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SUMMARY

This paper presents a default model-selection procedure for Gaussian graphical models that
involves two new developments. First, we develop a default version of the hyper-inverse Wishart
prior for restricted covariance matrices, called the hyper-inverse Wishart g-prior, and show how
it corresponds to the implied fractional prior for selecting a graph using fractional Bayes factors.
Second, we apply a class of priors that automatically handles the problem of multiple hypothesis
testing. We demonstrate our methods on a variety of simulated examples, concluding with a real
example analyzing covariation in mutual-fund returns. These studies reveal that the combined use
of a multiplicity-correction prior on graphs and fractional Bayes factors for computing marginal
likelihoods yields better performance than existing Bayesian methods.

Some key words: Bayesian model selection; Fractional Bayes factor; Gaussian graphical model; Hyper-inverse Wishart
distribution; Multiple hypothesis testing.

1. BAYESIAN GRAPHICAL MODELS

1·1. Introduction

Gaussian graphical models are tools for modelling conditional independence relationships, and
they offer many practical advantages in high-dimensional problems. They can make computing
more efficient by alleviating the need to handle large matrices; they can yield better predictions
by fitting sparser models; and they can aid scientific understanding by breaking down a global
model into a collection of local models that are easier to parse.

Yet often the graph itself must be inferred from the data. Our approach to this problem is
Bayesian, meaning that two quantities must be specified: the prior distribution for � under each
graph and a prior distribution over different possible graphs.

The first specification is difficult because there is no common covariance matrix shared by
all graphs, but rather an entire collection of covariance matrices {�G} indexed by all possible
graphs. Different graphs imply different numbers of free elements in �, and so it is not possible
to use an improper prior for each �G as one might do for covariance estimation under a fixed
graph, since this would leave the resulting model probabilities defined only up to an arbitrary
constant. Instead, we must either elicit a subjective prior for each �G , which is clearly intractable
in high dimensions, or we must choose some default proper prior that is neither too vague nor too
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2 C. M. CARVALHO AND J. G. SCOTT

precise. Regardless, it is clear that any answer will depend on the priors chosen for the various
�Gs. To handle this difficulty, we introduce an objective-Bayesian approach using fractional
Bayes factors.

The second task, specifying a prior across different graphs, is deceptively easy. Yet there are
still pitfalls: graphical model selection poses an implicit problem in multiple hypothesis testing,
where a null hypothesis is the exclusion of a single edge from the graph. The seemingly objective
choice of assigning all graphs equal prior probability will be shown to flag many false-positive
edges, and we develop a class of fully Bayesian edge-selection priors to avoid this problem.

1·2. Notation and priors for constrained covariance matrices

An undirected graph is a pair G = (V, E) with vertex set V and edge set E = {(i, j)} for
some pairs (i, j) ∈ V . Nodes i and j are adjacent, or neighbours, if (i, j) ∈ E . Complete graphs
are those having (i, j) ∈ E for every i, j ∈ V . Maximal complete subgraphs C ⊂ V are called
cliques; two cliques that overlap in a set S are said to have S as a separator. A decomposition is a
partitioning of a graph G into subgraphs (A, S, B) such that V = A ∪ B, S = A ∩ B is complete,
and any path from a node in A to a node in B goes through the separator S. All graphs in this
paper are assumed to be decomposable, thus admitting a recursive decomposition into a sequence
of cliques. We denote the set of cliques and separators of a graph by C and S , respectively. A
decomposable graph G can be represented by a perfect ordering of cliques and separators. An
ordering of cliques Ci ∈ C and separators Si ∈ S is said to be perfect if for every i = 2, . . . , |V |
there exists a j < i such that Si = Ci ∩ Hi−1 ⊂ C j , where Hi−1 = ⋃i−1

j=1 C j . Finally, a perfect
numbering of vertices in G is obtained by taking first the vertices in C1, then those in C2\H1,
C3\H2 and so on (Lauritzen, 1996). Taking this order in reverse creates what is called a perfect
vertex-elimination scheme of G.

A Gaussian graphical model uses a graphical structure to define a set of pairwise conditional-
independence relationships on a p-dimensional zero-mean, normally distributed random vector
x ∼ N (0, �). The unknown covariance matrix � is restricted by its Markov properties; given � =
�−1, elements xi and x j of the vector x are conditionally independent, given their neighbours, if
and only if �i j = 0. If G = (V, E) is an undirected graph describing the joint distribution of x ,
�i j = 0 for all pairs (i, j) /∈ E . The covariance matrix � is in M+(G), the set of all symmetric
positive-definite matrices having elements in �−1 set to zero for all (i, j) /∈ E .

The hyper-inverse Wishart distribution is a general class of hyper-Markov laws introduced
by Dawid & Lauritzen (1993) for a covariance matrix � ∈ M+(G), where G = (V, E) is a
decomposable graph. The notation is (� | G) ∼ HIWG(b, D), where b ∈ R

+ is a degrees-of-
freedom parameter, and where D ∈ M+(G) is a symmetric positive-definite scale matrix. The
density of this distribution is defined with respect to the product of Lebesgue measures for the
(i, j) elements of � for which (i, j) ∈ E , subject to the conditions that �C is symmetric and
positive definite for all C ∈ C.

