A Dynamic Model of Characteristic-Based Return Predictability

AYDOĞAN ALTI and SHERIDAN TITMAN*

Current Version: August 2018

ABSTRACT

We present a dynamic model which links characteristic-based return predictability to systematic risk factors that determine the evolution of firm fundamentals. In the model, an economy-wide disruption process reallocates profits from existing businesses to new projects and thus generates a source of systematic risk for portfolios of firms sorted on value, profitability, and asset growth. If investors are overconfident about their abilities to evaluate the extent of disruption, these characteristic-sorted portfolios exhibit persistent mispricing. Our analysis explores the implications of such mispricing for conditional return predictability, the distribution of Sharpe ratios in finite samples, and the performance of quantitative investment strategies.

* University of Texas at Austin. An earlier draft of the paper was circulated under the title “Creative Destruction, Investor Beliefs and the Evolution of Stock Returns.” We benefited from comments and suggestion by Zhanhui Chen, David Hirshleifer, Travis Johnson, Mao Lei, David Solomon, Kristian Rydqvist, and participants in presentations of the paper at the 2016 Rising Stars Conference at Fordham University, Workshop in Memory of Rick Green at Carnegie Mellon University, 2016 Asian Bureau of Finance and Economic Research Conference in Singapore, Asset Pricing Conference in Honor of John Wei at HKUST, 2016 UBC Summer Finance Conference, 2017 China International Conference in Finance, Emory University, HEC Lausanne, Office of Financial Research, SAIF, Universidad de Chile, University of Colorado Boulder and Denver, University of Georgia, University of Southern California, University of Texas at Austin, and Vienna University of Economics and Business.
Since the late 1970s, financial economists have identified a variety of firm characteristics and financial variables that seem to explain the cross-sectional pattern of stock returns. Although many of the anomalies relate to short-term return patterns (e.g., momentum and return reversals) many relate to fundamental firm characteristics like valuation ratios, profitability and asset growth rates, which are the focus of this paper. Historically, market-neutral portfolios that are designed to exploit these fundamentals-based anomalies have exhibited extremely high Sharpe ratios – at least as high as the Sharpe ratio of the market.

This paper develops a dynamic behavioral model that links these characteristic-based anomalies to systematic factors that determine the time-series evolution of firm fundamentals. The model assumes that firms’ profitability and growth rates are affected by what we refer to as the disruption climate, which is an economy-wide factor that creates losers as well as winners in the cross section. The behavioral elements of the model arise because investors are overconfident about their ability to assess the disruption climate, and because of this, firms with different exposures to the disruption climate – e.g., value versus growth firms – exhibit persistently different returns. The model generates many of the stylized facts documented in the empirical literature and provides some additional testable implications.

Firms in the model are characterized by differences in their current access to new growth opportunities, as well as their different histories. Growth firms are endowed with new projects every period while value firms simply harvest the profits from their existing projects. The emergence of the new projects, as well as the demise of the existing ones, is determined by a systematic factor that we label the disruption climate. A favorable disruption climate increases

1 See the 1978 special issue of the Journal of Financial Economics (Vol. 6, Issues 2-3) on anomalous evidence regarding market efficiency.
2 Indeed, in a recent paper, McLean and Pontiff (2016) identify 97 variables that have been shown to predict cross-sectional stock returns.
the arrival rate of new projects, which benefits young growth firms, but because these new projects compete with existing businesses, a favorable disruption climate harms the profits of assets in place, and is thus detrimental to mature value firms. The model thus captures the Schumpeterian notion of creative destruction, where innovation creates losers as well as winners.

To abstract from differences in risk premia, investors in our model are assumed to be risk-neutral. These investors learn about the disruption climate from two sources, the realized rate of disruptive innovations, and a soft information signal that represents, for example, news reports and expert opinions. Since both sources are noisy indicators of the disruption climate, investor expectations contain estimation errors, implying that even fully rational investors are sometimes too optimistic and sometimes too pessimistic about the rate of future disruptive innovations. However, these estimation errors do not generate predictable returns when investors are rational – some degree of irrationality is needed to generate asset pricing anomalies.

We introduce the possibility of biased inferences by assuming that investors are overconfident about the precision of their soft information, which implies that their estimates of the disruption climate puts too much weight on the soft information signal. This behavioral bias does not cause investors to systematically over- or under-estimate the disruption climate, i.e., the unconditional, or the long-run expected return associated with disruption rate surprises is zero. However, because overconfident investors learn slowly, *conditional* expected returns differ from zero and change slowly over time. Put differently, the mistakes investors make in estimating the disruption climate take time to correct.

We explore the model’s empirical and quantitative implications for characteristic-sorted portfolio returns through simulations. We first analyze the differences in the portfolio exposures to disruption and the return predictability that these differences generate. Portfolios that bet in favor of newcomers (growth firms, unprofitable firms, and high asset growth firms) are
positively exposed to disruption, whereas portfolios that bet in favor of incumbents (value firms, profitable firms, and low asset growth firms) are negatively exposed. Thus, when investors over-estimate the disruption climate, investment strategies that bet in favor of newcomers and against incumbents exhibit low subsequent return performance. The opposite predictability pattern obtains when investors under-estimate the disruption climate. Our analysis also highlights how return predictability is affected by the interactions between different characteristics. For instance, while growth firms are positively exposed to disruption on average, profitable growth firms exhibit negligible exposures, since an increased flow of investment opportunities is offset by the demise of some of the existing profitable projects. Thus, the predictability of growth firms’ returns is mainly driven by unprofitable growth firms, not the profitable ones.

Our analysis suggests three avenues for testing the model’s predictions on return predictability. The first is to employ measures of investor beliefs. In our model, the overconfident investors’ expectations of the disruption climate vary too much relative to the rational benchmark. Thus, measures of investor beliefs predict subsequent returns of characteristic-sorted portfolios, similar to the “investor sentiment” effects documented in the empirical literature. Second, our analysis links return predictability to the observed distribution of firm characteristics. As we show, the cross-sectional dispersion of firms’ valuation ratios, profitability, and asset growth rates capture past realizations of both hard and soft information signals. Since investors’ processing of these signals is biased, measures of cross-sectional dispersion of firm characteristics predict subsequent returns. Third, since characteristic-sorted portfolio returns exhibit positive autocorrelation, momentum strategies that buy recent winner portfolios and sell recent losers are profitable in our model.

