variation in x, ; not predicted by the regression (ﬂfg,h,-) is de-
fined by the common factors through ot:g,)»,», whereas v, is the
unexplained component of x, ;, representing natural variation
and technical and measurement error idiosyncratic to that vari-
able. We use the usual zero upper-triangular parameterization of
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A to define identifiable models, the parameterization in which
the first k variables have distinguished status (Aquilar and West
2000; Lopes and West 2003; West 2003). In addition, for identi-
fication purposes, here oy , >0 forg=1,...,k, and g ; =0
for factors j =g+ 1,...,kand g=1,...,k — 1. The choice
of these k lead variables is then a key modeling decision, and
one of the questions addressed in our development of evolution-
ary model search in Section 4. We refer to the lead, ordered k
variables as the founders of the factors.

The factors A; are assumed to be independently drawn
from a latent factor distribution F(-). Traditionally, F(;) =
N(A;]0,I), where 0 and I are the zero vector and identity ma-
trix (used generically); the zero mean and unit variance matrix
are identifying assumptions. A key methodological develop-
ment, discussed later, introduces nonparametric factor models
based on a Dirichlet process extension of this traditional latent
factor distribution.

2.2 General Predictive Factor Regression Models

The foregoing model for x combines with regression for re-
sponse variables z in an overall multivariate model for (z, x).
This extends the work of West (2003) to incorporate the view
that predictions of z from x may be influenced in part by the
latent factors A underlying x, as well by additional aspects of x.
These potential “additional aspects” of x are additional latent
factors shown as response factors.

To be specific, suppose that z is g-vector with ith observation
Z; = (2155 zq,i)’ and redefine x; to now be the (p +¢g) x 1
vector (x;,z;)". The general model is then as in (1) with this
extended dimension; elementwise,

Xg.i = g+ Bphi +ahi + v,

r k+q
=pg+ ) Bejhji+) g irjitvei ()
=1 =1

forg=1:(p+¢g) and i = 1:n, and with the additional follow-
ing changes:

e L= (1,..., Lp+q) is the extended vector of intercepts
for both x; and z; vectors.

e B is the extended (p + ¢) x r matrix of regression para-
meters of X; and z; on the regressor variables in h;; now
B has elements B, j (g =1:(p +¢q), j = 1:r) with rows
B,.

e A is the extended (in both rows and columns) (p + g) X
(k +¢) matrix of factor loadings oy j (g =1:(p+¢q), j =
1:(k + g)) with rows oc;,.

o Xi=(A14y---s )\k+q,,-)/ is the extended (k + ¢)-vector of
latent factors, where the additional g are introduced as re-
sponse factors.

o vi=1i,..., vp+q,l~)’ is the extended idiosyncratic noise
or error vector, with the additional g elements now related
to z;; the variance matrix is extended accordingly.

Beyond notation, the key extension is the introduction of addi-
tional potential latent factors, the final ¢ in the revised A; vec-
tors, each linked to a specific response variable in z;. The struc-
ture of the extended factor loadings matrix A reflects this; each
of the g response variables serves to define an additional latent
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factor (i.e., serves as a a founder of a factor), whereas the first
k of the x variables in the order specified serve (as originally)
to define the k factors in the latent model component reflecting
inherent structure in x. Thus the structure of A is
A= ( Ay Ay z) 7
AZ,X AZ

where both A and A, have the structure as described in the ini-
tial model of x alone (i.e., the traditional zero upper-triangular
parameterization); that is, the structural constraints on A =
{ag, j} have two components. First, as in the initial model for
x alone, the p x k matrix Ay has ag o >0 for g =1,...,k,
and g j =0for j=g+1,...,kand g=1,...,k — 1. Sec-
ond, the square response factor loadings matrix A, is lower tri-
angular with positive diagonal elements, that is, ap1¢ psg >0
forg=1,...,q, and apig pyj=0for j=g+1,...,q and
g=1,....,q9—1.

Different scales of response variables can be corrected so that
all variables lie on the same scale. This simplifies specification
of prior distributions over the elements of A, B, and V. Oth-
erwise, the differing nature of the response variables and ex-
pression data implies the need for flexibility to specify different
priors over the loadings and regression coefficients. This is in-
corporated in our analysis and the BFRM software used (Wang,
Carvalho, Lucas, and West 2007); see Appendix D. Additional
considerations relate to specification of values or priors for the
variance terms in ¥, some of which arise in connection with
non-Gaussian responses.

2.3 Non-Gaussian, Nonparametric Factor Modeling

A relaxation of the Gaussian assumption for latent factors is
of interest in expression studies and other areas of application.
Figure 4 (in Sec. 5.4) displays scatterplots of estimated factors
from the analysis of a sample of expression profiles from breast
tumors in the first study; the two factors are labelled as repre-
senting key biological growth factor pathways. The scatterplot
reflects something like three overlapping groups of tumors that
can be identified as distinct biological subtypes of breast can-
cer. The known biology underlying this structure is discussed
in Section 5.

A first step toward nonparametric modeling of the latent fac-
tor distribution F (X;) is to use the widely used Dirichlet process
(DP) framework (West, Miiller, and Escobar 1994; Escobar and
West 1995, 1998; MacEachern and Miiller 1998). Direct relax-
ation of the standard normal model simply embeds the normal
distribution as a prior expectation of a DP over what is now
considered an uncertain k-variate distribution function F(A;).
In standard notation, F ~ Dir(« Fy), a DP prior with base mea-
sure « Fy for some total mass or precision parameter, o > 0, and
prior expectation Fy(A) = N(A[0,I). Write A1, = {A1, ..., A},
and for each i = 1:n, let A_; denote the set of n — 1 factor vec-
tors with A; removed. A key feature of the DP model is the set
of implied complete conditionals for A; (marginalizing over the
uncertain F). These are given by

n
AilA—i) ~ap—1INA;[0,D) + (1 —ap—1) Z &, Ai), D
r=1,r#i

where 6, (-) is the Dirac delta function, representing a distribu-
tion degenerate at A, and a,_1 = «/(« +n — 1). Conditional on
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A_;, the vector A; comes from the prior normal with probability
a,—1; otherwise, it takes the same value as one of the existing
A,’s, with those n — 1 values having equal probability. A sam-
ple of n factor vectors then reduces to k < n distinct values, and
the samples are configured across that number of “clusters” in
factor space; of course, the latency means that we will never
know the configuration or number, and all inferences average
over the implied posterior distributions. Full details and sup-
porting theory can be found in the aforementioned references.
For our purposes here, the key is the utility of the DP model
as a flexible and robust nonparametric approach that will adapt
to non-Gaussian structure evident in data. Concentration of fac-
tor realizations on common values also aids in, for example,
allowing representation of “inactive” and “up-regulated” bio-
logical pathways across a number of samples, while also per-
mitting variation in levels of activity of a pathway across other
samples. In many cases, expression patterns are consistent with
Gaussianity, and the DP model naturally “cuts back” to reflect
that. Little additional model specification complexity or com-
putational cost is incurred in moving to the DP model, whereas
flexibility—to respond automatically to observed non-Gaussian
structure if and when it is seen—and robustness are gained.

3. SPARSITY MODELING

A basic perspective is that of sparsity in the factor loadings
matrix. Any given gene may associate with one or a few fac-
tors but is unlikely to be related to (or implicated in) all fac-
tors. Any single factor will link to a number of genes, gen-
erally a relatively (to p) small number; that is, in problems
with large p, the factor loadings, matrix A will be expected
to have many zero elements, although the pattern of nonzero
values is unknown and must be estimated. A priori, each (of
the unconstrained) ag ; may be O or take some nonzero value,
so that relevant priors should mix point masses at 0 with distri-
butions over nonzero values as in standard Bayesian “variable
selection” analyses in regression and other areas (George and
McCulloch 1993; Raftery, Madigan, and Hotelling 1997; Clyde
and George 2004). This was initiated in factor models of West
(2003), and is used in other models, including large p regres-
sion (Rich et al. 2005; Dressman et al. 2006; Hans, Dobra, and
West 2007) and graphical models (Dobra, Jones, Hans, Nevins,
and West 2004; Jones et al. 2005). The standard mixture priors
(sometimes referred to as “slab and spike” priors) have been
used effectively in ANOVA and related models for gene expres-
sion (Broet, Richardson, and Radvanyi 2002; Ishwaran and Rao
2003, 2005; Lee, Sha, Dougherty, Vannucci, and Mallick 2003;
Do, Miiller, and Tang 2005). Our extensions here represent gen-
eralizations of the standard methods for multivariate regression
and ANOVA, as well as extensions of the original sparse factor
regression model versions of West (2003). We focus our discus-
sion here on the factor loadings matrix A, but the methodology
implemented applies the same ideas, and resulting sparsity prior
distributional models, to B as well.