The density of � can be obtained from the clique-specific marginal densities as a ratio of
products over cliques and separators

p(� | G) =
∏

C∈C p(�C | b, DC )∏
S∈S p(�S | b, DS)

, (1)

where, for each clique C ∈ C (and separators S ∈ S), �C ∼ IW(b, DC ) with density

p(�C | b, DC ) ∝ |�C |−(b/2+|C |) exp
{
−1

2
tr

(
�−1

C DC
)}

. (2)
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Objective Bayesian Gaussian Graphical Models 3

The factorization in (1) holds if we assume that if S = C1 ∩ C2 the elements of �S are com-
mon in �C1 and �C2 . For further details and explanations, refer to Dawid & Lauritzen (1993);
Giudici & Green (1999) and Letac & Massam (2007).

1·3. Marginal likelihoods for graphs

Suppose we observe n samples (x1, . . . , xn) of p-dimensional vectors, where each xi ∼
N (0, �), with unknown covariance matrix �. Let X be the n × p matrix of samples and let
X j refer to column j of X and xi to row i ; also, let XC refer to the columns of X corresponding
to the nodes in clique C ; and assume that � ∈ M+(G) for some unknown decomposable graph
G on p nodes. The posterior probability of a graph G is

p(G | X ) ∝ p(G)
∫

�∈M+(G)
p(X | �, G) p(� | G) d�, (3)

where p(G) is the prior probability of the graph, and where the integral is the marginal likelihood
of the data under G. If � ∼ HIWG(b, D), the integral in (3) is available in closed form using the
ratio of the prior and posterior normalizing constants

p(X | G) = (2π )−np/2 h(G, b, D)

h(G, b∗, D∗)
, (4)

where b∗ = b + n and D∗ = D + X ′X . The normalizing constant h(·) is

h(G, b, D) =
∏

C∈C
∣∣∣ 1

2 DC

∣∣∣(b+|C |−1)/2
�|C |

(
b+|C |−1

2

)−1

∏
S∈S

∣∣∣ 1
2 DS

∣∣∣(b+|S|−1)/2
�|S|

(
b+|S|−1

2

)−1 , (5)

where �p(x) = π p(p−1)/4 ∏p
j=1 � {x + (1 − j)/2} is the multivariate gamma function.

2. MODEL-SELECTION PRIORS FOR RESTRICTED COVARIANCE MATRICES

2·1. Criteria for model-selection priors

The expression for the marginal likelihood in (3) involves an integral over the prior for �

under the graph G. This integral will typically be very sensitive to different choices of the
prior, which is a general phenomenon in model-selection problems (Berger & Pericchi, 2001;
Jones et al., 2005). Unlike in estimation problems, this sensitivity does not diminish as more data
are collected, making an intelligent choice of p(� | G) for each decomposable graph G the main
difficulty in graphical-model selection. In particular, neither improper priors nor vague proper
priors can be used.

In all but the smallest of problems, p(� | G) must be a conjugate hyper-inverse Wishart
prior; otherwise it will not be possible to make use of (4) for computing marginal likelihoods.
Other priors will require approximating the integrals in (3), and in such a large model space,
the need to do so repeatedly will usually pose an insurmountable obstacle. We accept that this
practical requirement tethers us to a very restricted class of models, and we seek priors that are
as well-behaved as possible under this constraint.

Well-behaved is somewhat difficult to judge, since distributions over the space of constrained
covariance matrices are not very accessible by intuition. But since every graph implies a complete
set of univariate conditional-independence relationships, graphical-model selection can be viewed
as simultaneously performing variable selection for all of these conditionals. It is typically easier
to assess priors for graphically constrained covariance matrices by studying the properties of the
priors they induce on all implied conditional regression models. This point will be developed in § 4.
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4 C. M. CARVALHO AND J. G. SCOTT

2·2. A conventional proper prior

The most popular choice of prior for use in Gaussian graphical models is � ∼ HIWG(δ, τ I ),
where the scale matrix D = τ I is proportional to the identity matrix. We call this the conven-
tional proper prior, following Berger & Pericchi (2001). Examples of these or similar priors being
used to compute marginal likelihoods can be found in Giudici (1996), Giudici & Green (1999),
Dobra et al. (2004), Jones et al. (2005), Atay-Kayis & Massam (2005) and Carvalho & West
(2007), among others. The scale parameter τ must be chosen to match the expected scale of
the data; if τ is too large, the prior for � under each graph will wash out the likelihood, and there
will be no basis for discriminating among competing graphs.

The now-standard notation of the conventional proper prior can be confusing: a single scale
matrix D may be used to specify p(� | G) for all graphs, but this scale matrix means different
things under each graph, since different graphs imply different configurations of free elements in
�. Under G, only the (i, j) elements of D for which the edge (i, j) ∈ G are relevant in determining
the distribution of �; other, nonfree, elements of � must be filled in using the deterministic
completion operation described in Massam & Neher (1998); see also Dawid & Lauritzen (1993)
and Carvalho et al. (2007). Hence the notation � ∼ HIWG(b, D) must be taken as convenient
shorthand for the statement that � depends upon the free elements of D implied by the graph G.

2·3. The hyper-inverse Wishart g-prior

Given the practical need for conjugacy, we suggest another possible form of the hyper-inverse
Wishart distribution, one where D involves the cross-product matrix: (� | G) ∼ HIWG(δ, gX ′ X ),
where g is some suitably small fraction such as 1/n.