The model predictions discussed above are about conditional return predictability. As we mentioned, the model does not generate unconditional return predictability in long samples.
However, as our simulations illustrate, characteristic-sorted portfolios in our model can exhibit quite high Sharpe ratios in finite sample periods. In our benchmark calibration, where there is no unconditional return premia by construction, we find that the persistence of characteristic-sorted portfolio returns described above greatly increases the likelihood that these portfolios generate extreme Sharpe ratios. For instance, realizing a Sharpe ratio of 0.40 in a 50-year sample, an extremely unusual event under full investor rationality, occurs in up to 20% of the simulated sample paths. We also extend our benchmark framework to investor beliefs that generate additional sources of return premia, such as initial investor optimism that dissipates over time. Collectively, these quantitative exercises highlight the alternative channels that can rationalize the extreme Sharpe ratios observed in the historical data.

The final part of the paper examines how characteristic-based quantitative investment strategies that were motivated by the academic literature perform within the context of our model. This exercise is of interest because it provides a realistic gauge of the degree of market inefficiency implied by our model calibration. The results indicate that the “quant investors” we consider are expected to generate relatively modest Sharpe ratios within the context of our model. For instance, a quant investor specializing in the value strategy realizes a median Sharpe ratio of only 0.13 and actually loses money 38% of the time over a 10-year investment period. Thus, the calibrated model appears to be consistent with a modest and plausible degree of market inefficiency.

Our analysis is related to the behavioral finance literature, and in particular to Daniel, Hirshleifer, and Subrahmanyam (DHS) (1998, 2001), which describe a link between the value effect and the tendency of investors to be overconfident about the precision of their private
information.3 We also focus on overconfidence, but our channel generating mispricing is different. In the DHS papers, firms are essentially identical, and the value effect is generated from the fact that overpriced stocks tend to have high prices relative to fundamentals. In contrast, the firms in our model differ in fundamental ways, i.e., the growth firms have ongoing new investment opportunities and the value firms do not, and it is these fundamental differences that lead to cross-sectional differences in their exposures to sources of systematic risk.

There is also a behavioral literature that explores how fluctuations in investor sentiment can induce covariation amongst stocks with common characteristics.4 In our model, overconfident investors tend to over-react to soft information about disruption shocks, and in doing so they induce excess (relative to the fully rational case) covariation amongst stocks with similar characteristics. In this sense, our model endogenously generates what looks like a sentiment factor.

The analysis in this paper is also related to studies that focus on asset pricing with parameter uncertainty. For instance, Lewellen and Shanken (2002) show, within a setting where rational Bayesian investors learn about expected cash flows, that returns may appear to the econometrician to be predictable along historical sample paths. As our analysis illustrates, if we properly integrate over all possible sample paths, the null hypothesis of no predictability is rejected too often only when investors are irrational. Pastor and Stambaugh (2012) analyze the long-term variance of market returns in a model with parameter uncertainty and changing

3 Other important papers in this literature include Barberis, Shleifer and Vishny (1998), which considers behavioral biases that influence how investors estimate the persistence of earnings shocks, and Hong and Stein (1999), which considers the effects of positive-feedback traders and traders who ignore the information embedded in market prices.4 See Baker and Wurgler (2006) for an empirical analysis of the impact of time-varying investor sentiment on characteristic-sorted portfolio returns, and Kozak, Nagel, and Santosh (2018) for a more complete discussion of how investor sentiment can influence systematic risk factors.
expected rates of return. Similar to our paper, they make the point that changes in expected returns can increase the volatility of long-term return realizations.\(^5\)

This research also complements recent work by Gârleanu, Kogan, and Panageas (2012) and Kogan, Papanikolaou, and Stoffman (2015), which examine how the innovation process can generate sources of systematic risk that affect the prospects of different firms differently. In these models growth firms earn low expected returns as they constitute a hedge against the displacement risk brought about by technological progress. These models, which assume full rationality, require fairly strong risk preferences to rationalize the historically observed return patterns.\(^6\) Although we solve our model with risk neutral preferences, we can envision a hybrid model that accounts for risk preferences as well as slow learning that better explains the historical return patterns.

The remainder of the paper is organized as follows. Section I presents the model. Section II describes the model calibration and simulations. Sections III and IV present the analyses of the calibrated model. Section V concludes the paper.

I. THE MODEL

As we mentioned in the introduction, the historical evidence provides a significant challenge. The returns of various characteristic-sorted portfolios appear to be both too large and

\(^5\) Other related papers include Timmermann (1993, 1996) and Pastor and Veronesi (2003, 2006). Timmermann (1993, 1996) analyzes models where investors use Bayes’ rule to estimate unknown parameters but value assets without taking into account estimation error, resulting in predictable returns and excess volatility. Pastor and Veronesi (2003, 2006) also analyze learning effects on asset prices, though their focus is not on return predictability. The Pastor-Veronesi models illustrate how uncertainty about future growth rates may rationalize high and volatile valuations, especially for your businesses such as the technology firms of the late 1990s.

\(^6\) A number of earlier papers in the literature provide risk-based explanations for the value premium. Examples are Berk, Green, and Naik (1999), Carlson, Fisher, and Giammarino (2004), and Zhang (2005). These papers, by specifying exogenous pricing kernels that are calibrated with a high price of risk, also effectively assume extreme risk aversion.
too persistent. In this section we present a model that can be used to gauge quantitative as well as qualitative relationships. The model, which is designed to generate cross-sectional differences in firm characteristics, such as valuation ratios, asset growth rates, and profitability, is then applied to explore the relationship between these characteristics and returns.

A. Model setup

Time is continuous and denoted by \(t \). Because our focus is on abnormal returns, we abstract from the possibility of risk premia and assume that investors are risk neutral and discount cash flows at a constant rate \(r \). The investors also have the same beliefs about model parameters and observe the same information, which implies that asset prices are effectively set by a representative agent. The economy is populated by a continuum of firms and we use the superscript \(i \) to denote a generic individual firm. Financing is frictionless and the Modigliani-Miller Theorem holds so we can assume all firms are equity financed without loss of generality.

Firms derive their values from the projects that they initiate, which are infinitesimal investment opportunities that arrive continuously over time. Once a project is initiated, it generates cash flows until it becomes obsolete and is terminated. Specifically, a new project requires a capital investment \(k_z \) and generates deterministic cash flows at rate \(a_z \times k_z \) until it is terminated, where \(a_z \) represents the project’s return on investment.\(^7\) When a project is terminated, a fraction \(\alpha \) of the initial investment \(k_z \) is recovered.\(^8\) The arrival and the termination rates of projects are determined by an economy-wide state variable that we describe below. The net cash

\(^7\) The capital investment \(k_z \) and the return on investment \(a_z \) may depend on the firm-specific growth state \(z \); see below. Our assumption of projects with deterministic cash flows allows us to focus on the arrival and the termination of projects as the primary sources of risk. A more general version of the model could feature project cash flows that are subject to additional risk factors.