A sparsity prior assigns each element «, ; of A a probability,
g, j» Of taking a nonzero value. The model for these sparsity
probabilities introduced by Lucas et al. (2006) has the form

ag i~ (1 —mg )o(ag, ;) + mg jN(ag 10, T;) 5)

independently over g, where 8o(-) is the Dirac delta function
at 0. This states that variables have individual probabilities of
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association with any factor, 7, ;, for variable g and factor j,
and that nonzero loadings on factor j are drawn from a normal
prior with variance 7;. A slight modification is required for the
case of diagonal elements, because they are constrained to be
positive to ensure identifiability; thus the normal component of
(5) is adapted to N(ag 410, 7;)I (g, o > 0) for g =1, ...,k and
g=p+1,..., p+q, where I(-) is the indicator function.

The usual variable selection prior model adopts 77, ; =7, a
common likelihood (“base rate”) of nonzero loading on factor
J for all variables, and estimates this base rate 77; under a prior
that heavily favors very small values. One problem is that with
larger p, a very informative prior on 7 ; favoring very small val-
ues is required, resulting in posterior probabilities for ag ; # 0
that are spread out quite widely on the unit interval. Although
generally consistent with smaller values of 7}, this leads to a
counterintuitively high level of uncertainty concerning whether
or not a, ; = 0 for a nontrivial fraction of the variables. This
was clearly illustrated by West (2003) and has been demon-
strated in other models with the use of these standard priors
(Lucas et al. 20006).

The more general model (5) addresses this problem by
adding an hierarchical component for the loading probabilities
g, j- Sparsity indicates that many of these probabilities will be
small or 0 and a small number will be high; this is reflected in
the model of Lucas et al. (2006),

g, j ~ (1= pj)do(mg, ;)
+ pjBe(mg jlajmj,aj(1 —mj)), (6)

where Be(:|lam, a(1 — m)) is a beta distribution with mean m
and precision parameter a > 0. Each p; has a prior that favors
very small values, such as Be(pj|sr,s(1 —r)), where s > 0
is large (e.g., s = p + ¢) and r is a small prior probability of
nonzero values, usually taken as ro/(p + ¢) for some small in-
teger ry (e.g., ro = 5). The beta prior on nonzero values of 7y ;
is fairly diffuse while favoring relatively larger probabilities,
such as defined by a; = 10 and m; = .75. On integrating out
the variable-specific probabilities 7, ; from the prior for ay ;
in (5), we obtain a similar distribution, but now with m, ; re-
placed by E (g, jlp;) = p;jm;. This is precisely the traditional
variable selection prior discussed earlier, with the common base
rate of nonzero factor loadings set at pjm;. Insertion of an
additional layer of uncertainty between the base- rate and the
new 7, ; now reflects the view that many (as represented by a
high value of p;) of the loadings will be O for sure and permits
the separation of significant factor loadings from the remain-
der. The practical evidence of this is that in many examples that
we have studied, the posterior expectations of the 7, ;’s gen-
erally have a large fraction concentrated heavily at or near 0,
a smaller number at very high values, and only a few in re-
gions of higher uncertainty within the unit interval. In contrast,
the standard variable selection prior leads to posterior probabil-
ities on a, ; = O that are overly diffused on the unit interval.
More discussion and examples in regression variable selection
in ANOVA models have been given by Lucas et al. (2006). This
generally better isolates nonzero effects and induces increased
shrinkage toward O for many insignificant loadings. Key ele-
ments for the assessment of sparsity are the posterior probabil-
ities g, j = Pr(ag, j # O|X1:0).
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4. EVOLUTIONARY STOCHASTIC MODEL SEARCH

In the case studies, models are defined by a process of evolu-
tionary refinement developed to address variable (gene) selec-
tion, choice/limitation on the number of factors, and specifica-
tion of the order of the first k founding variables in the model.
This model search method is inspired by interest in evaluating
patterns of expression of genes linked to a particular pathway
and has been a key discovery tool in some of our recent stud-
ies. The method is of general utility in other application areas
(Carvalho 2006), although here we describe it in the pathway
exploration context.

Directly fitting models with large numbers of variables and
factors is a challenge both statistically and computationally. In
applied contexts, such as biological pathway exploration, at-
tempting to fit models to all of the available variables (genes)
would be misguided scientifically in any case. Our pathway
studies focus on genes that play roles in chosen cancer path-
ways. We aim to develop an understanding of gene expression
patterns among genes already assumed to be featured in a path-
way by identifying additional genes and factors linked to that
known biology. This “pathway-focused” view mandates begin-
ning with an initial small set of biologically relevant genes and
then expanding the model by adding new genes that appear
to be linked to the factors identified in the initial model. This
might be followed by refitting the model, allowing more fac-
tors if the new genes suggest additional structure. Repeating
this process to iteratively refine the model underlies our evolu-
tionary model search.

The technical key is to note that, given an initial set of pg
variables and a model denoted by M with ko latent factors, we
can view the model as being embedded in a larger model on
all p > po variables and k > k¢ factors in which the extended
matrix of loadings probabilities has m, ; = 0 for g > po and
k > ko. Within this “full” overarching model, consider any of
these variables g > po and evaluate whether it should be added
to the current model with a single nonzero factor loading on,
say, latent factor j € 1:ko. Based on model parameters fixed at
their posterior means for the current model, we then can com-
pute approximately the conditional posterior probability of in-
clusion, that is, just ﬁg,j = Pr(ag, j # 0|X1:1, Mo), where My in
conditioning simply represents the current model and estimated
parameters. (Note that we use 77, ; rather than 77, ; to denote
these inclusion probabilities for variables currently not included
in the set to which the model is fitted.) Variables g with high
values of 7 ; are candidates for inclusion. These are variables
showing significant associations with one or more of the cur-
rently estimated factors and so provide directions for model ex-
pansion around the currently identified latent structure. We then
can rank and choose some of these variables—perhaps those for
which 7, ; > 6 for some threshold or, more parsimoniously, a
specified small number of them—and refit the model.

Expanding the set of variables may identify other aspects of
common association that suggest additional latent factors; en-
riching the sample space allows a broader exploration of the
complexity of associations around the initial model neighbor-
hood. This promotes exploration of an expanded model M; on
the new p; > po variables and with k; = ko + 1 latent factors
for which the first kg variables remain ordered as under M.
The factor founders in M( are those of the first kg factors in
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M. We then can refit M| and continue. This raises the ques-
tion of the choice of the variable k; as the founder of the new
potential factor. We address this by fitting the model with some
choice of this variable, perhaps just a random selection from
the p; variables in M7; from this model, we generate the pos-
terior probabilities 7, ; and choose that variable with highest
loading on the new factor j = k1. We then refit model M with
this variable as founder of the new factor, assuming that these
probabilities are appreciable for more than one or two variables.

Algorithmically, the evolutionary analysis proceeds as fol-
lows. Initialize a model My and i =0. Fori =0,1, ..., do the
following:

e Compute approximate variable inclusion probabilities,
g, j, for variables g not in M; and relative to factors
j = 1:k; in M;. Rank and select at most r variables
with highest inclusion probabilities subject to 7, ; > 6
for some threshold. Stop if no additional variables are sig-
nificant at this threshold.

e Seti =i + 1 and refit the expanded model M; on the new
p; variables with k; = k;_1 + 1 latent factors. First, fit the
model by MCMC with a randomly chosen founder of the
new factor, and then choose that variable with highest esti-
mated 77, x, as the founder. Refit the model and recompute
all posterior summaries, including revised 77¢, ;. Reject the
factor model increase if fewer than some small prespeci-
fied number of variables have 7, ; > 6, then cut back to
k;—1 factors. Otherwise, accept the expanded model and
continue to iterate the model evolutionary search at stage
i+1.

e Stop if the foregoing process does not include additional
variables or factors, or if the numbers exceed some pre-
specified targets on the number of variables included in
the model and/or the number of factors.