We call this the hyper-inverse Wishart g-prior by analogy with Zellner’s g-prior in linear
regression (Zellner, 1986), and we recommend it as an alternative to the conventional HIW(δ, τ I )
for use in graphical model-selection. The similarity to the g-prior in regression is more than
superficial, since this prior will be shown to induce a g-like prior for the univariate conditional
regression models implied by G. This, along with other theoretical and methodological properties,
will be examined in §§ 4 and 5.

3. FRACTIONAL BAYES FACTORS FOR GAUSSIAN GRAPHICAL MODELS

3·1. Motivation for the hyper-inverse Wishart g-prior

Direct use of the hyper-inverse Wishart g-prior for selecting graphs is incoherent, since it
involves a double use of the data. We now show, however, that the prior arises very naturally
through the use of fractional Bayes factors, and that reusing the data can be avoided.

Fractional Bayes factors were proposed by O’Hagan (1995) as a default Bayesian model-
selection technique for use when prior information is weak. The idea is to train a noninformative
prior for each model using a small fractional power g of the likelihood function. This is done
simultaneously for all models being considered, converting all noninformative priors into proper
priors that are then used to select a model with the remainder of the likelihood.

Choose g ∈ (0, 1) and let pN (� | G) be a noninformative, typically improper, prior for �

under a decomposable graph G. The fractional Bayes factor for graphs G1 and G2 is then
FBFg(G1, G2) = Qg(X | G1)/Qg(X | G2), where

Qg(X | G) =
∫

pN (� | G)p(X | �, G) d�∫
pN (� | G)p(X | �, G)g d�

. (6)
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Objective Bayesian Gaussian Graphical Models 5

Then p∗(� | G) ∝ pN (� | G) p(X | �, G)g is called the implied fractional prior, where the
constant of proportionality is the integral of the given expression, and p(X | �, G)1−g is called
the implied fractional likelihood.

Equation (6) clearly depends upon the choice of a noninformative prior for �. The obvious
choice given our need for conjugacy is to simply define, for � ∈ M+(G),

pN (� | G) ∝
∏

C∈C |�C |−|C |∏
S∈S |�S|−|S| , (7)

an improper prior that makes use of the same factorization over cliques and separators, and is
defined with respect to the same measure, as the hyper-inverse Wishart distribution. Interestingly,
this prior has clique marginals that correspond to one of many versions of Fisher’s fiducial
prior (Sun & Berger, 2007), so called because it yields Fisher’s fiducial distribution for marginal
variances. These clique marginals, p(�C ) ∝ |�C |−|C |, also have the same form as the priors that
yield exact frequentist matching for means and variances (Geisser & Cornfield, 1963) when used
for covariance estimation. We make no such claims regarding frequentist matching for the prior
in (7), and use it only because it is a usefully conjugate generalization of a familiar prior to the
space of covariance matrices with graphical structure.

We can now state the main result of this section:

THEOREM 1. The hyper-inverse Wishart g-prior (� | G) ∼ HIWG(gn, gX ′ X ) is the implied
fractional prior for � corresponding to the prior in (7), where 0 < g < 1 is the fraction of
the likelihood used for training and n > maxc∈C|C | is the sample size. The fractional marginal
likelihood is

Qg(X | G) = (2π )−np/2 h(G, gn, gX ′ X )

h(G, n, X ′X )
, (8)

with h(G, b, D) defined as in (5).

Proof . This follows immediately from the conjugacy of the hyper-inverse Wishart prior with
the normal likelihood, and from (4). �

We emphasize that this procedure does not merely specify a single prior distribution, but rather
a whole cohort of objective prior distributions for all �G ∈ M+(G). One necessary condition for
the marginal likelihoods to be defined is that n be greater than the maximum clique size for all
graphs under consideration, which we will assume for the remainder of this paper.

3·2. Choice of g

An obvious issue with the use of this methodology is the choice of g. If the hyper-inverse
Wishart g-prior were used as a real prior, it would be possible to place a hyperprior on g, and
not tie ourselves down to a specific value; indeed, Liang et al. (2008) recommend exactly this
approach towards g-priors in linear-model selection.

Yet when interpreting the hyper-inverse Wishart g-prior in terms of fractional Bayes factors, it
is no longer possible to put a prior on g. This is because g is not a model parameter about which
there is information in the likelihood, but rather the fractional power of the likelihood itself used
for training the noninformative prior in (7). This fraction must be chosen outright in order for the
fractional marginal likelihoods in (8) to be well-defined.

Several criteria help to guide this choice. First, there is an established tradition of using minimal
training sample sizes to calibrate default Bayes factors; see, for example, O’Hagan (1995) and
Berger & Pericchi (1996, 2001). A minimal training sample is the smallest sample size needed
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6 C. M. CARVALHO AND J. G. SCOTT

to convert all improper priors such as (7) into proper priors. The intuition is that as much of the
data as possible should be held back to choose between models. It is easy to see from (1) and (2)
that the minimal training sample size is 1, suggesting that g be 1/n.

Second, it is clear that g must be O(1/n) in order for the implied fractional prior to correspond
asymptotically to the gold standard of a carefully elicited subjective prior distribution. If g
decreases too slowly as a function of n, the implied fractional prior will asymptotically overwhelm
the likelihood; if it decreases too fast, the prior will become arbitrarily diffuse. Neither behaviour
could possibly result from the choices of a careful elicitee making intelligent decisions about
each p(� | G). We find the hypothetical careful elicitation a useful ideal to keep in mind, even if
dimensionality makes this ideal impossible to attain.

