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Policy Analytics (moving past the 1900’s)

The Effect of Corporate Governance on Investment 363

Table 5 ! Firm value as a function of governance.

Dependent
Variable: Firm q (1) (2) (3) (4) (5)

Property Type q 0.497 0.418 0.403 0.412 0.382
(14.33)∗∗∗ (7.64)∗∗∗ (7.65)∗∗∗ (7.16)∗∗∗ (10.44)∗∗∗

EBITDA 0.403 0.456 0.444 0.444 0.163
(5.31)∗∗∗ (5.17)∗∗∗ (5.11)∗∗∗ (5.00)∗∗∗ (7.21)∗∗∗

UPREIT −0.001 −0.006 −0.023 −0.018
(0.02) (0.09) (0.36) (0.28)

Interest Coverage 0.057 0.060 0.043 0.038 −0.004
(0.74) (0.83) (0.63) (0.57) (0.15)

Mkt Cap 0.127 0.078 0.087 0.096 0.014
(2.73)∗∗∗ (1.85)∗ (1.96)∗ (2.11)∗∗ (0.39)

Excess Comp −0.002 0.000 −0.002 −0.020
(0.03) (0.01) (0.05) (0.85)

Instl Ownership 0.053 0.078 0.085 0.101
(1.00) (1.48) (1.50) (2.55)∗∗

Block Ownership −0.046 −0.041 0.013
(1.38) (1.23) (0.59)

D&O Ownership 0.106 0.105 0.072
(1.57) (1.55) (2.08)∗∗

Ln(Board Size) −0.044 −0.097
(0.77) (2.86)∗∗∗

Outside Board 0.029 0.021
(0.75) (0.93)

Maryland −0.026
(0.53)

Fixed Effects? No No No No Yes
Observations 882 882 882 882 882
R2 0.53 0.55 0.56 0.56 0.60
p value from F test of

null that all
governance
coefficients are
zero

0.61 0.21 0.50 0.00∗∗∗

Note: This table reports results of regressions of Firm q on governance and control
variables for a sample of 882 observations of equity REITs from 1995 to 2004. All
variables are as defined in Tables 1 and 4 and have been standardized to have mean of
zero and unit variance. t statistics for each coefficient are in parentheses, where standard
errors have been corrected for clustering within firms over time. Indicator variables for
the year of the observation are included in all regressions, but these coefficients are
not reported. The table also presents the number of observations and the R2 for each
regression. At the bottom of the table are p values for F tests of the null hypothesis that
the coefficients on all governance variables equal zero.
∗statistical significance at the 0.10 level; ∗∗statistical significance at the 0.05 level; ∗∗∗

statistical significance at the 0.01 level.
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Moving from this...

y = αZ + Xβ + ε
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Moving from this...

Bayesian Analysis (2018) 13, Number 1, pp. 163–182

Regularization and Confounding in Linear
Regression for Treatment Effect Estimation

P. Richard Hahn∗ , Carlos M. Carvalho† , David Puelz† , and Jingyu He∗

Abstract. This paper investigates the use of regularization priors in the con-
text of treatment effect estimation using observational data where the number of
control variables is large relative to the number of observations. First, the phe-
nomenon of “regularization-induced confounding” is introduced, which refers to
the tendency of regularization priors to adversely bias treatment effect estimates
by over-shrinking control variable regression coefficients. Then, a simultaneous re-
gression model is presented which permits regularization priors to be specified in a
way that avoids this unintentional “re-confounding”. The new model is illustrated
on synthetic and empirical data.

Keywords: causal inference, observational data, shrinkage estimation.

1 Introduction

This paper considers the use of Bayesian regularized linear regression models for the
purpose of estimating a treatment effect from observational data. Treatment effects –
the amount some response variable would change if the value of the treatment variable
were changed by a given amount – can only be properly estimated from observational
data by taking into account all of the various explanatory factors that may otherwise
account for the observed correlation between the treatment and response variables.
In the case of a linear regression model (assuming it to be correct) this “adjustment
for confounding” means that the model includes a sufficient set of control variables as
regressors in addition to the treatment variable.