\(^8\) For simplicity we assume that capital does not depreciate. An alternative interpretation is that capital depreciates but has to be replenished for the project to be operational; in this interpretation, the cost of depreciation is implicit in the project return \(a_z \).
flows of the firm, which include the cash flows from the projects, the costs of initiating new projects, and the proceeds from liquidations, are immediately paid out to shareholders.9

Firms in this model differ for two reasons. The first is that they have different histories, i.e., they initiated different projects in the past. The second is that they inhabit different states, which determine the new projects they receive. Specifically, a firm is in one of three states at any given time: the early growth state EG, the mature growth state MG, and the no growth state NG. Let $z^t_i \in \{EG, MG, NG\}$ describe the state of firm i at time t. New firms are born with identical initial conditions into the early growth state and they can transition into the mature growth state and the no growth state over time.

In our calibrated model, the firm has access to new projects in the early and the mature growth states, but not in the no growth state. Specifically, we set $k_{EG} = k_{MG} = k$ and $a_{EG} > a_{MG}$. Thus, the projects that arrive in the mature growth state require the same initial capital investment k as in the early growth state, but are less profitable. The assumption that firms in the no growth state receive no projects can be stated as $k_{NG} = a_{NG} = 0$.

Let f^t_i denote the firm’s profitability, defined as the rate at which the cash flow from the firm’s active projects are generated, and K^t_i denote the firm’s capital stock, which is the total capital investment incurred for the active projects. A new firm i, which is born at time t into the early growth state, has an initial capital stock that is normalized to $K^t_i = 1$ and initial profitability

9 By assuming an exogenous process governing project arrivals and terminations, we abstract from the possibility that firms’ real investment choices are influenced by investor beliefs. This assumption allows us to focus on the pricing of a given set of assets. Yet the feedback from asset prices to investment choices may be relevant for some return anomalies, especially those that relate to firm fundamentals. See Alti and Tetlock (2014) for a quantitative analysis of how firms’ investment decisions may amplify the impact of biased investor beliefs on return predictability.
that is normalized to $f^i_t = 0$.\(^{10}\)

After being born into the early growth state, the firm’s state z^i_t evolves as a continuous-time Markov process with sequential jumps. Specifically, the firm transitions from the early growth state to the mature growth state with Poisson intensity q_{EG}, and from the mature growth state to the no growth state with Poisson intensity q_{MG}. A firm in the no growth state dies and leaves the firm population with Poisson intensity q_{NG}. Each firm that dies is replaced by a new firm that is born into the early growth state, as described above. When a firm dies, its owners receive the market value of its active projects as a liquidating dividend.\(^{11}\) The transition rates described above imply that firms spend $1/q_{EG}$ years on average in the early growth state, $1/q_{MG}$ years on average in the mature growth state, and $1/q_{NG}$ years on average in the no growth state. Thus, the average life expectancy of a firm is $1/q_{EG} + 1/q_{MG} + 1/q_{NG}$ years.

The firm’s capital stock K^i_t and profitability f^i_t evolve according to the following laws of motion:

$$dK^i_t = k_z (dt + dM^i_t) - \lambda K^i_t (dt + dM^i_t), \tag{1}$$

$$df^i_t = a_z k_z (dt + dM^i_t) - \lambda f^i_t (dt + dM^i_t). \tag{2}$$

In Equations (1) and (2), the z subscript refers to the firm-specific growth state. The term dM^i_t represents a systematic disruption rate, which is a persistent process with a long-term mean of

\(^{10}\) The assumption that firms are born with an unproductive unit of capital is motivated by the presence of firms with valuable growth opportunities but little or no profits in the data. The specific value chosen here, zero initial profitability, does not affect our results in any material way; what is important is that the model includes growth firms with low profits.

\(^{11}\) Thus, a firm’s death in our model resembles an asset sale to an entity outside the publicly traded corporate sector.
zero. Before we describe the specific stochastic process governing \(dM_t \), we will first explain how it interacts with the firm-specific state variables in Equations (1) and (2).

The first terms in Equations (1) and (2) capture the arrival of new projects. Recall that firms in the early and the mature growth states receive projects that each require a capital investment of \(k_z = k \) and add \(a_z \times k_z \) to the firm’s profitability. The rate at which new projects arrive is stochastic and is represented by the term \(dt + dM_t \). Thus, over an instantaneous time period \(dt \) the firm receives \(dt \) projects on average (i.e., one project per unit of time), with more or less new projects arriving depending on the realization of the disruption rate \(dM_t \).

The second terms in Equations (1) and (2) reflect the termination of active projects. Over a given period of time, a fraction of the firm’s active projects become obsolete and are liquidated. When a project is terminated the capital of the firm declines and the profitability of the firm declines by a proportional amount. Projects are terminated at an average rate \(\lambda > 0 \), which we assume is the same for all firms. As with the arrival of new projects, the realized termination rate depends on the disruption rate and is given by \(\lambda (dt + dM_t) \).

Equations (1) and (2) illustrate how the exogenous growth state of the firm, i.e., early growth, mature growth or no growth, generates the endogenous state variables, capital stock \(K_t \) and profitability \(f_t \). Transitions from one state to another, along with the termination rate of active projects, generate cross-sectional and time-series variations in firm size, profitability, and valuation ratios. Firms that have profitable active projects but are in the no growth state expect their size and profits to decline over time. Firms that have low current profitability but are in growth states expect the opposite. Thus, the model captures in a reduced-form way the Schumpeterian notion of creative destruction: profits are redistributed from established firms to
newcomers and from old to new technologies.

The economy-wide disruption rate dM_t, which determines the speed of this Schumpeterian reallocation process, is the main focus of the model. When dM_t is high, new projects are created faster and existing projects are destroyed faster. As a result, early-growth firms benefit when dM_t is high and no-growth firms are hurt. Depending on parameters, mature-growth firms can either be helped or hurt by more disruption, since it hurts their existing businesses while at the same time facilitating new projects.