Finally, the implied fractional prior for � should have heavy tails. Choosing gn = 1 implies
that the vector x is marginally Cauchy, and that each p(� | G) is heavy-tailed without being
too vague. This choice dovetails with the advice given by Liang et al. (2008), who themselves
generalize the recommendations of Jeffreys (1961) and Zellner & Siow (1980).

As a default choice, we recommend setting g = 1/n, though this is not a hard rule, and other
choices that decay like 1/n may be reasonable and can be judged by the reasonableness of their
effect on the implied fractional prior. Robustness to these choices should be considered, just as it
should be in subjective analyses.

4. PROPERTIES OF THE HYPER-INVERSE WISHART g-PRIOR

4·1. Information consistency

The consistency of fractional Bayes factors as n → ∞ is a well-known result from O’Hagan
(1995). We instead consider a second notion of consistency, often called information consistency
or finite-sample consistency, that describes how a Bayes factor behaves for fixed n with respect to
a test statistic that would be used to perform a classical test of significance on the same problem.

The canonical example of an information-inconsistent procedure is model selection in linear
regression using fixed-g versions of Zellner’s g-prior (Zellner & Siow, 1980; Liang et al., 2008).
Imagine testing a specific regression model MA having k possible covariates against the null
model M0 having only an intercept term. If the usual F statistic for testing MA against M0 goes
to infinity for fixed n and k < n − 1, the evidence against M0 is overwhelming, and one would
expect the Bayes factor BF(MA : M0) to diverge.

But under the standard g-prior, this Bayes factor instead converges to the fixed constant
(1 + g)(n−k−1)/2. This gives an intrinsic limitation, one that is not shared by the F statistic,
to how strongly the Bayes factor may support the bigger model. Such behaviour is intuitively
unappealing, since pr(F > C | M0) → 0 as C → ∞.

A natural question is whether the fractional Bayes factors defined above exhibit a similar
information paradox. We show that they do not, in two related senses.

4·2. Tests against the null graph

Let G0 denote the null graph having no edges, and let G A denote the graph to be compared
with the null. The Bayes factor for comparing these two models is

BF(G0 : G A) = K

∏p
j=1

∣∣ g
2 X ′

j X j
∣∣ gn

2∏p
j=1

∣∣ 1
2 X ′

j X j
∣∣ n

2

∏
S∈S

∣∣ g
2 X ′

S X S
∣∣ gn+|S|−1

2

∏
C∈C

∣∣ g
2 X ′

C XC
∣∣ gn+|C |−1

2

×
∏

C∈C
∣∣ 1

2 X ′
C XC

∣∣ n+|C |−1
2

∏
S∈S

∣∣ 1
2 X ′

S X S
∣∣ n+|S|−1

2

, (9)

 at U
niversity of T

exas at A
ustin on M

ay 27, 2011
biom

et.oxfordjournals.org
D

ow
nloaded from

 

http://biomet.oxfordjournals.org/


Objective Bayesian Gaussian Graphical Models 7

where g is fixed, C and S are the cliques and separators of G A and the leading term K is

K =
{

�
( n

2

)
�

( gn
2

)
}p ∏

S∈S �|S|
(

n+|S|−1
2

)
∏

C∈C �|C |
(

n+|C |−1
2

)
∏

C∈C �|C |
(

gn+|C |−1
2

)
∏

S∈S �|S|
(

gn+|S|−1
2

) .

It remains to define a suitable test statistic b as a basis for assessing information consistency.
Following Lauritzen (1996), let �̂0 be the maximum likelihood estimate for the precision matrix
under G0, and let �̂A be the maximum likelihood estimate under GA. Then there is a nested
sequence G0 ⊂ · · · ⊂ Gd = GA of decomposable graphs that differ only by a single edge. Let
ei denote the edge in Gi but not in Gi−1, and let Ci be the (unique) clique of Gi containing ei .
Then we have the following proposition, proven in Lauritzen (1996).

PROPOSITION 1. The test of significance for GA against the null graph G0 can be performed
by rejecting G0 for sufficiently small values of b = |�̂0|/|�̂A|. Under G0, b is distributed as the
product of independent beta random variables B1 · · · Bd, with Bi ∼ BE{(n − |Ci |)/2, 1/2}.

This defines the relevant test statistic b. We now give a precise statement of information
consistency for the fractional Bayes factors in Theorem 1.

THEOREM 2. Let GA be a decomposable graph having cliques C, let G0 be the null graph,
and let FBFg(GA : G0) be the fractional Bayes factor, given data X, corresponding to the
noninformative prior in (7). For any 0 < g < 1, FBFg(G0 : G A) → 0 as b → 0.

Proof . The Bayes factor in (9) simplifies to

K
(

1

g

)(S1−gnp)/2 (
1

2

)(n−gn)(S2−p)/2 p∏
j=1

|X ′
j X j |−(n−gn)/2

∏
C∈C |X ′

C XC |(n−gn)/2∏
S∈S |X ′

S X S|(n−gn)/2
,

where the exponent terms S1 and S2 are

S1 =
∑
C∈C

|C | (gn + |C | − 1) −
∑
S∈S

|S| (gn + |S| − 1),

S2 =
∑
C∈C

|C | −
∑
S∈S

|S|.

Now apply the formula of Lauritzen (1996) for the determinant of �̂G , which will exist due to
the previously stated restriction that n > maxC∈C |C |:

|�̂G | = n p

∏
S∈S |X ′

S X S|∏
C∈C |X ′

C XC | .