Practical implementation of regression modeling for estimating treatment effects
from observational data is complicated by two related issues. First, the minimal set
of sufficient control variables is almost never known and second, the set of candidate
control variables is often quite large relative to the available sample size. This consid-
eration suggests that statistical regularization has a role to play in reliable treatment
effect estimation. It may therefore come as a surprise that naive deployment of Bayesian
shrinkage priors in the context of treatment effect estimation can yield exceptionally
poor estimators. Exploring this phenomenon and providing a straightforward solution
is the main contribution of this paper. We show that regularization can indeed pro-
vide statistical improvements over maximum likelihood estimation, but that it must be
imposed carefully, in a sense we will make precise.

∗5807 South Woodlawn Avenue, Booth School of Business, University of Chicago, Chicago, IL 60637
richard.hahn@chicagobooth.edu

†2110 Speedway Stop, McCombs Schools of Business, University of Texas, Austin, TX 78712

c⃝ 2018 International Society for Bayesian Analysis https://doi.org/10.1214/16-BA1044
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... to that!

y = f (Z ,X) + ε

Today:

• a general, “default” framework

• a rich output that allows you to ask lots of different questions
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Our setting

We’ll assume:

• Observational and experimental data

• Conditional unconfoundedness/ignorability (we’ve measured all

the factors causally influencing treatment and response),

• Covariate-dependent treatment effects (individuals can have

different responses to treatment according to their covariates)

• Binary treatments
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Our assumptions, more formally

Strong ignorability:

Yi (0),Yi (1) ⊥⊥ Zi | Xi = xi ,

Positivity:

0 < Pr(Zi = 1 | Xi = xi ) < 1

for all i . Therefore

E(Yi (z) | xi ) = E(Yi | xi ,Zi = z),

so the conditional average treatment effect (CATE) is

τ(xi ) : = E(Yi (1)− Yi (0) | xi )
= E(Yi | xi ,Zi = 1)− E(Yi | xi ,Zi = 0).
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Modeling assumptions

We write

E(Yi | xi , zi ) = f (xi , zi ),

so that

τ(xi ) := f (xi , 1)− f (xi , 0).

We assume iid Gaussian errors:

Yi = f (xi , zi ) + εi , εi ∼ N(0, σ2)

nb: Strong ignorability means εi ⊥⊥ Zi | xi .

How do we regularize estimates of f ? (What prior on f ?)
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Regression Trees

Tree Th

x1 < c

µh1 x3 < d

µh2 µh3

no yes

no yes

Leaf/End node parameters

Mh = (µh1, µh2, µh3)

g(x,Th,Mh)

d

c
x1

x3 µh1

µh2

µh3

Partition Ah = {Ah1,Ah2,Ah3}

g(x,Th,Mh) = µht if x ∈ Aht (for 1 ≤ t ≤ bh).
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Bayesian Additive Regression Trees (BART)

Bayesian additive regression trees (Chipman, George, & McCulloch,

2008):

yi = f (xi , zi ) + εi , εi ∼ N(0, σ2)

f (x, z) =
m∑

h=1

g(x, z ,Th,Mh)

Hill (2011) proposes adopting Bayesian additive regression trees (BART)

for causal inference.
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Making BART great for causal inference

BART is great as a prior over regression functions! It also works great for

causal inference, but in some settings it can be problematic:

1. With strong confounding, estimates of individual/average treatment

effects from BART can exhibit severe bias.

2. With homoegenous effects/moderate heterogeneity, BART’s

treatment effect estimates are highly variable.

We can fix both of these!
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Problem 1: Strong confouding can lead to high bias

Suppose that:

• Y : measure of heart distress,

• Z : took heart medication,

• x1 and x2 are blood pressure measurements.

Let’s make this easy: p = 2, n = 1, 000, with homogeneous treatment

effects (τ = 1).
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Problem 1: Strong confouding can lead to high bias

Assume the true model:

Yi = µ(xi )− Zi + εi ,

µ(xi ) = 1 if xi1 < xi2, −1 otherwise.

Pr(Zi = 1 | xi1, xi2) = Φ(µ(xi )),

εi
iid∼ N(0, 0.72), xi1, xi2

iid∼ N(0, 1).

This example demonstrates targeted selection into treatment:

Patients with xi1 < xi2 are 5 times as likely to receive the new drug

precisely because they are more likely to have higher levels of heart

distress.