The disruption rate, which is observable, is an exogenously-specified process that has both persistent and transitory components. Specifically,

$$
dM_t = \mu_t dt + \sigma_t d\omega_t^M, \tag{3}
$$

where μ_t, what we have referred to as the disruption climate, is the persistent component of the disruption rate, and the Brownian process $d\omega_t^M$ is the transitory component. We envision the disruption climate μ_t as a slow-moving variable with a long-term mean that is normalized to be zero. Specifically, μ_t evolves according to

$$
d\mu_t = -\rho_\mu \mu_t dt + \sigma_\mu d\omega_t^\mu. \tag{4}
$$

Although investors observe the realized disruption rate dM_t, they cannot separately
observe the persistent and the transitory components.12 They do, however, observe a soft information signal ds_i that reflects the state of technological progress, changes in the regulatory environment, and other information that may help them predict the future evolution of the disruption climate. Specifically, investors observe

$$ds_i = \eta d\omega^\mu_i + \sqrt{1-\eta^2}d\omega^\epsilon_i,$$

where the parameter $\eta \in [0,1]$ is the signal’s precision and the Brownian term $d\omega^\epsilon_i$ is the signal’s noise. Higher values of η describe a more informative signal and thus less residual uncertainty about μ. In model calibrations, we consider the possibility that investors have biased perceptions about the precision of the soft information signal. Specifically, we analyze cases where overconfident investors believe the signal precision parameter to be $\eta_B > \eta$.

Investors in this model use the historical realizations of the disruption rate along with their soft information to learn about expected future disruption rates. We model the disruption rate dM_i in a way that reflects the learning features that we would like to analyze. For learning to be relevant, the disruption rate needs to have a persistent component that is not directly observable along with a transitory component. In other words, as expressed in Equation (3), the observed disruption rate equals the persistent component plus a transitory component that obscures the investor’s inference problem. In principle, the persistent component μ_i could be an unknown constant μ; however, when this is the case, learning effects vanish in the long run.

12 Investors observe the realized disruption rate dM_i because each firm’s changes in capital stock and profitability are observable and can be used to back out dM_i (see Equations 1 and 2). In a more general version of the model where change in profitability contains additional noise terms, a single firm’s change in profitability would not perfectly reveal dM_i, but with a large cross section of firms investors would still be able to estimate it highly precisely.
since investors eventually learn \(\mu \) arbitrarily precisely. In our model, the persistent component \(\mu_t \) changes over time. Investors learn about the current value of \(\mu_t \), but unobservable shocks to \(\mu_t \) create an additional source of uncertainty. In the steady state, these two effects cancel out, and the estimation error investors face about \(\mu_t \) remains constant over time.

The soft signal \(ds_t \) plays an important role in the model. The signal summarizes all the non-financial data that investors use to evaluate the current disruption climate. Investors’ possibly biased perception of the signal’s precision is the driver of the return predictability patterns that the model generates. The signal is assumed to be informative about the shocks to \(\mu_t \) rather than the level of \(\mu_t \). This specification, which we take from Scheinkman and Xiong (2003), has two advantages. First, the signal has constant variance \(\eta^2 + \left(\sqrt{1-\eta^2} \right)^2 = 1 \) regardless of the value of \(\eta \). Thus, the specification permits biased investor beliefs about signal precision (i.e., \(\eta_B \neq \eta \)) that cannot be detected directly from the time-series variance of signal realizations. Second, the specification clearly delineates the two sources of information investors use to update their estimates. The signal is informative about shocks to \(\mu_t \), whereas the realized disruption rate \(dM_t \) is informative about the current level of \(\mu_t \). Being orthogonal to each other, these two sources of information generate an economically meaningful two-factor structure for asset returns.

B. Information Processing

As discussed above, investors update their beliefs about the disruption climate \(\mu_t \) based on two pieces of information, the realized disruption rate \(dM_t \) and the signal \(ds_t \). In this section...
we characterize the steady state of the model in which the precision of the conditional estimate of μ_t is constant over time.

Let $\hat{\mu}_t$ denote investors’ *expected disruption rate*, defined as the conditional estimate of μ_t given all available information at time t. Let γ denote the steady-state variance of the estimation error $\hat{\mu}_t - \mu_t$. The law of motion of $\hat{\mu}_t$ is given by

$$d \hat{\mu}_t = -\rho_{\mu} \hat{\mu}_t dt + \sigma_{\mu} \eta d\zeta_t + \frac{\gamma}{\sigma_M} d\bar{\omega}_t,$$

(6)

where

$$d \bar{\omega}_t = \frac{d M_t - \hat{\mu}_t dt}{\sigma_M}. $$

(7)

The *disruption surprise* $d\bar{\omega}_t$ is a standard Brownian motion that reflects the unexpected component of the realized disruption rate. Recall that the signal $d\zeta_t$ is also a standard Brownian motion by construction. Therefore, the disruption surprise $d\bar{\omega}_t$ and the signal $d\zeta_t$ constitute the two sources of systematic risk that are orthogonal to each other.

The steady-state variance of the estimation error γ solves

$$\frac{\sigma_{\mu}^2}{2\rho_{\mu}} = \frac{1}{2\rho_{\mu}} \left(\frac{\sigma_{\mu}^2 \eta^2 + \gamma^2}{\sigma_M^2} \right) + \gamma.$$

(8)
The solution is given by

\[
\gamma = \sigma_M \left(-\rho_\mu \sigma_M + \sqrt{\rho_\mu^2 \sigma_M^2 + (1-\eta^2) \sigma_\mu^2} \right).
\] (9)

When investors have biased signal precision, the parameter \(\eta \) in Equations (6), (8), and (9) is replaced by its biased counterpart \(\eta_b > \eta \), which results in \(\gamma_b < \gamma \). When this is the case, investors overestimate the precision of their soft information, which implies that they believe that their disruption rate estimate \(\hat{\mu}_t \) is more precise than it actually is. Inspecting Equation (6), we see that this bias leads investors to place too much weight on their soft signal \(ds_t \) in updating \(\hat{\mu}_t \), and too little weight on the hard information as reflected by the disruption surprise \(d\bar{\sigma}_t \).

C. Valuation and Returns

We now turn to firms’ valuations and their stock returns. To keep our discussion focused on the economic intuition we will present the relevant equations and provide their derivations in Internet Appendix A.

The values of the firms can be expressed as the discounted value of their expected cash flows conditional on all available information:

\[
V_t^i = E_t \left(\int_{u=0}^{\infty} e^{-r(u-t)} \left[f_u^i du + (\alpha \lambda K_u^i - k_z)(du + dM_u) \right] \right). \tag{10}
\]

The cash flows in Equation (10) consist of three components, which include \(f_u^i \), the profits
accruing to firm i from its active projects, $\alpha \lambda K^i$, the capital recovered from terminated projects, and k_z, the outflows arising from capital investments for new projects given the firm-specific state $z = z^i$. Note that the profits from active projects accrue at an instantaneously deterministic rate, whereas capital flows for new and terminated projects are stochastic and determined by the economy-wide disruption rate dM^i.