This analysis has been developed and evaluated across a
number of studies, and it offers an effective way of iteratively
refining a factor model based on a primary initial set of vari-
ables of interest—the nucleating variables. Computational ef-
ficiencies can be realized by starting each new model MCMC
analysis using information from the previously fitted model to
define initial values. Control parameters include thresholds 6
on inclusion probabilities for both variables and additional fac-
tors at each step, a threshold to define the minimum number
of significant variables “required” to add a new latent factor,
and overall targets to control the dimension of the final fitted
model—a specified maximum number of variables to include
out of the overall (large) p and (possibly) a specified maximum
number of latent factors. A number of simulated and real ex-
amples that investigate the efficacy of this procedure have been
presented by Carvalho (2006). The main conclusions from these
examples is that the evolutionary search is able to identify vari-
ables associated with a latent component and to correctly iden-
tify relevant values of k.

5. STUDY 1: HORMONAL PATHWAYS
5.1 Goals, Context, and Data

The first study uses a large, heterogenous data set that com-
bines summary robust multichip average (RMA) measures of
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expression from Affymetrix u95av2 microarray profiles on
three sets of breast cancer samples: 138 tumor samples from the
Taiwanese—U.S. CODEx study (Huang, West, and Nevins 2002;
Huang et al. 2003; Nevins et al. 2003; Pittman et al. 2004),
74 additional samples from the same center collected a year or
two later, and 83 samples on breast cancer patients collected in
2000-2004 at the Duke University Medical Center. The com-
bined set of n = 295 samples was processed using the stan-
dard RMA code from Bioconductor (www.bioconductor.org)
and screened to identify 5,671 genes showing nontrivial vari-
ation (median RMA, >6.5; range, >1 across samples). We use
“genes” and “probesets” interchangeably when referring to the
Affymetrix data; each “gene” is really a single oligonucleotide
sequence—a probeset—representing a gene, and some genes
have multiple, distinct probesets.

We aim to explore expression patterns related to the two key
biological growth factor pathways, the estrogen receptor (ER)
pathway and the HER2/ERB-B2 pathway, which are central to
the pathogenesis of breast cancer. One interest relates to how
mRNA signatures of biological variation in these key pathways
relate to the global and cruder designations of ER positive or
negative based on the IHC assays. Discordance between ex-
pression and protein measures arises from many factors, not the
least of which is the geographical variation in expression (of
both genes and proteins) throughout a tumor. For each of the
two binary response variables, ER+ versus ER— and HER+
versus HER—, there are quite a few missing or indeterminate
outcomes, so that the analysis imputes a good fraction of the
response values. The numbers are 143 ER+, 91 ER—, 61 ER
missing or uncertain, and 86 HER2+, 60 HER2—, 149 HER2
missing or uncertain. We discuss summaries of analysis of a
“final” set of 250 genes. We began with 10 genes known to be
regulated by or co-regulated with ER, that is, key genes in the
ER pathway. We then included four genes similarly related to
HER/ERB-B2. We then ran the evolutionary analysis, adding in
at most 10 genes per step at a thresholded inclusion probability
of .75 and stopping when the total reached 250. Based on mul-
tiple reanalyses, the final MCMC sampler was run to generate
20,000 iterates, with a burn-in of 2,000.

5.2 Exploring Variable-Factor Associations and
Sparsity Patterns

High values of 7, ; = Pr(e ; # 0[X1;,) define significant
gene—factor relationships. Figure 1 provides a visual summary
from a model with k = 10 latent factors and ¢ = 2 response
factors. Frame (a) is a “skeleton” of the fitted model, dis-
playing the indicator of 7, ; > 6, where 6 = .99 for this fig-
ure. Frame (b) displays the posterior estimates of loadings for
those gene—factor pairs that pass this threshold, that is, &, ; =
E(ag, jlag j #0, Xl;n)l(ﬁg’j > 6). These figures give a useful
general impression of the relative sparsity/density of factors, as
well as the cross-talk in terms of genes significantly linked to
multiple factors.

Inferred latent factors labelled 1, 2, 4, and 5 are founded by
known ER-related genes and have a number of genes known
to be linked to the ER pathways with significant loadings. Fac-
tor 1 is a primary ER factor strongly associated with the pro-
tein assay for ER status (see Fig. 4); factors 2, 4, and 5 contain



Carvalho et al.: High-Dimensional Sparse factor Modeling in Gene Expression Genomics

T T =|__| T T T T
— -— =
— ___ - . -
50 ——— = ] s = - & -
H —= — =
- = = -
- —
— _— —
- — = —
—_ - |
100 i R . 100F _ i
—_— . = = o
—= = =
» | » = e
g [ —— —
° = 5 - =
(O] — _ [O) = —
_ - | f—— _
—_= -
150——_ -_— = 150 4
F= = ol == -
- = |
e
-_— — _E —
200 = == = 200F = s
= == _ -
S = Sm -
=== = = =
- —t— Lo -
250 = T gl!l 250 bt I 1 L
2 4 6 8 10 12 2 4 6 8 10 12
Factors Factors

Figure 1. Breast cancer hormonal pathways. Skeleton of the fit-
ted model for the 250 selected genes and 12 factors. (a) (Binary)
heatmap of thresholded approximate posterior loading probabilities,
I(7g,j > .99). (b) Heatmap of approximate posterior means of signif-
icant gene-factor loadings, &g ;.

highly loaded genes known to be related to the ER gene path-
ways but do not seem to be directly related to the IHC mea-
sure. Factor 3 is founded by the primary sequence probe on the
Affymetrix array for HER2/ERB-B2. The array has three sep-
arate probesets with DNA oligonucleotides representing differ-
ent sections of this gene, which historically has been referred to
as both ERB-B2 and HER2. This factor picks up co-variation
in these three genes along with a small number of other genes
(12 at the threshold of 7, ; > .99) defining a HER2 factor.
Table 1 lists a few “top genes” on some selected factors. All
genes listed are known to be regulated by, co-regulated with,
interactive/synergistic with, or (based on previous prior exper-
imental studies) co-expressed with ER for factors 1 and 5 and
with HER?2 for factor 3 (Spang et al. 2001; West et al. 2001;
Huang et al. 2003). Factor 5 is loaded on a very small num-
ber of ER-related genes, led by the transcription factor TFF3
that is known to be estrogen-responsive or associated with ER
status. The emergence of this additional ER-related factor indi-
cates potential connections in the TFF3-related signalling path-
way. In the list for factor 1, we include some of these that have
lower loadings but are still significant. Some of these arise in
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factor 8; this factor has very few significantly loaded genes, and
the top three here are all sequences from the cyclin D1 gene.
The Affymetrix array has three separate probesets with DNA
oligonucleotides representing different sections of cyclin DI,
and this factor picks up co-variation in the three along with a
small number of other genes, defining a cyclin D1 factor. Later
we return to the cyclin D1 factor, discussing its biological con-
nections and how it highlights some of the discovery utility of
this modeling approach.