This gives

BF(G0 : G A) = C

(
|�̂0|
|�̂A|

)(n−gn)/2

,

where C is a fixed, finite term involving g, p, n and the structure of the graph G A. The proof of
information consistency now follows immediately by plugging the test statistic b into the above
equation, and noticing that for fixed 0 < g < 1, BF(G0 : G A) → 0 as b → 0. �

4·3. Tests for an implied conditional regression model

Information consistency is important in a second sense: nonzero entries in a precision matrix
imply a set of nonzero conditional regression coefficients for each element of x upon the other
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8 C. M. CARVALHO AND J. G. SCOTT

elements, and Bayes factors for model selection in Gaussian graphical models perform variable
selection on all of these implied regressions simultaneously. We find that observing the behaviour
of these implied conditional regression models is a useful window on the behaviour of p(� | G),
which is far harder to understand intuitively.

The following lemma provides a characterization of the implied conditionals.

LEMMA 1. Suppose (x | �) ∼ N (0, �) and � ∼ HIWG(b, D) for some decomposable graph
G. Suppose x = (z, y)′, where z is a scalar and the vertices are numbered following the perfect
vertex elimination scheme of G, with z as the first vertex. Let � and D be partitioned as

� =
(

�zz �zy

�yz �yy

)
, D =

(
Dzz Dzy

Dyz Dyy

)
.

Then

(i) �−1
z|y = (�zz − �zy�

−1
yy �yz)−1 ∼ Ga ( b+k

2 ,
Dz|y

2 ),

(ii) (�zy�
−1
yy | �z|y) ∼ N (Dzy D−1

yy , �z|y D−1
yy ),

with k representing the number of neighbours of z under G.

One proof of this lemma is presented in the Appendix. The same result could be obtained
using the fact that the neighbourhood of z, as the first element in a perfect elimination scheme, is
complete. Therefore, the marginal covariance of z and its neighbours is a standard inverse-Wishart
law and the above result follows from Lauritzen (1996).

We now apply the lemma to give the following theorem, which is intended to be understood
as if the implied fractional prior were a true prior, and the implied fractional likelihood were a
true likelihood. Since the fractional prior has the exact functional form of a proper hyper-inverse
Wishart prior, and the fractional likelihood has the functional form of a Gaussian likelihood, there
is no mathematical ambiguity in operationally defining prior and likelihood this way, even if the
interpretation is difficult from a pure subjectivist viewpoint.

THEOREM 3. Let X = (z Y ) be the n × p matrix of observed data having rows xi = (zi , yi ).
Let GA be a decomposable graph having cliques C, and let MA be the conditional regression
model for z in terms of Y implied by the neighbours of z in GA, and let M0 be the null regression
model for z. Assume further, that the vertices are listed in the perfect vertex elimination scheme
of GA, with z as the first vertex. Let F be the usual F-statistic for testing MA against M0,
and let BFg(MA : M0) be the likelihood ratio p(z | Y, MA)/p(z | Y, M0), where these marginals
are defined under the fractional prior and the fractional likelihood in (6) for a fixed g. For any
0 < g < 1, F → ∞ implies BFg(MA : M0) → ∞.

Proof . Let Yz denote the columns of the matrix X corresponding to the neighbours of z
under MA. Applying Lemma 1 and recalling the global assumption that n > maxC∈C |C |, the
hyper-inverse Wishart g-prior gives the following regression relationship

z = Yz f + ε, ε ∼ N (0, φ−1 I ) (10)

( f | φ, MA) ∼ N { f̂ , (gφ)−1(Y ′
zYz)−1} (11)

(φ | MA) ∼ Ga
(

gn + k

2
,

gr

2

)
, (12)

where φ is the conditional precision or �−1
z|Yz

, I is the n × n identity matrix, f̂ ′ = (Y ′
zYz)−1Y ′

z z
is the traditional least-squares estimate for f and r = z′(I − PYz )z with PYz denoting the
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Objective Bayesian Gaussian Graphical Models 9

perpendicular projection matrix onto the column space of Yz . Hence r is the residual sum of
squares after regressing z upon Yz .

Marginalizing over f and φ, taking care to use the fractional likelihood rather than the full
likelihood, gives

P(z | Y, MA) = (π )−n/2g
gn+2k

2 (1 − g)n/2 �
( n+gn+k

2

)
�

( gn+k
2

) r−n/2. (13)

Assuming 0 < g < 1, the relevant Bayes factor can then be computed by recognizing the null
model M0 as a special case of (13) with k = 0 and r = z′z:

BF(MA : M0) = C
(
1 − R2

MA

)−n/2
, (14)

where C is a fixed term involving g, n and k, and where R2
MA

is the usual coefficient of determi-
nation for model MA. As the F-statistic grows without bound, R2

MA
→ 1, and the Bayes factor

in (14) clearly diverges. �

The hierarchical model in (10), (11) and (12) is immediately recognizable as a modified form of
Zellner’s g-prior for the vector of conditional regression coefficients. Unlike the g-prior, however,
this procedure avoids the information paradox.