Despite low noise, low dimension, and homogeneous effects, BART has

problems...

12



BART is badly biased here

Across 250 simulated datasets with n = 1000, BART is badly biased:

Prior Bias Coverage RMSE

BART 0.14 31% 0.15

This is due to a pheonomenon called regularization induced

confounding (see Hahn, Carvalho, Puelz and He, 2018).
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Targeted selection induces regularization induced confounding

Why is BART biased in this example?

• π(x) = Pr(Z = 1 | x) is a noisy function of µ(x), so µ(x) “looks

like” π(x), and µ(x) is hard to approximate with trees
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• Strong confounding means Z ≈ π(x), and targeted selection means

µ(x) is a function of π(x), so µ(x) is can be approximated by a tree

that splits on Z

• The BART prior over f penalizes the total number of splits, so to fit

µ(x) BART would rather split on Z once than x1 and x2 many times

– confusing confounding for treatment effects: regularization

induced confounding (Hahn et al (2016))
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A fix: Propensity Score BART

We can fix this by estimating π(x) = Pr(Z = 1 | x) (here using BART)

and including π̂(x) as an extra predictor variable

Prior Bias Coverage RMSE

BART 0.14 31% 0.15

Oracle BART 0.00 98% 0.05

ps-BART 0.06 85% 0.08

(With an ensemble estimate of π̂, ps-BART≈Oracle BART)
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Problem 2: Naive priors give high variance estimates

In the model

yi = f (xi , π̂(xi ), zi ) + εi

a BART prior on f provides no direct mechanism to regularize the

treatment effect function τ(x)
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ps-BART is in pink; our fix is in grey
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The fix: Bayesian causal forests

Reparameterize!

f (xi , zi ) = µ(xi , π̂(xi )) + τ(xi )zi ,

where m and τ have independent BART priors.

Now the treatment effect is

τ(xi )

and we can “shrink towards homogeneity” with stronger regularization

on τ , independent of regularization on m
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Tweaking priors in BCF

Several adjustments to the BART prior on τ :

• Higher probability on smaller τ trees (than BART defaults)

• Higher probability on “stumps” (all stumps = homogeneous effects)

• N+(0, v) Hyperprior on the scale of leaf parameters in τ

18



RIC in the wild: 2017 ACIC Data Analysis Challenge

Treatment-response pairs were simulated according to 32 distinct data

generating processes (DGPs), given fixed covariates (n = 4, 302, p = 58)

from an empirical study.

We varied three parameters among two levels

• High or Low noise level,

• Strong or Weak confounding,

• Small or Large effect size.

The error distributions were one of four types

• Additive, homoskedastic, independent,

• Nonadditive, homoskedastic, independent,

• Additive, heteroskedastic, independent.

To assess coverage, 250 replicate data sets were generated for each DGP.
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Results: Inference for CATE on homoskedastic DGPs
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Results: Estimation for homoskedastic DGPs
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Results: Inference for CATE on difficult homoskedastic DGPs
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Results: Estimation on difficult homoskedastic DGPs
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ACIC 2016 Redux

After our a preprint of our paper the ACIC 2016 challenge organizers ran

ps-BART...

Large, highly variable treatment effects and no explicit targeted selection! 24



ACIC 2016 Redux

Adding BCF and causal RF:

Cov IL Bias (SD) |Bias| (SD) PEHE (SD)

BCF 0.82 0.026 -0.0009 (0.01) 0.008 0.010 0.33 0.18

ps-BART 0.88 0.038 -0.0011 (0.01) 0.010 0.011 0.34 0.16

BART 0.81 0.040 -0.0016 (0.02) 0.012 0.013 0.36 0.19

Causal RF 0.58 0.055 -0.0155 (0.04) 0.029 0.027 0.45 0.21

Average differences relative to BCF, pairwise permutation test p-value:

Diff Bias p Diff |Bias| p Diff PEHE p

ps-BART -0.00020 0.146 0.0011 < 1e−6 0.010 < 1e−6

BART -0.00070 < 1e−6 0.0031 < 1e−6 0.037 < 1e−6

Causal RF -0.01453 < 1e−6 0.0204 < 1e−6 0.125 < 1e−6
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Takeaways

In observational data regularization-induced confounding can adversely

bias treatment effect estimates from any method that uses

regularization. Explicitly modeling selection is necessary for robust

inference.