The firm value in Equation (10) can be decomposed as follows:

$$V(z^i, K^i, f^i, \hat{\mu}_t) = f^i V_f(\hat{\mu}_t) + K^i V_K(\hat{\mu}_t) + V_{g,z}(\hat{\mu}_t),$$

(11)

where the functions $V_f(\hat{\mu}_t)$, $V_K(\hat{\mu}_t)$, and $V_{g,z}(\hat{\mu}_t)$ are solutions to a set of ordinary differential equations. The first two terms in Equation (11) respectively represent the present value of the cash flows from the firm’s active projects and the value derived from the expected partial recovery of capital tied to those projects. Note that these two terms are linear in the firm’s profitability f^i and its capital stock K^i. The third term, which is a function of the firm’s idiosyncratic growth state z, reflects the NPV of future projects. When investors expect a relatively high degree of disruption (i.e., $\hat{\mu}_t$ is high), firms in the early and the mature growth states enjoy higher valuations of their growth opportunities (i.e., $V_{g,EG}(\hat{\mu}_t)$ and $V_{g,MG}(\hat{\mu}_t)$ are relatively high). In these same high $\hat{\mu}_t$ states, active projects are expected to be terminated sooner, which implies that the present values of firm cash flows $V_f(\hat{\mu}_t)$ are low and the values

13 The functions $V_{g,z}$ account for future transitions of the growth state and future projects’ initial capital investments, profits, and eventual capital recoveries. Also, note that growth opportunities are worth zero in the no growth state, i.e., $V_{g,NG} \equiv 0$.
derived from the partial recovery of capital $V_K(\hat{\mu}_t)$ are high.

The firm’s excess return (i.e., its realized rate of return in excess of the discount rate r) consists of three components, as expressed below:

\[
dr_i' - rdt = \left[f'_i V'_i (\hat{\mu}_t) + K'_i V'_K (\hat{\mu}_t) + V'_{i,z} (\hat{\mu}_t) \right] \left(\sigma_\mu \eta ds_i + \frac{\gamma}{\sigma_M} d\bar{\omega}_i \right) + \left[\left(\alpha \lambda K'_i - k_z \right) + \left(k_z - \lambda K'_i \right) V_K (\hat{\mu}_t) + \left(a_z k_z - \lambda f'_i \right) V_i (\hat{\mu}_t) \right] \sigma_m d\bar{\omega}_i + d\varepsilon_i'.
\]

The first two terms in Equation (12) characterize the exposure of the firm’s return to the two systematic risk factors in the model, the disruption surprise $d\bar{\omega}_i$ and the signal ds_i. The last term $d\varepsilon_i'$ is the firm’s idiosyncratic return that is driven by growth state transitions.

A comparison of the first two terms in Equation (12) provide some intuition for the factor structure of asset returns in the model. The first term in Equation (12) reflects the Bayesian updating of the expected disruption climate $\hat{\mu}_t$, which is relevant for predicting subsequent disruption rates and thus valuing future cash flows. The second term in Equation (12) captures the immediate impact of the disruption process on the arrival and termination of projects. Note that both the disruption surprise $d\bar{\omega}_i$ and the signal ds_i contribute to the updating of $\hat{\mu}_t$, but only the disruption surprise $d\bar{\omega}_i$ has an immediate effect on the firm’s projects. This asymmetry is what generates a two-factor structure in asset returns. Having experienced different histories and being in different growth states, firms differ in their relative sensitivities to the expected
disruption climate versus the realized disruption rate. Thus, firms’ relative exposures to the two systematic risk factors differ in the cross section.

D. Return Dynamics with Biased Investor Beliefs

Up to this point we have characterized firm values and returns conditional on the beliefs of investors, which may or may not be biased. In the rest of this section we consider the case where investors have biased beliefs, but characterize expected returns from the perspective of a fully rational observer. In particular, we will be examining the link between the two systematic risk factors in the model, the signal ds_i and the disruption surprise $d\bar{\omega}_i$, and return predictability.

First, consider the signal ds_i. From Equation (12) we see that the impact of the signal ds_i on returns is proportional to η. This implies that if investors have biased beliefs about the signal’s precision, i.e., $\eta^B > \eta$, the sensitivity of returns to the signal is amplified. This amplification effect, however, does not influence the conditional expected rates of return. This is because the signal ds_i has an expected value of zero regardless of either the perceived or the actual precision. Even with biased perceptions of the precision of the signal, investors are observing something that is a random walk so their expectation of what the signal will be in the next instance is unbiased.

In contrast to the signal, the disruption surprise $d\bar{\omega}_i$ can generate conditional return predictability when investors have biased beliefs. To illustrate this predictability formally, let $\hat{\mu}_i^B$ denote investors’ estimate of μ_i in the case where they have a biased perception of the signal...
precision $\eta_B > \eta$. Let $\hat{\mu}_t^R$ denote the unbiased estimate a fully rational observer (i.e., someone who knows the true signal precision) would have given the same history. Similarly, let $d\bar{\omega}_t^B$ and $d\bar{\omega}_t^R$ denote the disruption surprise from the perspectives of biased investors and the rational observer, respectively. Substituting the new notation into Equation (7) yields

$$d\bar{\omega}_t^B \equiv \frac{dM_t - \hat{\mu}_t^B dt}{\sigma_M} = \frac{\hat{\mu}_t^R - \hat{\mu}_t^B}{\sigma_M} dt + \frac{dM_t - \hat{\mu}_t^R dt}{\sigma_M} = \frac{\hat{\mu}_t^R - \hat{\mu}_t^B}{\sigma_M} dt + d\bar{\omega}_t^R. \quad (13)$$

Investors with biased signal precision perceive $d\bar{\omega}_t^B$ to be a standard Brownian motion, since under their beliefs $\hat{\mu}_t^B$ is an unbiased estimate of μ_t. However, because the rational observer’s estimate $\hat{\mu}_t^R$ will typically differ from biased investors’ estimate $\hat{\mu}_t^B$, the conditional Sharpe ratio of $d\bar{\omega}_t^B$ in Equation (13), i.e., the term $(\hat{\mu}_t^R - \hat{\mu}_t^B)/\sigma_M$, is (almost always) non-zero. For example, after a string of positive realizations of the signal, the biased estimate $\hat{\mu}_t^B$ is likely to exceed the rational estimate $\hat{\mu}_t^R$, resulting in a negative conditional Sharpe ratio. In such cases, biased investors will be disappointed on average by subsequent realizations of the disruption rate. The opposite predictability pattern will obtain after a string of negative signal realizations.