4·4. Remarks

One possible source of alarm is that the priors in equations (11)–(12) are centred at their
maximum-likelihood estimates. These priors, however, are fractional priors, not real priors. They
are only used in conjunction with a diminished fractional power of the likelihood function, and
so the fact that they are centred should not be viewed as an improper double-use of the data, at
least in the way that double-use is normally understood. This notion can be formalized by solving
a particular set of equations to yield the intrinsic prior, which is the real, non-likelihood-centred
prior to which a default Bayes factor corresponds asymptotically; see Berger & Pericchi (2001)
for further discussion.

Theorem 2 applies to any true decomposable graph, and so offers a universal guarantee of
information consistency with respect to the b-statistic. Theorem 3, however, does not apply to all
possible univariate conditional regression models; it applies only to those in which the variable
z to be predicted comes first in a perfect vertex elimination scheme. There are multiple such
schemes, meaning that the theorem will apply to multiple models for any given true graph. But
without a more general distributional result analogous to Lemma 1, we cannot show information
consistency of all univariate regression models. Nonetheless, the theorem does demonstrate
information consistency with respect to the F-statistic for a useful, albeit restricted, subclass of
these conditional sparse regression models. This proof-of-concept result, while not completely
general, is still enough to demonstrate that the hyper-inverse Wishart g-prior has certain desirable
properties that the conventional proper prior lacks, and that these properties relate to precisely
the concept of information consistency familiar from linear models.

5. FRACTIONAL MARGINAL LIKELIHOODS: A SIMULATION STUDY

We now study the behaviour of the fractional marginal likelihoods through simulations that
compare models of differing complexity. The baseline for comparison will be the conventional
alternative, the HIWG(δ, τ I ) prior. We hope to illustrate that the casual use of the conventional prior
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10 C. M. CARVALHO AND J. G. SCOTT

(a) Fractional Bayes (n = 20)

(c) Fractional Bayes (n = 1000)
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Fig. 1. Boxplots of realized marginal likelihoods in the simulation study. The x-axis is the bandwidth
of the precision matrix; the y-axis is marginal loglikelihood.

undermines our ability to choose between competing models, and that the objective procedure
presented so far is well-behaved.

Datasets with n ∈ {20, 50, 100, 500, 1000} were simulated from the true model: each xi ∼
N (0, �), where � was the 50-dimensional correlation matrix of a stationary Gaussian AR(10)
process. This represents a Gaussian graphical model due to the band-diagonal form of the
precision matrix. The number of nodes p = 50 is the length of each observation xi , but n is the
number of such independent draws observed from the true model.

An appropriate choice for the conventional proper prior is � ∼ HIWG(3, I ), where our choice
of δ = 3 reflects the standard advice to give p(� | G) a finite first moment (Jones et al., 2005).
We have chosen τ = 1, since � is known to be a correlation matrix. Typically, τ is very hard
to specify without looking at the data, making this choice, if anything, overly favourable to the
conventional prior.

For each sample size, we simulated 1000 datasets from the true model and computed marginal
likelihoods for 21 different candidate graphs corresponding to band-diagonal precision matrices
of bandwidth 0 through 20, with the true model having bandwidth 10. Figure 1 gives the frequency
distributions of marginal loglikelihoods for each candidate model, which show substantially better
separation under the fractional Bayes approach. Results are given for both the smallest and largest
sample sizes, although the same pattern emerged for all sample sizes.

For each dataset, we also recorded the model with the highest marginal likelihood. This gives
a Monte Carlo estimate for the frequency distribution of the preferred band-diagonal size under
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Objective Bayesian Gaussian Graphical Models 11

(a) Fractional Bayes (b) HIWG(3, I)
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Fig. 2. The empirical distribution of the chosen bandwidth under repeated sampling
from the true model in the simulation study. The area of each circle represents the
fraction out of 1000 independent datasets in which each model had the highest

marginal likelihood under the given prior.

the two priors, as in Fig. 2. As n grows, the fractional Bayes factors favour the true model with
increasing accuracy, whereas the results from the HIWG(3, I ) are highly erratic.

It is clear that, unlike the conventional prior, our objective procedure prefers sparse models
in the absence of enough data to justify extra edges. Yet as the sample size increases, the
fractional approach favours more complex models, and eventually chooses the true one almost
every time. The conventional prior does not exhibit this tendency nearly as strongly, displaying
an unintuitively high level of variation in the choice of model.

One might imagine that the conventional prior, by shrinking the covariance structure towards
the identity matrix with its strong pattern of off-diagonal zeros, would yield systematically smaller
models. This expectation is not confirmed by our simulation study, indicating that intuitions about
shrinkage gleaned from covariance estimation do not necessarily apply to model selection. This
can be understood in terms of the Ockham’s-razor property of Bayesian marginal likelihoods
(Jefferys & Berger, 1992). The conventional prior spreads its mass out quite broadly, which is an
advantage in estimation problems but crippling in model selection due to the lack of predictions
sharp enough to yield any posterior separation of models.

The results from this simulation are consistent with the theoretical results developed so far
and strengthen our claim that the fractional approach is indeed an appropriate default procedure
for Gaussian-graphical-model selection. The conventional prior induces a set of ridge-regression
priors on the complete conditional models considered in § 4·3, as can be shown through a
straightforward application of Lemma 1. The problems with ridge-regression priors for variable
selection are well understood (Zellner & Siow, 1980; Liang et al., 2008), and give some intuition
as to why the conventional HIWG(δ, τ I ) prior is suboptimal for model selection.