5.3 Factor Variation, Decompositions, and Interactions

Exploring plots of estimated latent factors across samples
can provide useful insights into the nature of the contributions
of the factors to patterns of variation in expression gene-by-
gene as well as relationships across genes. Figures 2 and 3 add
to the discussion of the ER factor structure and the utility of
this form of analysis in revealing interacting pathways. Factors
are plotted only in cases of significant gene—factor association
(7tg,j > .99). Figure 2(a) and (b) represent two versions of cy-
clin D1. The corresponding estimates of gene—factor loadings,
g, j, are approximately as follows: for gene PRADI, loadings
of .53 on the ER factor 1 and .83 on the cyclin D1 factor §;
for gene BCL-1, .54 on the ER factor and .81 on the cyclin D1
factor. The agreement is clear: Cyclin D1 expression fluctua-
tions are—up to residual noise and the assay artifact correction
components (App. E), labelled c3 and c2—described by these
two factors in an approximate 5:8 ratio. This is not only a
nice example of the agreement between factor model decom-
positions for what by design should be highly related expres-
sion profiles, but also is consonant with known biology. Cy-
clin D1 is a regulatory component of the protein kinase Cdk4,
which together mediate the phosphorylation and inactivation
of the Rb protein. Thus its activity is required for cell cycle
transitions and control of growth and proliferation. ER binds
to the CCNDI1 gene that encodes the cyclin D1 protein (Sab-
bah, Courilleau, Mester, and Redeuilh 1999) and thus can pro-
mote cell proliferation. The relationship has feedback through
the regulation of ER itself by cyclin D1; for example, cyclin D1
also acts to antagonize BRCAI repression of ER (McMahon,
Suthiphongchai, DiRenzo, and Ewen 1999; Wang et al. 2005).
There are further experimentally defined interactions between
cyclin D1 and ER with consequences for the resulting levels
of activation of each of the two pathways, as reviewed by Fu,
Wang, Li, Sakamaki, and Pestell (2004). Thus the description
of cyclin D1 expression fluctuations though a non—-ER-related
cell cycle component (factor 8), together with a significant ER-
related component, is consonant with known regulatory inter-
actions between the cell cycle/cyclin D1 pathway and the ER
pathway. The factor analysis reveals and quantifies these inter-
actions.

In Figure 2(c), the third cyclin D1 gene probeset, CCNDI,
shows substantial association with the ER and cell cycle cyclin
D1 factors, as expected. The estimated loadings are reduced rel-
ative to those of the other two probesets, at about .45 for the ER
factor and .73 for the cell-cycle factor relative to the .5/.8 levels
of the other two probesets. CCND1 shows an additional signif-
icant association with latent factor j = 4, with an estimated co-
efficient of .24. Although apparently not related to the ER THC
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Table 1. Breast cancer hormonal pathways: Some genes significantly loaded on latent factors 1, 3, 5, and 8 in the ER/HER2
breast cancer data analysis

Qg i Gene Gene symbol
Factor 1 1.5 Intestinal trefoil factor TFF3
1.4 Carbonic anhydrase precursor CA12
1.3 Clone AA314825:EST186646 -
1.1 Secreted cement gland protein XAG-2 homologue AGR2
1.1 Hepatocyte nuclear factor-3 alpha (HNF-3«) FOXA1
1.1 Trans-acting T-cell specific transcription factor GATA-3
1.1 Clone AL050025:DKFZp564D066 -
1.0 Breast cancer, estrogen regulated LIV-1 protein LIV-1
71 Myeloblastosis viral oncogene homolog C-MYB
47 Human epidermal growth factor receptor HER3
46 Human epidermal growth factor receptor HER3
44 BCL-2 BCL-2
42 Androgen receptor AR
.54 PRADI (cyclin D) CCND1
.53 BCL-1 (cyclin D) CCND1
45 CYCDI (cyclin D) CCND1
Factor 3 1.5 c-Erb-B2 ERB-B2
1.4 Human tyrosine kinase-type receptor (HER2) HER2b
1.4 Human tyrosine kinase-type receptor (HER2) HER2
93 Growth factor receptor-bound protein 7 GRB7
78 CAB1 STARD3
Factor 5 1.3 Intestinal trefoil factor TFF3
1.1 Clone AA314825:EST186646 -
97 Clone AI985964:wr79d08.x1 -
45 Secreted cement gland protein XAG-2 homolog AGR2
.18 Cytochrome b5 CYBS
.16 Cytochrome b5 CYBS
Factor 8 .83 PRADI (cyclin D) CCND1
.81 BCL-1 (cyclin D) CCND1
.73 CYCDI (cyclin D) CCND1
15 Cytochrome b5 CYB5

response (unlike factor 1), factor 4 is loaded on genes that in-
clude several ER-related genes and other cyclins. The founder
for factor 4 is the LIV-1 gene, which also scores highly on the
ER factor 1. LIV-1 is regulated by estrogen and co-regulated
with estrogen receptors in some breast cancers, although not in
some other cancers. Factor 4 may reflect more complexity of the
interactions between the ER and early cell-cycle pathways. The
CCNDI1 gene probeset shows a significant association with this
factor, although the practical contribution of factor 4 to expres-
sion levels of CCND is relatively small compared with that of
the others.

This example highlights differences in data measured in dif-
ferent ways on a single gene, as well as the need to explore
data quality issues. To highlight this, Figure 2(c) indicates some
concern about the measurements for CCND1 in the early sam-
ples, transferred to the residuals for this probeset. One strength
of the model is the realistic attribution of substantial levels of
variation in expression data to residual, unexplained terms. In
many cases, purely experimental artifact and noise can be evi-
dent concordantly across multiple genes; the sparse factor and
regression model can then help protect the estimation of biolog-
ical effects from such contamination.

5.4 Response Factors and Expression Signatures of
Hormonal Status

Figure 4 scatters the samples on the estimated values of
ER factor 1 and HER2 factor 3, with color coding by the
measured immunohistocompatability (IHC) assays for ER and
HER?2. This shows biologically interpretable groupings into
ER+/HER2—, ER—/HER2—, and HER2+ as designated by
the broad THC-based protein assay for hormonal status. These
two primary latent factors are capable of refining the ER and
HER?2 scales and placing each tumor on the biologically rele-
vant continuum.

The model includes the binary ER and HER2 responses and
two response factors for them. The model has p + 2 entries in
X;, the final two being the linear predictors in probit regressions
for ER and HER2. Figure 5 illustrates the overall signatures
of ER and HER?2 in terms of the probit transforms of the pos-
terior means of the linear predictors. The posterior turns out
to strongly favor only rather modest additional predictive val-
ues in the gene expression data beyond those captured by the
k = 10 latent factors; that is, the posteriors for the response fac-
tor loadings elements oy j forg=p+1,p+2and j =11, 12
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Figure 2. Breast cancer hormonal pathways. Plot across breast tumour samples of levels of expression (X) of the gene Cyclin D1. (a) The
PRAD1/CCND1 probeset on the Affymetrix u95av2 microarray, one of the three probe sets for cyclin D1 on this array. (b) The BCL-1/CCND1
probeset. (c) The primary CCND1 probeset. Factors labelled “f” are primary latent factors, “c” indicates assay artifact covariates, and “e”
represents the fitted residuals. In each of three frames, the plotted gene expression, factor, and residual levels are on the same vertical scale
within the frame, so indicating the breakdown of the expression fluctuations for cyclin D1 gene probesets according to contributions from the
factors. Factor 1 is the primary ER factor, and factor 8 a factor defined by the three probesets for cyclin D1, as discussed in the text.

are almost all very concentrated at 0. A few genes contribute
significantly to the ER response prediction over and above the
ER latent factors (eight genes at 77, ; > .99), but none do so
for HER2 prediction; this can be seen in the images in Fig-
ure 1. For ER, it is notable that a further key signal receptor
gene is significant and most highly loaded on the ER response
factor; this is the HER3 gene, known to play roles in the de-
velopment of more highly proliferative cellular states in breast
cancers (Holbro et al. 2003), as well as biochemically partner-
ing with HER?2 in promoting cellular transformation. The top
two genes loaded on the ER response factor are the two probe-
sets for HER3 on the Affymetrix array. One of these is dis-
played in Figure 3(b), where the significant association with
the primary latent ER factor 1 along with the ER response fac-
tor (labelled y1) is clear. The posterior estimates &g, ; for the

ER gene on the factors f1, {2, f7, and f10 are approximately
.3, .09, .35, and —.09; those for the HER3 gene on factors yl,
fl, and f7 are —.5, .46, and .3. Note that the probeset for HER3
also loads significantly on the likely artifactual factor 7, as does
the ER gene and the assay artifact covariate c2. Although it is
not displayed, the second probeset for HER3 has a fitted de-
composition that is almost precisely the same in terms of the
split between contributions from f1 and y1, but apparently is
not significantly linked to the artifactual factors. As with cy-
clin D1, this is an example of different probesets for one gene
(here HER3) that can behave somewhat differently in terms of
expression readouts. The model analysis nevertheless identifies
and extracts the commonalities. The posterior estimates &g ;
for the two HER3 probes on the ER+/— response factor 1 are
each approximately —.51, and those on the primary ER latent
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Figure 3. Breast cancer hormonal pathways. Plot across breast tumor samples of levels of expression (X) of the ER gene (a) and of the
HER3 epidermal growth factor receptor tyrosine kinase (b), together with the estimates of factors contributing significantly to their expression
fluctuations. Factors labelled “f” are primary latent factors, “y” indicates response factors, “c” indicates assay artifact covariates, and “e”
represents the fitted residuals; other layout details are as in Figure 2. Note that f7 picks up what is clear artifact related to the different substudies
generating the data, and also that some residual structure remains evident in the residual plot that appears to be batch-related (e.g., an early burst

of positively correlated cases).

factor 1 are approximately .46 and .47. Thus the sparse factor
model analysis cleans up the artifacts to find and quantify the
relevant associations with biologically interpretable and predic-
tive factors.