Since the disruption climate is a persistent state variable, the biases in investors’ estimates do not get corrected immediately. As a result, the conditional Sharpe ratio exhibits persistence as well. Formally, the law of motion of the conditional Sharpe ratio is given by

$$d \left(\frac{\hat{\mu}_t^R - \hat{\mu}_t^B}{\sigma_M} \right) \equiv - \left(\rho_\mu + \frac{\gamma_B}{\sigma_M^2} \right) \left(\frac{\hat{\mu}_t^R - \hat{\mu}_t^B}{\sigma_M} \right) dt + \frac{\sigma_\mu \eta_B}{\sigma_M} dS_t + \left(\frac{\gamma - \gamma_B}{\sigma_M^2} \right) d\bar{\omega}_t^R. \quad (14)$$
As Equation (14) shows, the conditional Sharpe ratio evolves stochastically in response to the soft information signal ds_t and the disruption surprise $d\bar{\omega}_t^R$, but tends to revert to its long-term mean of zero over time. Specifically, since investors over-react to soft information (i.e., $\eta - \eta_B$ is negative), positive realizations of the soft information signal reduce the conditional Sharpe ratio. In contrast, since investors under-react to hard information (i.e., $\gamma - \gamma_B$ is positive), positive realizations of the disruption surprise increase the conditional Sharpe ratio. The rate of mean reversion of the conditional Sharpe ratio reflects both the changes in the disruption climate over time (ρ), and biased investors’ learning from disruption surprises (γ_B / σ^2_M).

The expected excess return of an individual firm from the perspective of the rational observer can be computed by substituting $d\bar{\omega}_t^B$ from Equation (13) into Equation (12) and taking expectations. We skip the formula for brevity. Intuitively, cross-sectional differences in factor exposures, as characterized by Equation (12), generate cross-sectional return predictability. For instance, early growth firms, which accumulate new projects at a high rate relative to their capital base, are highly sensitive to disruption surprises and exhibit stronger conditional return predictability relative to other firms. We numerically analyze these predictability patterns in detail in Section III.

II. MODEL CALIBRATION AND SIMULATION

A. Calibration

The model has 13 parameters. Most of these parameters are difficult to calibrate based directly on data observations, and in any case, the model structure is too simplistic to provide a fully realistic description of the true data generating process. We thus pick parameters that
broadly replicate the salient features of the data and highlight the mechanisms that our model is intended to capture. The empirical sample we use as reference for our calibrations includes firms traded in U.S. stock exchanges over the 50-year period from July 1964 to June 2014. The calibrated parameters for our base case simulations are described in Table I.

The discount rate r is set at 0.050. Because we think of the disruption climate as a slow moving variable, we pick a relatively small mean-reversion rate for μ, $\rho_\mu = 0.070$, which implies a half-life of shocks to μ that is approximately 10 years. We set the volatility of μ to $\sigma_\mu = 0.100$. The parameter choices for ρ_μ and σ_μ imply a standard deviation of 0.267 for μ in a long time series. We pick the volatility of the transitory component of the disruption rate to be $\sigma_M = 0.250$. Thus, the long-term variation in the persistent component of the disruption rate and the short-term variation in its transitory component are similar in magnitude.

We calibrate a moderately informative signal by choosing its precision to be $\eta = 0.500$. Overconfident investors perceive the signal precision to be $\eta_B = 0.934$, which we calibrate based on survey evidence that we discuss in the next paragraph. Given these parameter choices and using Equation (14), the conditional Sharpe ratio of the disruption surprise has a mean reversion rate of $-\left(\rho_\mu + \gamma_B / \sigma_M^2\right) = -0.1589$, which implies a half-life of about 4.36 years. The time-invariant distribution of the conditional Sharpe ratio is normal with a mean of zero and a standard deviation of 0.462. Using the corresponding percentile values, the conditional Sharpe ratio is within the interval $[-0.6, 0.6]$ about 80% of the time, and within $[-1, 1]$ about 97% of the time.15

14 See Internet Appendix B for details of the empirical sample construction and a discussion of the historical stylized facts.

15 Note that, due to its persistence, the conditional Sharpe ratio varies less in finite samples compared to its time-invariant distribution. Furthermore, since the conditional Sharpe ratio is not directly observable, it is difficult to
One can compare the degree of overconfidence assumed in our calibrated model to results from surveys that ask participants to make predictions and to report their perceived confidence intervals. In particular, Ben-David, Graham, and Harvey (2013) ask financial executives to predict one-year S&P 500 returns and provide an 80% confidence interval. The authors find that the executives’ reported confidence intervals include the realized outcome only 36.3% of the time, suggesting that they tend to be quite overconfident about the precision of their estimates. We calibrate the biased signal precision in our base case simulations to match this level of overconfidence. Specifically, given the true signal precision \(\eta = 0.500 \), investors with biased precision \(\eta_B = 0.934 \) compute 80% confidence intervals that include the realized outcome (i.e., shocks to \(\mu_t \)) 36.3% of the time on average.

The remaining parameters of the model describe firms and their investment opportunities. We set the life expectancy of firms at 10 years, with an average of \(1/q_{EG} = 3 \) years spent in the early growth state, \(1/q_{MG} = 4 \) years spent in the mature growth state, and \(1/q_{NG} = 3 \) years spent in the no growth state. The average project termination rate is \(\lambda = 0.150 \), which implies that the average half-life of firms’ active projects is 4.621 years (\(= -\ln(0.5)/\lambda \)).

Firms receive their projects in the early and the mature growth states. The initial investment required for a project is the same in both states, \(k_{EG} = k_{MG} = k \). A higher value of \(k \) generates more cross-sectional dispersion in firms’ growth rates by allowing young firms to

directly assess whether the variation it exhibits in our calibrated model is realistic. We provide a more detailed analysis of the degree of market inefficiency implied by our calibration in Section IV.C, where we consider the profitability of implementable investment strategies.

16 The standard error associated with this point estimate is 7.8%.
17 In earlier studies, Alpert and Raiffa (1969) ask Harvard Business School students to answer general knowledge questions, and Russo and Schoemaker (1992) ask money managers to answer questions about their industry. These studies respectively find the participants’ 98% and 90% confidence intervals to include the correct answer 54% and 50% of the time. Our base-case overconfidence calibration implies 98% and 90% confidence intervals to include the realized outcome 60.8% and 45.5% of the time, respectively.
18 The average number of years an individual firm appears in our empirical sample is 10.56.
grow faster. Accordingly, we calibrate k to match the dispersion in asset growth rates in our empirical sample. Specifically, setting $k = 0.950$ approximately replicates the difference between the average asset growth rates of the median firms in the top and the bottom asset growth portfolios, which is 0.519 in our empirical sample.