6. PRIORS OVER GRAPHS

There are two simple approaches to assigning prior probabilities to graphs themselves. The
first is to give every graph the same prior probability κ−1, where κ is the number of decomposable
graphs on p nodes. As Giudici & Green (1999) note, this prior is quite heavily concentrated on
graphs of middling size due to combinatorial explosion.

The second alternative, rapidly becoming the standard, is to imagine a sequence of edge inclu-
sions as having a binomial distribution with success probability r (Dobra et al., 2004; Jones et al.,
2005). This yields priors of the form

p(G) ∝ rk(1 − r )m−k (15)
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12 C. M. CARVALHO AND J. G. SCOTT

for decomposable graphs, with nondecomposable graphs given prior probability 0 by construction.
Recall that k is the number of edges and m = p(p − 1)/2 is the maximum number of possible
edges. The constant of proportionality is hard to compute since it is typically unknown how many
decomposable graphs there are of a given size, but this constant is the same for all models and
can thus be ignored.

If the expected fraction of included edges is known quite precisely, this framework may be
attractive. Yet often this fraction is not known, making an arbitrary choice of r seem heavy-
handed. Instead, we recommend treating r as a model parameter to be estimated from the data
rather than as a fixed tuning constant. This shrinks the graph size to a data-determined value
of r , which is estimated from the prevailing edge-inclusion fraction of models with favourable
marginal likelihoods.

One possibility is to estimate r by empirical-Bayes methods. George & Foster (2000) give
an expectation-maximization procedure that can be used to compute a maximum-likelihood
estimate r̂ in linear regression models, but note that it can prove computationally intractable in
high dimensions, making it even less suited to graphical model spaces. This issue is also discussed
in a technical report by Scott and Berger available from Duke University.

A second possibility is to place a prior on r , which turns out to be the easier and more attractive
option. Assuming the conjugate beta prior r ∼ BE(a, b) allows an explicit marginalization,

p(G) ∝
∫ 1

0
p(G | r )p(r ) dr ∝ β(a + k, b + m − k)

β(a, b)
,

where β(·, ·) is the beta function. For the default choice of a = b = 1, implying a uniform prior
on r , this becomes

p(G) ∝ (k)!(m − k)!

(m + 1)(m!)
= 1

m + 1

(
m

k

)−1

. (16)

Scott & Berger (2006) call these multiplicity correction priors in the context of testing ex-
changeable normal means: if the true k is held fixed while m grows, the expected number of false
positives will remain constant. In our context, this will mean an automatic penalty for testing
irrelevant edges.

We demonstrate through simulation that the same effect holds here. Beginning with a corre-
lation matrix corresponding to the ten-node graph from Fig. 1 of Scott & Carvalho (2008), we
added progressively more noise nodes: nodes unconnected both from the true graph and from
each other, but that lead to combinatorial explosion in the number of edges that must be tested
for inclusion. The numbers of noise nodes chosen were 5, 15 and 40, which in addition to the 10
connected nodes in the true graph imply 60, 300 and 1225 separate hypothesis tests, respectively.
In all cases, the number of true hypotheses remained fixed at 22, one for each edge in the 10-node
graph.

Three sets of tests were performed under each of three different priors on models. These results
are summarized in Table 1. Here, Fully Bayes uses the model probabilities from (16), while Oracle
Bayes involves plugging the true value of r into (15) to compute prior graph probabilities. All
marginal likelihoods were computed using fractional Bayes factors, with g = 1/n.

The fully Bayesian multiplicity-correction prior in (16) squelches false positives very effec-
tively. This phenomenon is well understood in linear models, but ours is the first demonstration
of such an automatic-correction effect in graphical models. The difference between corrected
and uncorrected versions is substantial; in the 50-node example, giving all models the same
prior probability yields 40 false positives with inclusion probability greater than 50%, whereas
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Objective Bayesian Gaussian Graphical Models 13

Table 1. Estimated inclusion probabilities for specific edges (left-most column)
as the number of unconnected noise nodes grows from 5 to 15 to 40. The last
row of the table shows the number of falsely positive flags, FPs, which are
other, nonenumerated edges that have edge-inclusion probability greater than
0·5. All probabilities were calculated using five million iterations of the feature-

inclusion stochastic search algorithm (Scott & Carvalho, 2008)
Number of noise nodes

No correction Oracle Bayes Fully Bayes

Edge 5 15 40 5 15 40 5 15 40
(1,6) 99 99 99 99 99 99 99 99 99
(3,4) 16 2 0 1 0 3 1 1 1
(3,6) 99 99 99 99 99 97 99 99 99
(3,8) 18 0 0 10 2 0 6 1 0
(3,9) 31 3 0 0 0 0 0 0 0
(4,6) 99 99 99 99 99 99 99 99 99
(4,9) 99 99 99 99 99 99 99 99 99
(5,6) 16 5 0 22 21 18 24 23 22
(5,9) 36 14 31 31 30 34 31 31 33
(6,7) 58 76 74 14 2 0 8 3 0
(6,9) 22 3 0 1 0 0 1 0 0
(8,9) 43 4 7 14 2 0 7 1 0
(9,10) 89 95 99 71 69 76 60 60 69

FPs: 6 11 40 1 1 1 1 1 0

imposing the multiplicity-correction prior yields none. Importantly, this approach does not depend
upon the choice of an arbitrary hyperparameter r , although if subjective inputs are required, they
can be accommodated through a different beta prior while still retaining closed-form answers.