Finally, we point out that this identification of expression
predictors of the ER and HER?2 variables is viewed as an ex-
ploratory component of the overall analysis that is focused on
increasing our understanding of structure related to these bio-
logical phenomena. We have not set out to generate predictive
models for ER and HER?2 alone, but aim to include those com-
ponents to aid in the identification of factor patterns underlying
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related genes. A direct prognostic development could be over-
laid, but that is not the primary goal here.

5.5 Non-Gaussian Factor Structure Linked to Biology

Non-Gaussianity is apparent in Figure 4. Other scatter-
plots suggest elliptical structure for some factor dimensions,
although the full joint distribution is evidently highly non-
Gaussian. The biologically interpretable groupings are identi-
fied by using the nonparametric model that is designed to flexi-
bly adapt to what can be a quite marked non-Gaussian structure.

Non-Gaussianity in the factor model naturally feeds through
from the observed non-Gaussian structure in expression of
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Figure 4. Breast cancer hormonal pathways. Scatterplots of the posterior means of designated ER factor 1 and HER2/ERB-B?2 factor 3. Color
coding indicates the global measurement of protein level from IHC assays. (a) Red, ER+; blue, ER—; cyan, missing/indeterminate. (b) Red,

HER2+; blue, HER2—; cyan, missing/indeterminate.
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Figure 5. Breast cancer hormonal pathways. Scatterplots of fitted probabilities of ER+ (a) and HER2+ (b) from the overall factor regression
model that includes probit components for these two binary responses. Color coding indicates hormonal receptor status; in each case, red,

positive; blue, negative; magenta, missing; cyan, indeterminate.

many genes. The posterior distribution for the DP model for
latent factors is easily simulated, so that we can simulate from
the posterior predictive distribution of a future latent factor vec-
tor A,,+1; this leads to simulation of the approximate predictive
distributions for future outcomes x,4; by fixing model para-
meters in the loadings and noise variance matrixes at posterior
estimates. Suppose, based on the posterior from the model fitted
to X1.,, that a specific gene g clearly is not associated with the
regression component; that is, the posterior for the regression
parameters B, is highly concentrated around 0. For such a gene,
all of the action is in the latent factor component, so that sim-
ulating the posterior predictive distribution for A, translates,
through the addition of simulated noise terms v ,41, directly
to predictions for xg 1.

Figure 6 shows two of the bivariate margins involving four
genes highly associated with one or more factors, but not with
regressors. These are the HER2/ERB-B2 gene and the ER-
related FOXA1 in (a), and the two genes TFF3 and CAl2,
which are highly related to ER, in (b). The predictive simulation
generates large samples of the full joint distribution of all genes
in the model, and the samples on these two selected bivariate
margins are contoured here. The data on these genes are scat-
tered over the contours, and the concordance is some reflection
of model adequacy, at least in these dimensions. Sequencing
through many such plots provides a useful global assessment
of overall model structure and at least some guide to genes for
which the model may be lacking. These plots also highlight the
relevance of the non-Gaussian factor model structure that feeds
through to represent the observed non-Gaussianity of expres-
sion gene by gene.

6. STUDY 2: THE P53 PATHWAY AND
CLINICAL OUTCOME

6.1 Goals, Context, and Data

A second application in breast cancer genomics explores
gene expression data from a study of primary breast tumors de-
scribed by Miller et al. (2005). One original focus of this study
was the patterns of tumor-derived gene expression potentially
related to mutation of the p53 gene, and we explore this as well

as broader questions of pathway characterization and links be-
tween expression factors and cancer recurrence risk. The p53
transcription factor is a potent tumor suppressor that responds
to DNA damage and oncogenic activity. The latter is seen in
the connection of the p53 pathway to the primary Rb/E2F cell
signalling pathway. The consequences of p53 activation, either
by oncogenic events or DNA damage, is an arrest of the cell
cycle or an induction of cell death (apoptosis). Discovery of
structure in expression patterns that may relate to known, puta-
tive, or novel connections between these pathways is certainly
of current interest. Mutations in p53 occur in roughly 50% of
human cancers. Multiple direct mutations lead to deregulation
of key aspects of the p53 pathway and thus play roles in increas-
ing the risk and aggressiveness of cancer due to the inability to
properly program cell death. Various current anti-cancer thera-
pies target the pS3 pathway as a result. The limited efficacy of
such therapies is another motivation for studies that enrich our
understanding of the biological interactions in the Rb/E2F/p53
network and that aid in characterizing functional interactions of
signalling mechanisms central to the control of cell prolifera-
tion and oncogenic processes.

This data set (Miller et al. 2005) contains expression data on
n = 251 primary breast tumors. The profiles were created on
Affymetrix ul33a+ microarrays, which, after RMA processing
and screening to identify genes (probesets) showing nontriv-
ial variation across samples, generates about p = 30,000 genes.
Coupled with the expression data are clinical and genetic in-
formation on each patient. In each patient the p53 gene was
sequenced for mutations at a number of loci, thus generating
one initial key binary variable: p53 mutant versus wild-type.
(No other mutational information was made available.) Clini-
cal and pathological information includes recurrence survival
and the usual binary ER status from IHC assays. Miller et al.
(2005) aimed to identify a gene expression signature associated
with p53 mutational status; toward this end, they started by fil-
tering the data set to find genes that were correlated with p53
status through a series of univariate logistic regressions. Genes
with p value > .001 were excluded from the analysis. From the
remaining genes, they identified a 32-gene signature by evaluat-
ing a collection of supervised learning methods including diag-
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Figure 6. Breast cancer hormonal pathways. The plots display the approximate predictive density contours and observed data for two selected
bivariate margins on four genes, HER2/ERB-B2 (a) and the ER-related FOXAT1, TFF3, and CA12 (b), with the observed data marked as crosses.

onal linear discriminant analysis, k nearest neighbors, and sup-
port vector machines. The concept under investigation was that
such a signature would better represent perturbations in the p53
pathway and could be used as a refined clinical risk predictor
in the same way that expression signatures of ER, HER2, and
so forth will provide improvements over IHC assays. With this
in mind, we have developed a detailed sparse factor regression
analysis to thoroughly explore gene expression patterns linked
to the broader p53 pathway and its neighborhood connections
to other pathways. Our final analysis seems to effectively dis-
sect p53 activation into latent factors that represent core aspects
of known underlying biology, identifies p53-related factors that
are unrelated to mutations as well as others that are, suggests
new pathway connections that tie into cell developmental activ-
ities in the Rb/E2F pathways and also contributes, through the
factor regression component, to more accurate recurrence risk
prediction.

6.2 Factor Model Analysis and Latent
Structure Linked to p53

We begin with 25 genes known to participate in the p53
pathway (Sherr and McCormick 2002), none of which were in-
cluded in Miller’s final 32-gene signature. The model includes
three response variables: the binary p53 mutational status, the
binary ER status, and the continuous, right-censored log of time
to death. The MCMC analysis easily incorporates censoring of
the continuous response, imputing the censored survival times
from relevant conditional distributions at each iteration (see
App. A). The evolutionary model search allows the model to
evolve and sequentially include genes related to the factors in
any current model—beginning with this known nucleating set
of p53-related genes—as well as genes associated with the re-
sponse factors in the current model. Thus the analysis can si-
multaneously explore subbranches of the p53 pathway while
identifying its connections to the outcomes of interest; that is,
the regression variable selection process is part of the evolu-
tionary analysis. Using thresholds of 8 = .75 for both variable
and factor inclusion probabilities, and constraining such that a

minimum of 3 genes are required to exceed this threshold on a
factor to include that factor in an expanded model, the analy-
sis terminated with a model on 1,010 genes distributed across
k = 12 latent factors and g = 3 response factors.