We assume that the projects that firms receive in the mature growth state are half as profitable as those that they receive in the early growth state: $a_{MG} = 0.5 \times a_{EG}$. We calibrate $a_{EG} = 0.250$ (and thus $a_{MG} = 0.125$) to approximately match the median operating profitability of firms in our empirical sample, which is 0.145. Finally, we calibrate the capital recovery rate of terminated projects, $\alpha = 0.650$, to approximately match the median Tobin’s q of firms in our empirical sample, which is 1.376.

B. Simulation Procedure and Formation of Characteristic-Sorted Portfolios

Using the parameters described in the previous subsection we simulate sample paths for a set of hypothetical firms. Specifically, we start with an economy with 10,000 firms in the early growth state. As the economy evolves, these firms are endowed with new projects, some of their existing projects terminate, they can transition to new states, and they may die. As described in Section I.A, as firms die they are replaced with new firms born into the early growth state.

The initial values of the disruption climate, μ_0, and investors’ estimate of it, $\hat{\mu}_0$, are drawn randomly from their time-invariant distributions. We simulate 200 years of data by approximating the continuous passage of time with 48 discrete time periods per year (i.e., four periods per month). We drop the first 150 years so as to allow firm characteristics to reach their steady-state distributions, and use the remaining 50 years of data (the length of our empirical sample) for analysis. We repeat this procedure to generate 10,000 simulated samples.
In forming portfolios, we focus on three firm characteristics that received substantial attention in the empirical literature. To capture the value anomaly, we examine the market-to-book portfolios, which are formed by sorting firms with respect to their ratios of market value to capital stock. The asset growth portfolios are formed by sorting firms with respect to the growth rate of their capital stock over the prior year. The profitability portfolios are formed by sorting firms with respect to their ratios of profitability to capital stock. The cutoffs for portfolio assignments are chosen based on the quintile breakpoints of the underlying characteristics. For instance, the low market-to-book (i.e., value) portfolio consists of the firms that are in the bottom quintile of the cross-sectional distribution of the market-to-book ratio, while the high market-to-book (i.e., growth) portfolio consists of the firms that are in the top quintile.

C. Summary Statistics of Simulated Samples

Table II presents summary statistics of the simulated data samples. As shown in Panel A, the value-weighted portfolio of all simulated firms earns an average annual return of 5.00%, matching the discount rate r. Since our model does not include an aggregate market factor, our simulated returns are not as volatile as actual stock returns. Nevertheless, the average volatility of 2.61% is not negligible relative to the model’s discount rate. The other statistics reported in Panel A show that the median firm’s capital stock, profitability, and Tobin’s q do not exhibit substantial variation across or within samples.

19 See Fama and French (1992) for the value anomaly, Cooper, Gulen, and Schill (2008) for the asset growth anomaly, and Fama and French (2015) and Novy-Marx (2013) for the profitability anomaly. Our measurement of firm characteristics differs from these and other studies in two respects. First, our value and profitability measures are scaled by book assets instead of book equity, since capital structure is irrelevant and firms are all-equity financed in our model. Second, unlike in the empirical literature where profitability can be measured in multiple ways (e.g., net versus gross), there is only one profitability measure in our model, which can be interpreted as net of all expenses. In Internet Appendix B, we show that applying our characteristic measures to empirical data results in findings that are qualitatively similar to those in the above-cited studies.
Panel B reports the time-series averages of the median values of firm characteristics in each of the three growth states. The mature growth firms are the largest and the early growth firms are the smallest on average. Profitability is the highest for firms in the early growth state. Since firms do not receive any projects following their transitions from mature growth to no growth, and since these transitions occur with equal likelihood for any firm in the mature growth state, by construction the mature growth and the no growth states exhibit the same average profitability. Asset growth rates decline as firms transition from early growth to mature growth, and become negative in the no growth state. Similarly, Tobin’s q values are the highest in the early growth state, followed by the mature growth state and then the no growth state.

Panel C reports statistics on characteristic-sorted portfolios. The first three columns report the percentages of firms in a given characteristic-sorted portfolio that belong to each of the three growth states. The next four columns are the median values of the firm characteristics for each portfolio. The high market-to-book (i.e., growth) portfolio consists solely of firms in the early growth state, whereas the low market-to-book (i.e., value) portfolio consists mainly of firms in the no growth state. Growth firms also tend to be smaller, more profitable, and exhibit higher growth rates relative to value firms. High asset growth firms, which are primarily in the early growth state, are larger and have higher Tobin’s q values. However, there is no difference between the profitability rates of high versus low asset growth firms. Profitability portfolios are somewhat more evenly distributed across the three growth states. Relative to low profitability firms, high profitability firms are larger and exhibit higher Tobin’s q values and slightly lower growth rates. In comparison to our empirical sample, the simulated characteristic-sorted portfolios exhibit less cross-sectional dispersion in market-to-book and profitability ratios, and
somewhat lower levels of asset growth rates.20

Panel D reports the return volatilities and correlations of characteristic-sorted long-short portfolios.21 The simulated returns of the characteristic-sorted portfolios are less volatile than their empirical counterparts (not reported in the table), and exhibit strong positive correlations with each other. These discrepancies between the simulated and empirical data are not surprising. For parsimony, our model focuses on a single disruptive innovation factor. In reality, there are likely to be several such factors, imperfectly correlated with each other and affecting different portfolios differently. In addition, our model abstracts from other risk factors that are unrelated to disruptive innovations (e.g., short-term shocks to profitability). Such risk factors are likely to increase the return volatilities of the characteristic-sorted portfolios and dampen the correlations between their returns.

III. CHARACTERISTIC-BASED RETURN PREDICTABILITY IN LONG SAMPLES

A. The Exposure of Characteristic-Sorted Portfolios to Disruption

As discussed in Section I.C, characteristic-based return predictability in our model arises from the firms’ exposure to the disruption surprise factor $d\bar{\omega}_t^2$. We start our analysis by examining these factor exposures. In Table III, we report the betas of various characteristic-sorted portfolios with respect to the disruption surprise factor. Since the portfolios’ factor exposures can vary across different states of the world, we report conditional betas as well as the unconditional betas that measure average exposures.22

20 For a more complete comparison of portfolio characteristics in simulated and the empirical data samples, see Table IA.I in Internet Appendix B.
21 The reported volatilities and correlations are average values of in-sample estimates based on monthly data.
22 Factor betas are estimated via monthly return regressions. Note that the disruption surprise factor has a volatility of one by construction (see Equation 13), which is much larger than portfolio return volatilities. Thus, the factor
As the signs of the reported unconditional betas indicate, high disruption rates are good news for high market-to-book, high asset growth, and low profitability firms, and are bad news for low market-to-book, low asset growth, and high profitability firms. The table also reports the unconditional betas for portfolios that are formed based on the interaction of two characteristics. As these betas show, a single characteristic is often not sufficient to characterize firms’ factor exposures.