Other differences from standard priors also emerge. Consider, for example, edges (5, 9) and
(6, 7). If all models are given equal prior probabilities, adding more noise edges makes (6, 7)
appear stronger and (5, 9) appear slightly weaker. Yet the opposite happens using the multiplicity-
correction priors: the addition of more noise nodes makes (6, 7) disappear entirely and yet retain
(5, 9) at close to its original strength.

This behaviour suggests that (16) does not merely shrink edge-inclusion probabilities to 0
uniformly as k remains fixed and m grows. Rather, it differentially rewards edges that participate
in more parsimonious models, suggesting a fundamental difference from (15) in the way mass is
apportioned across model space.

7. EXAMPLE: MUTUAL FUNDS

A crucial input for many dynamic portfolio-selection problems is the estimated covariance
matrix � for a collection of asset returns. Naı̈ve procedures can often yield unstable estimates of
�, but as Carvalho & West (2007) show, graphical models offer a potent tool for shrinkage.

We now illustrate the proposed methodology on a set of 86 monthly returns for 59 mutual funds
from a variety of different sectors: 13 U.S. bond bunds, 30 U.S. stock funds, seven balanced funds
investing in both U.S. stocks and bonds and nine international stock funds. The monthly returns
were split into a 60-month training set and a 26-month prediction set. We study the predictive
performance of each of the different graphical-modelling regimes considered here, incorporating
different combinations of priors for � and priors over graphs.
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14 C. M. CARVALHO AND J. G. SCOTT

The last of these regimes involved expanding the prior specification in (16) to include several
different parameters for the prior inclusion probabilities for edges in each of the different fund
sectors. This reflects our prior understanding that different patterns of covariation might prevail
in different asset classes, and that it may be suboptimal to force edges participating in these
different covariational patterns to shrink towards some common inclusion probability. Instead,
we allow block-by-block patterns of possibly differing sparseness to emerge. Global shrinkage,
of course, could still be accomplished via a hierarchical prior; here we have simply chosen to
give each inclusion probability an independent uniform prior.

For each prior specification, we used feature-inclusion stochastic search (Scott & Carvalho,
2008) on the 60-month training set to search for good models and compute posterior means �̂.
These means were then used to predict observations in the 26-month validation set, where in each
month the 56 observed returns predicted the remaining three missing returns, which are known in
reality. We repeated this process for all of the 32 509 combinations of three unobserved columns,
and then computed the total squared-error in imputing the missing values.

When all models were given equal prior probability, the fractional approach yielded a 5·5 %
improvement in total mean squared error under the top models discovered, to 642·9 from 679·6.
Applying the multiplicity-correction priors in (16) reduced the squared error to 623·6, while
the block-by-block prior yielded a further reduction to 554·7. These may seem like small im-
provements, but are actually quite substantial given the highly unpredictable nature of financial
markets.

These results demonstrate that each of the methodological advancements considered here can
improve predictive accuracy in model selection problems. It is especially interesting to note the
strength of the sector-specific multiplicity correction, suggesting that the ease with which our
prior specification accommodates structural information can be a real advantage in practice.
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APPENDIX

Proof of Lemma 1. Let � = �−1 = �′� be partitioned as(
�zz �zy

�yz �yy

)
=

(
�′

zz 0
�yz �′

yy

) (
�zz �zy

0 �yy

)
.

Recall that (�zz − �zy�
−1
yy �yz)−1 = �−1

z|y = �zz = �′
zz�zz and �zy�

−1
yy = −�−1

zz �zy = �z|y . Theorem 1
of Roverato (2000) (see also Paulsen et al., 1989; Wermuth, 1980) shows that if G is decomposable and
the vertices are listed in a perfect vertex elimination scheme, the pattern of zeros of � are preserved in �.
Now, if (� | G) ∼ HIWG(b, D), properties of the Cholesky decomposition of the hyper-inverse Wishart as
defined in Theorem 3 of Roverato (2000) (see also equation (27) of Atay-Kayis & Massam, 2005) allow
us to write � = �T −1, where D−1 = T ′T with

�2
zz ∼ GA

(
b + k

2
,

1

2

)
and �zyi ∼ N (0, 1), (A1)

for all yi in the neighbourhood of z. For the non-neighbours of z in y, �zyi = �zyi = 0.

 at U
niversity of T

exas at A
ustin on M

ay 27, 2011
biom

et.oxfordjournals.org
D

ow
nloaded from

 

http://biomet.oxfordjournals.org/
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It is now straightforward to see from (A1) that

�zz = �′
zz�zz = �2

zz = (�zz Tzz)
2 ∼ GA

(
b + k

2
,

T −2
zz

2

)
,

so that

�−1
z|y ∼ GA

(
b + k

2
,

Dz|y
2

)
,

which proves part (i) of the lemma. Turning the focus to the form of �z|y = �zy�
−1
yy = −�−1

zz �zy and
writing it as a function of � and T , we get

γi = −
⎛
⎝Tyi z

Tzz
+ 1

�zz Tzz

i∑
j=1

�zy j Ty j yi

⎞
⎠ .

Given �zz , this is just a linear combination of independent standard normals, so that

(�|�zz) ∼ N

(
−T −1

zz Tzy,
1

�2
zz

T ′
yy Tyy

)
,

(
�zy�

−1
yy |�−1

z|y
) ∼ N

(
Dzy D−1

yy , �z|y D−1
yy

)
,

proving part (ii) of the lemma. �
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