Exploration of genes loaded on each factor provides some
annotation of common biological function, as well as potential
pathway interpretations of factors. All factors have “top genes”
known to be associated with cell cycle and oncogenic activity.
Table 2 summarizes some of the top gene—factor pairings, with
a brief biological annotation and their association with the bi-
nary response p53 mutant/wild-type.

Of the genes in the p53 expression signature of Miller et al.
(2005), our factor model identifies all but two, and they all have
significant loadings on the p53 factors 1, 3, and 4. Exploring the
p53 pathway guided by the mutational status combined with a
set of canonical p53 genes also gives us the opportunity to iden-
tify other instances of the pathway that are not affected by muta-
tions. This expands our understanding of alternative ways, other
than mutation, in which p53 activity may be affected in cancer
processes. To illustrate this, we select three genes known to be
key players in the p53 pathway: BAX, PERP, and SFN. Miller et
al. (2005) observed that the expression profiles of these genes
do not relate to p5S3 mutations, raising the question that this
might represent cross-talk between p53 and other pathways.
These genes are significantly loaded on factors 2 and 10; these
two factors are not directly associated with pS3 mutation sta-
tus, nor do they contribute significantly to p53 binary regres-
sion prediction in the analysis. They are composed primarily of
genes that participate in cell development and apoptosis, thus
reflecting substructure in the p53 pathway that could not be
identified simply through mutational status alone.

6.3 p53, ER, and Cancer Recurrence

Table 3 summarizes the estimated probabilities and coeffi-
cients of the most highly weighted latent and response factors in
the linear predictors of the three response variables. Additional
predictive value is generated by the included response factors
that link in a number of genes to elaborate on the predictions
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Table 2. Breast cancer p53 study: Biological annotation for the latent factors defined by the model analysis
Factor Top genes Function pS3 status
1 CA12, TFF3, GATA3, ER Yes
SPDEF, FOXA1
2 PERP, E2F3, EP300, Cell development, No
BAX, RB1 apoptosis
3 ESR1, SCUBE2, NAT1, ER Yes
BCMP11, MAPT
4 TOP2A, ASPM, CDC2, Cell development, Yes
RRM2, BUB1B apoptosis
5 ASPN, COL5A2, COL10A1, No
COI3A1, COL6A2
6 CCL5, CXCL9, CXCL13, Immunoregulation Yes
LTB, TRGC2
7 FOS, JUN, EGRI, Cell development, Yes
EGR3, ATF3 apoptosis
8 KRT14, KRT17, KRTS5, No
KRT6B, SFRP1
9 COL12A1, LTB4DH, CSPG2 No
MYC, RRM1
10 CDKN2A, SEN, SCUBE2, Cell development, No
CXCL10, BCL2 apoptosis
11 AFF3, VTCN1, CPEB2 No
ENO2, PERP
12 CAV1, GPR116, TGFBR2 No
CAV2, PLVAP

NOTE: The p53 status column simply refers to the direct association between p53 mutational status and the posterior mean of the factor scores in a univariate model.

from the expression factors themselves. Table 4 provides some
information on a few of the top genes of the response factors. It
is of interest to explore the genes that best define the factors that
are implicated in prediction. Miller et al. (2005) noted that p53
wild-type and mutant tumors can be distinguished by molecu-
lar differences heavily influenced by three major gene clusters
comprising genes involved in immune response, proliferation
and estrogen response, respectively (fig. 5 of supplemental ma-
terial of Miller et al.). All of the genes listed in these published
clusters appear in our model in factors 1 and 3 (which we denote
as ER factors), factor 4 (which we denote as a proliferation/p53
factor) and factor 6 (which we denote as an immunologic re-
sponse factor). Each of these listed factors is directly associ-
ated with p53 status, as displayed in Table 2. A few examples
of relevant genes in each of these factors, using the gene-factor
decomposition format presented earlier, are displayed in Fig-
ure 7.

The regression component of the model, and some informal
predictive evaluations, are highlighted in Figures 8 and 9. The
model analysis summarized is based on fitting to a randomly
selected 201 samples as training data, treating the remaining
50 as test or validation samples to be predicted. Figure 8 pro-
vides some indication of the within-sample discrimination for
the two binary responses, p53 and ER, together with the out-
of-sample predictive discrimination. For p53 status, we achieve
a predictive accuracy (around 86%) very similar to the classi-
fication method of Miller et al. (2005). This observation also
holds in the test set in which both methods misclassified the
same samples (8 out of 50). As for ER, the in-sample accuracy
of the model is approximately 85%, with 88% in the test set.
The approach of Miller et al. (2005) does not allow for multiple

outcome variables, so predictions of ER status are not provided.
Evidently, the combined factor regression model is capable of
quite accurate prediction of both ER and p53 mutational sta-
tus; these predictions are based on the integration over a few
latent factors rather than a single direct signature, a point that
the clinical genomics community perhaps has often underval-
ued in studies to develop genomic prognostics (Huang et al.
2003; Pittman et al. 2004; West, Huang, Ginsberg, and Nevins
2006).

Figures 9 and 10 provide similar insight into the nature of the
predictions for cancer recurrence, displayed in a format consis-
tent with the use of expression signatures to indicate patient
stratification into risk groups (Huang et al. 2003; Pittman et
al. 2004). Here both the test and validation samples are split

Table 3. Breast cancer p53 study: Coefficient probabilities and
estimates for factors contributing to the linear predictors for
the three response variables

Linear predictor Factor Rg,j Qg j
1: p53 status Response 1 1.000 11
Factor 3 926 —.347
Factor 4 1.000 .617
2: ER Response 2 1.000 .104
Factor 1 953 —.359
Factor 3 910 3867
3: Survival Response 3 1.000 .089
Factor 4 .830 —.345
Factor 6 .882 261
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Table 4. Breast cancer p53 study: Some of the top genes and their
estimated loadings on each of the three response factors

Response factor Top genes Qg j
pS3 status CSPG2 721
ASPN 486
COL3A1 —.468
COL3A1 —.452
COL1A1 —.434
ER EGR1 —.226
NPDC1 180
EFEMP2 .1607
MCM4 156
RBMS 968
Survival COL5A2 .380
VIL2 342
TRPS1 281
TOP2A 272
YYI 183

by thresholds on the linear predictor of the survival regression
on factors. The concordance between the resulting displays for
test and training data is excellent and supports the statistical
validity of these model predictions. For comparison purposes,
we also present the stratification generated by the p53 classi-
fication based on the 32-gene signature proposed by Miller et
al. (2005) in both test and training data. The potential practi-
cal relevance lies in the fact that these predictions are more
accurate than those based on stratification purely by p53 sta-
tus (because they improve on the predictions of Miller et al.,
which improve on p53) as is currently commonly used in clin-
ical practice. Compared with the signature of Miller et al., our
contribution goes beyond the improvements in the stratification
of subpopulations as, more importantly, further investigation of
the factors involved in predicting survival allows for a deeper
understanding of the biological mechanism underlying the ag-
gressiveness of the disease.

Exploration of the p53 pathway guided by both mutational
status and transcriptional activity of genes known to be associ-
ated in the biological process of interest is a key strategy in the
generation of new biological hypotheses. The predictive power
of the identified subpathway components provides additional
evidence that the insights generated by the models are worth
investigating. Learning methods, such as those used by Miller
et al. (2005), are able to generate good predictions of outcomes,
but they suffer from lack of interpretability and biological char-
acterization and thus are unable to achieve the final goal of our
studies. As an example, in this analysis, one of the factors with
direct association with p53 (factor 7), designated a cell devel-
opment factor, had a series of genes related to the RAS pathway
through oncogenes FOS and JUN; the RAS/FOS-JUN path-
ways are known to link into the Rb/E2F network. This discov-
ery of significant gene expression factor structure linked to the
complex p53 pathway suggests a connection between two very
important branches of the major cell signalling network, raising
questions to be explored and highlighting the potential discov-
ery uses of this analysis.
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7. CLOSING COMMENTS

Sparsity of model structures and parameterizations is fun-
damental to the scaling of scientific models to the higher-
dimensional problems that are becoming common in many
areas. Gene expression genomics is one such active arena.
Models of multivariate distributions in high dimensions and
regression for prediction when there are many candidate pre-
dictors yield practicable methodologies only if the effective di-
mension is explicitly or implicitly reduced. Sparsity—in terms
of low-dimensional relationships underlying high-dimensional
patterns of association of many variables and defined though
parametric and conditional independence constraints—is key
to this reduction. We have demonstrated some of the utility of
sparse factor models in these applications and are using this ap-
proach in a number of related studies in cancer genomics, as
well as noncancer areas.