BART is an impressive response surface method for causal inference; our

new BCF models improve on “vanilla” BART in key respects:

• Propensity score estimates as covariates mitigate RIC

• Reparameterization allows regularization to be imposed robustly and

directly on the estimand of interest.

• It also facilitates extensions to multilevel models!
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Multilevel BCF: The National Study of Learning Mindsets
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National Study of Learning Mindsets

• National Study of Learning Mindsets (Yeager et. al., 2017):

Randomized controlled trial of a low-cost mindset intervention

• Probability sample of 76 schools (≈ 14, 000 students)

• Specifically designed to assess treatment effect heterogeneity

• Preregistration plan included specific subgroups of interest, and a

blinded exploratory analysis of heterogeneity
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National Study of Learning Mindsets

Desiderata for our analysis:

• Avoid model selection/specification search

• School-level effect heterogeneity explained and unexplained by

covariates

• Interpretable model summaries for communicating results
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yij = ↵j +

pX

h=1

�hxijh +

"
kX

`=1

⌧`wij` + �j

#
zij + ✏ij

Controls at the 
student and/or school 

level

Moderators at the 
student and/or school 

level

School-specific  
intercepts/fixed/random effects

School-specific  
“unexplained” heterogeneity

Multilevel Linear Models for  
Heterogeneous Treatment Effects
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yij = ↵j + �(xij) + [⌧(wij) + �j ] zij + ✏ij

Coloring outside the lines:  
Multilevel Bayesian Causal Forests

We replace linear terms with Bayesian additive 
regression trees (BART)
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yij = ↵j + �(xij) + [⌧(wij) + �j ] zij + ✏ij

Coloring outside the lines:  
Multilevel Bayesian Causal Forests

We replace linear terms with Bayesian additive 
regression trees (BART)

BART in causal inferece: Hill 
(2011), Green & Kern (2012), … 

!

Parameterizing treatment effect 
heterogeneity with BART is due to 
Hahn, Murray and Carvalho (2017)
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yij = ↵j + �(xij) + [⌧(wij) + �j ] zij + ✏ij

Coloring outside the lines:  
Multilevel Bayesian Causal Forests

Allows for complicated functional forms 
(nonlinearity, interactions, etc) without 

pre-specification…

…while carefully regularizing estimates with 
prior distributions (shrinkage toward additive 
structure and discouraging implausibly large 

treatment effects)

We replace linear terms with Bayesian additive 
regression trees (BART)

BART in causal inferece: Hill 
(2011), Green & Kern (2012), … 

!

Parameterizing treatment effect 
heterogeneity with BART is due to 
Hahn, Murray and Carvalho (2017)
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Analyzing data with ML BCF
• Obtain posterior samples for all the parameters, compute treatment 

effect estimates for each unit/school/etc. 

• The challenge: How do we summarize these complicated objects? 

• “Roll up” treatment effect estimates to ATE 

• Subgroup search 

• Counterfactual treatment effect predictions/“partial effects of 
moderators”
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95% confidence interval 
from ML Linear Model

95% uncertainty interval 
from ML BCF

Inference for the Average Treatment Effect
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Subgroup search
• Obtain posterior mean of treatment effects 

• Use recursive partitioning (CART) on the posterior mean to find 
moderator-determined subgroups with high variation across 
subgroup ATE 

• Statistically kosher! We use the data once (prior -> posterior) 

• Can be formalized as the Bayes estimate under a particular loss 
function
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Counterfactual treatment effect predictions
• How do estimated treatment 

effects change in lower 
achieving/low norm schools if 
norms increase, holding 
constant school minority 
comp & achievement? 

• Not a formal causal mediation 
analysis (roughly, we would 
need “no unmeasured 
moderators correlated with 
norms”)
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Conclusion
• Flexible models + careful regularization + posterior summarization is a 

winning combination 

• Our approach takes the best parts of linear models with lots of 
researcher degrees of freedom and “black box” machine learning 
methods that only afford bankshot regularization and summarization 

• Many “degrees of freedom” in the summarization step, but these 
depend on the data only through the posterior 

• Unlike many ML methods, we can handle multilevel structure and 
prior knowledge with ease
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Thank you!
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