The breast cancer genomics applications here illustrate a
range of uses of the sparse factor modeling framework. Key el-
ements of the model framework include the use of new sparsity-
inducing prior distributions over factor loadings and regression
coefficients alike, with the ability to more adequately screen
out insignificant variable—factor pairings and highlight (with
quantitative probabilistic assessments) associations of interest;
the isolation of idiosyncratic noise terms; the coupling of re-
sponse prediction with factor analysis in an overall framework;
the ability to handle missing or censored responses and missing
data in the multivariate outcomes x space itself; and the inte-
gration of non-Gaussian, nonparametric factor components that
are practically relevant in reflecting structure in common under-
lying patterns and their implications for non-Gaussian marginal
data configurations in x space, among others. Key elements of
the model fitting and analysis framework include implemen-
tation of efficient MCMC methods for analysis of a specified
model, the use of evolutionary stochastic search methods for
model extension based on an initial specified set of variables,
and the investigation of model implications through evaluation
and visualization of variable decompositions, among others.

It is clear that this modeling framework is of broader util-
ity beyond the extensive development of applied studies in a
number of genomics applications and may be considered for
applications in such areas as large-scale financial time series,
where it represents a natural extension of existing factor mod-
eling (Aquilar and West 2000). In terms of methodology, the
work opens up some challenging questions related to compu-
tational developments. One important question is the conver-
gence characteristics of MCMC in the sparse factor models that
couple sparsity priors with latent variables under a DP model.
Our work has involved extensive repeated analyses of these and
many other data sets, as well as experimentation with simulated
data sets (Carvalho 2006), and choices of Monte Carlo sam-
ple sizes and other control parameters have been based on this
cumulated experience. These samplers can be quite “sticky,”
and there is certainly interest in exploring modifications of the
basic Gibbs samplers that we use here to investigate the po-
tential for improving mixing and convergence properties from
a practical standpoint. This is one of our current research ar-
eas, and we know that this work has generated interest in these
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Figure 7. Decomposition of expression over samples of several top genes in the annotated ER factors 1 and 3 (a), cell development factor 4
(b), and immunoregulatory factor 6 (c).

questions among other research groups that are actively de- approach for regression variable selection (Hans et al. 2007)
veloping MCMC methods for highly structured stochastic sys- that has proven successful in graphical modeling (Dabra et al.
tems. A linked topic for further research is to a deeper inves-  2004; Jones et al. 2005) and a range of prognostic applications
tigation of the connections between the evolutionary stochastic  in “large p” regression variable uncertainty problems in gene
model search approach and related search methods, including expression genomics (Rich et al. 2005; Dressman et al. 2006).
projection pursuit methods and the shotgun stochastic search ~ Additional topical investigations include extensions of the DP
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Figure 8. Breast cancer p53 study. Boxplots of fitted (a, ¢) and out-of-sample predicted (b, d) probabilities of p53 mutant versus wild-type

(a, b) and ER positive versus negative (c, d).

latent factor model, investigations of nonlinear variants of the
overall framework using kernel regression methods, and related
studies of theoretical aspects of this approach to joint distrib-
utional modeling in prediction problems that link to the use of
unlabelled data (Liang, Mukherjee, and West 2007). Further de-
velopment and refinement of the software used for all analyses
here, which is available to interested readers (see App. B), also
are in process.

APPENDIX A: NON-GAUSSIAN
RESPONSE VARIABLES

Model extensions to allow for binary, categorical, and censored data
(such as survival time data) involve the following additional response-
defining latent variables:

o Binary probit responses. Interpret z; ; as the unobserved, under-
lying latent variable such that an observable response y| ; = 1 if
and only if, z; ; > 0, and fix the variance y; = 1 accordingly.
Modifications to logistic and other link functions can be incorpo-
rated using standard methods (Albert and Johnson 1999).

o Categorical responses. An observable response variable y; ; tak-
ing the value 0, 1, or 2 is modeled through two underlying la-
tent variables, 71 ; and z; ;—now two elements of z; in the fac-
tor regression—such that (a) z; 1 < 0 implies that y; ; =0, (b)
z;,1 > 0 and z; » <0 imply that y; ; =1, and (c) z;,1 > 0 and
z;,2 > 0 imply that y; ; = 1. The hierarchical/triangular structure

of the factor model for z; makes this construction for categorical
data most natural.

e Right-censored survival responses. One useful model includes
outcome data that are logged values of survival times, in which
case z1,; represents the mean of the normal on the log scale for
case i. For observed times, z1; is observed; for a case right-
censored at time ¢;, we learn only that z; | > ¢;.

In each case the uncertain elements of z;—whether due to the in-
herent latent structure of binary and categorical variables or to the cen-
sored data in survival analysis—are included in MCMC analyses with
all model parameters and latent factors. This standard strategy also
applies to cases of missing data when some elements of z; are sim-
ply missing at random, as well in predictive assessment and validation
analysis when we hold out the response values of some (randomly)
selected samples to be predicted based on the model fitted to the re-
maining data.

APPENDIX B: PRIOR TO POSTERIOR
ANALYSIS MCMC COMPUTATION

Assume sparsity priors specified independently for each of the
columns of A and B. Model completion then requires specification
of priors for the variance components in ¥ and the t; of the spar-
sity priors. This involves consideration of context and ranges of vari-
ation of noise/error components. The priors for ¥, 11, ..., ¥p+q will
be response variable specific, although some values may be fixed, as
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Figure 9. Breast cancer p53 study: Kaplan—-Meier survival curves for the training samples (n = 201) split according to the indicated thresh-
olds. (a) Q1 represents thresholding at the first quartile of the fitted linear predictor. (b) Q2 represents thresholding at the median. (c) Stratification
simply on p53 wild-type versus mutant. (d) Stratification based on the p53 classification proposed by Miller et al. (2005).

noted in the foregoing discussion of binary and categorical variables.
Inverse gamma priors are conditionally conjugate and are used for the
¥g and t; parameters. For the former, substantial prior information ex-
ists from previous experience with DNA microarrays across multiple
experiments and observational contexts, and should be used to at least
define the location of proper priors. Finally, the hyperparameters of
the sparsity priors on factor loadings are to be specified; we discussed
general considerations earlier.

MCMC analysis is implemented in a Gibbs sampling format. The
component conditional distributions are noted here, although full de-
tails are omitted, because most are standard. This comment also ap-
plies to the conditional posteriors for the latent factor vectors arising
as a result of the nonparametric DP structure; in other model contexts,
this is a routinely used model component, and MCMC is well devel-
oped and understood. Some specifics of the MCMC components re-
lated to the sparsity priors are developed. Importantly, much of the
computation at each iteration can be done as a parallel calculation by
exploiting conditional independencies in certain complete conditionals
of the posterior distribution.

Write x;.,, for the set of n observations on the (p + ¢)-dimensional
outcomes and A|., for the corresponding set of n (p + k)-dimensional
latent factor vectors. For any quantity A (i.e., any subset of the full
set of parameters, latent factors, and variables), let p(A|—) denote the
complete conditional posterior of A given the data x1., and all other

parameters and variables. Then the sequence of conditional posteriors
to sample is a follows:

e Sample the conditional posterior latent factors,
p(A1:1—). Under the DP structure, this generates a set of some
dp < n distinct vectors and assigns each of the A; to one of these
vectors (Escobar and West 1995, 1998). The inherent stochastic
clustering underlying this assignment is algorithmically defined
using the standard configuration sampling of DP mixture mod-
els. We simply note that, conditional on the data and all other
model parameters, the model (3) can be reexpressed as a linear
regression of each “residual” vector x; — u — Bh; on AA;, with
the matrix A and the variance matrix ¥ of the regression errors
known at the current values at each MCMC iterate. This then falls
under the general regression and hierarchical model framework
of Dirichlet mixtures as used by West et al. (1994) and MacEach-
ern and Miiller (1998). We then have access to the standard and
efficient configuration sampling analysis for resampling the A 1.,
at each MCMC step, as described in these references. For conve-
nience, additional brief details are given here.

e Forall j =1,...,q, the use of inverse-gamma priors for the t;
leads to conditionally independent inverse-gamma complete con-
ditionals p(z;|—). These are trivially simulated.

over
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Figure 10. Breast cancer p53 study: Kaplan—Meier survival curves for the test samples (n = 50) split according to the indicated thresholds.
(a) QI represents thresholding at the first quartile of the predicted linear predictor. (b) Q2 represents thresholding at the median. (c) Stratification
simply on p53 wild-type versus mutant. (d) Stratification based on the p53 classification proposed by Miller et al. 2005.

For all g’s for which ¢ is not specified, the use of inverse-
gamma priors implies that the complete conditionals p(¥g|—)
are similarly inverse-gamma and so are easily simulated.

A novel MCMC component arises in the conditional posteriors
for ag ; and B, ; together with their sparsity-governing proba-
bilities, g ;. The structure for resampling entries in B is com-
pletely analogous to that for A, so here we discuss only the lat-
ter. For given factor index j, this focuses on the complete condi-
tional posterior for the full (p + g)— jth column of A, namely
aj= (al,j,--wap-i-q,j)/-

An efficient strategy is to sample the bivariate conditional pos-
terior distribution for each pair {«g ;, 7, j} through composition,
sampling p(etg, j|—) followed by p(rg jletg, j, —). The model is
such that for a fixed factor index j, these pairs of parameters (as g
varies from g = j, ..., p) are conditionally independent, so that
this sampling may be performed in parallel with respect to vari-
able index g.

The first step is to draw a, ; from its conditional poste-
rior marginalized over 7, ;. This is proportional to the con-
ditional prior of eq. (5) but, as discussed earlier, with 7, ;
substituted by its prior mean p;jm; and then multiplied by
the relevant conditional likelihood function; here it easily fol-
lows that this likelihood component contributes a term pro-
portional to a normal density for g ;. This defines a pos-
terior that is a point mass at 0 mixed with a normal for
ag j in the case of unrestricted parameters. The computa-

tion is more complicated for the diagonal elements because of
the constraint to positivity. Simulation of this is still standard
and accessible using either direct calculation or accept/reject
methods.

The second step is to sample the conditional posterior p(rg, ;|
ag i, —), as follows: (a) if o j # 0, then 7g ; ~ Be(ajm; +
Laj(1—mj)); (b)if ag ; =0, then set 7, ; =0 with probabil-
ity 1 — pj, where pj = p;(1 —m;)/(1 — pjm;), and otherwise
draw g ; from Be(ajmj,aj(l —m;j)+1).

e Finally, draw each p; independently from p(p;|—) = Be(sr +
oj,s(l=r)+p+q—j—oj), where o; =#{mg ; #0:g =
j+1,....,p+q}.

APPENDIX C: ELEMENTS OF
CONFIGURATION SAMPLING FOR FACTORS

Conditional on the data and all other model parameters, set e; =
X; — # — Bh;, so that the model (1) can be reexpressed as a linear
regression e; = AA; + v;, where the matrix A and the variance matrix
W of the errors v; are fixed at the current values at each MCMC iterate.
With A; ~ F independent and F ~ Dir(«q Fp), this is special case of
the regression and hierarchical model framework of Dirichlet mixtures
as used by West et al. (1994) and MacEachern and Miiller (1998). The
standard and efficient configuration sampling analysis for resampling
the A 1., uses the following steps at each of the MCMC iterates:
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Step 1: Resampling configuration indicators. Foreachi =1,...,n
in sequence, do the following:

e Remove A; from the set of currently assigned factor vectors, leav-
ing the set of n — 1 vectors in A_;. This current set of sim-
ulated factor vectors, A_;, is configured into some s <n — 1
groups, with a common value within each group. Denote the
s distinct factor vectors by 01.; = {0,...,0s} and the config-
uration indicators by ¢, = j to indicate that A, = 6; for r =
1,...,i—1,i+1,...,n. Write nj for the number of occurrences
of §;inA_;, thatis, n; = Z?:l,r#i 8;(cr).

e The complete conditional posterior for A; is the mixture

s
(hil=) ~ gi oN;Im;, M) + Y g7, 89, (A1),
j=1

so that &; equals # ; with probability ¢; ;; otherwise, it is sampled
anew from N(-lm;, M) with probability ¢; 9. These moments
and probabilities are as follows: m; = MA'W—le;;: M~ =1+
A'WTA; g o o aN(e; [0, AA' + W); and, for j =1, 5, g; j
n jN(ei|A0 i W), where the notation N denotes the evaluated
multivariate normal densities. Draw a new configuration indicator
¢; from 0:s using the probabilities g; (.. If ¢; = 0, then sample
a new value, A; ~ N(A;|m;, M).

Step 2: Resample unique factor vectors. Following step 1, the full
set of resampled configuration indicators defines a set of (some fi-
nal number) s conditionally independent linear regressions. For each
group j = l:s, the “data” in group j is the set of n; observa-
tions €; ~ N(e;|Af ;, ¥) such that ¢; = j. Resample the unique fac-
tor vector @ ; of each group j = 1:s from the implied conditional
posterior N(#;|t;, T;), where t; = T]-A/\Il_1 Zi:c,-:j e; and TJTl =
I+n;AWIA.

APPENDIX D: SOFTWARE

Efficient software implementing the MCMC and evolutionary sto-
chastic search for the full class of sparse Bayesian factor and regres-
sion models is available to interested readers. The BFRM code imple-
ments the analysis in the framework of sparse latent factor models cou-
pled with sparse regression and ANOVA for multivariate data, relevant
in many exploratory and predictive problems with high-dimensional
multivariate observations, as well as in the type of biological path-
way studies of the applications here. The software also includes model
components that allow for missing and censored data; binary, categori-
cal, and continuous responses; hold-out analyses for predictive valida-
tion; and customization to gene expression studies to include automatic
handling of data issues (with the generalized normalization and assay
artifact correction examples here as cases in point) that arise in all ex-
pression studies that combine data on microarrays across experimental
conditions or laboratories. Interested readers can download the exe-
cutable BFRM code and review instructions and examples from links
available on the JASA website. Examples include studies of complex
networks of intersecting biological pathways in cancer genomics, as
in the studies reported here, with complete details for replicating the
analyses reported.

APPENDIX E: ARTIFACT
CORRECTION REGRESSORS

As mentioned earlier the studies use covariates based on so-called
“control genes” on microarrays to aid in identifying variation that
is purely experimentally derived rather than representing biological
variation of interest. We have previously introduced sparse regression
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terms for housekeeping/control gene data (Lucas et al. 2006). With
Affymetrix arrays, we use the principal components of sets of 60—100
housekeeping gene probesets as readouts of such assay artifacts. These
measures are designed to produce mRNA expression levels that show
little or no biological or hybridization variation across samples, so
that concordant patterns in these genes that define systematic variation
through dominant principal components are potential artifact correc-
tion terms. Experience across multiple studies has demonstrated that
indeed, substantial assay artifacts can be identified in this way, and that
typically variation over samples in some of the dominant housekeep-
ing correction factors can be reflected in multiple genes of interest.
Contamination by assay artifact is usually sporadic, affecting multiple
genes but by no means all genes, and thus the immediate relevance of
the sparse regression components of the model. All of the examples
given herein use this method, including corresponding assay artifact
regressors in the design matrix H.

Experimental artifacts and induced variation across samples re-
flected in multiple genes also can be picked up by latent factors. Sys-
tematic variation that can be linked back to batch effects (e.g., sets of
samples processed in different labs or under slightly different condi-
tions at different times) often can be quite substantial and affect many
genes in complex ways. Analysis that allows inclusion of latent factors
in the model because collections of genes show evidence of common
components of structure across samples has the ability to soak up non-
biological variation of this kind. This is a strength of the sparse factor
modeling approach: it can confer robustness, protecting the estimation
of biologically interesting structures.

[Received January 2007. Revised January 2008.]
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