For instance, while high market-to-book firms are positively exposed to disruption on average, firms can have high market-to-book ratios for different reasons, and depending on the reason, their exposure to the disruption factor will differ. Some are unprofitable firms whose stock prices largely reflect future expected growth. These firms’ exposures to the disruption factor is strongly positive. Other firms with high market-to-book ratios are relatively more mature and derive high market values from highly profitable existing projects as well as access to future opportunities. These firms’ exposure to disruption can be close to zero, since the increased flow of new projects is offset by the demise of some of the existing projects. Thus, the extent to which high market-to-book firms are exposed to disruption depends on their profitability. Similarly, among highly profitable firms, those with low asset growth rates are strongly negatively exposed to disruption, whereas those with high asset growth rates exhibit near-zero exposure.

The next four columns in Table III report conditional betas that measure firms’ exposure to disruption in different states of the model economy. Specifically, we consider states in which the conditional Sharpe ratio of the disruption surprise factor \(\left(\hat{\mu}_t^R - \hat{\mu}_t^M \right) / \sigma_m \) is low or high, and

\begin{align*}
\text{betas are small in absolute value. For ease of interpretation, we report the estimated betas multiplied by 100 (or equivalently, betas with respect to the factor renormalized to have a volatility of 1%).}
\end{align*}
similarly, whether investors’ expected disruption rate $\hat{\mu}_t^B$ is low or high. Firms that benefit from disruption, i.e., those with high asset growth rates, low profitability, and high market-to-book ratios, exhibit higher disruption betas when investors’ expected disruption rates are low rather than high. The intuition is that these firms are proportionally more affected by disruption shocks when their valuations are relatively low, which is the case when investors expect low disruption rates. A similar rationale explains why the disruption betas of these firms are higher when the conditional Sharpe ratio is low. The realized disruption rates disappoint investors in such states of the world on average, lowering the valuations of growth-oriented firms and thus increasing their exposure to subsequent disruption shocks.

In summary, the disruption betas are particularly high for young unprofitable firms with high growth rates, and particularly low for mature profitable firms with low growth rates. Firms’ exposures to disruption change over time as the model economy transitions from states of low to high expected disruption rates or low to high conditional mispricing.

B. Predictability of Characteristic-Sorted Portfolio Returns

In this section we analyze the predictability of the characteristic-sorted portfolio returns that are generated by our model and compare these implications to existing empirical evidence. For brevity, we focus from hereafter on the long-short portfolios that are formed based on firms’ market-to-book ratios, asset growth rates, and profitability. Since the unconditional return premium associated with disruption is zero, our analysis focuses on conditional predictability.

23 In Tables III and IV, low and high values of the conditioning variable are defined as those that are less than one standard deviation below and more than one standard deviation above its mean, respectively.

24 The conditional beta patterns discussed in the text imply that growth firms are better hedges against future disruption shocks in relatively more tranquil times when incumbents are expected to be in a strong position. While there are no hedging demands in our risk-neutral model, similar insights can be explored within the context of asset pricing models with priced disruption risk, such as Gârleanu, Kogan, and Panageas (2012) and Kogan, Papanikolaou, and Stoffman (2015).
Specifically, we examine the predictability of portfolio returns by computing their Sharpe ratios in different subsamples of simulated months that reflect different states of the model economy. The results are reported in Table IV.25

As the first two rows of Table IV show, the predictability of characteristic-sorted portfolio returns strongly depends on the conditional Sharpe ratio of the disruption surprise factor. All three long-short portfolios exhibit highly positive (negative) return performance as measured by their Sharpe ratios when the conditional Sharpe ratio associated with disruption is low (high). Recall that low conditional Sharpe ratio states are those in which biased investors’ estimate of the disruption climate is too high relative to the rational estimate. Accordingly, value, asset growth, and profitability strategies that bet in favor of incumbents and against newcomers in such states of the world exhibit positive abnormal performance.

The conditional Sharpe ratios discussed above are not directly observable to the econometrician. Thus, to test the model’s implications, we need a set of observable or at least indirectly observable conditioning variables. Consider first investors’ beliefs about the expected disruption rate, which might be indirectly inferred from surveys and observed investor or management choices. The third and fourth rows in Table IV show that the characteristic-sorted portfolios exhibit positive performance when investors’ disruption expectations are high and negative performance when those expectations are low. These patterns are a reflection of investor overconfidence. While overconfidence does not generate an unconditional bias in investor expectations, it does cause the distribution of those expectations to be more dispersed. As a result, expectations in the right (left) tail are too high (low) relative to the fully rational case. In other words, when investors are very optimistic about the disruption rate they tend to be

25 Sharpe ratios are computed as the ratio of the subsample mean to the subsample standard deviation of the monthly returns of long-short portfolios, and are reported in annualized terms.
too optimistic and when they are very pessimistic they tend to be too pessimistic. Hence, our model predicts that measures of investor beliefs about growth opportunities, such as the “sentiment” proxies used in the empirical literature, predict subsequent returns.26

Next, we examine the predictability of returns based on the cross-sectional distributions of firm fundamentals. The disruption process in our model generates persistent differences in the cross-sectional dispersion of firms’ valuation ratios, asset growth rates, and profitability. To evaluate the information content of cross-sectional dispersion, we analyze returns in subsamples in which the market-to-book spread, the asset growth spread, and the profitability spread are low or high.27 The results are reported in the last six rows of Table IV.

Consider first the dispersion in asset growth and profitability rates. Being non-price measures of firm fundamentals, asset growth and profitability rates in the model reflect the hard information revealed by realized disruption rates. Specifically, asset growth rates are more dispersed when realized disruption rates are high, and profitability is more dispersed when realized disruption rates are low. Since overconfident investors underreact to these hard information signals, the dispersions of asset growth and profitability rates are proxies for investor under-reaction in our model. Confirming this intuition, Table IV shows that the three characteristic-sorted portfolios in our model perform well following periods of low asset growth spreads and high profitability spreads, and poorly in the opposite circumstances.

Unlike asset growth and profitability, market-to-book ratios reflect market prices and thus are affected by both hard and soft information. This makes the relation between the cross-sectional dispersion of market-to-book ratios and the future returns of characteristic-sorted

26 See, for instance, Baker and Wurgler (2006), who find that investor sentiment proxies such as the number of IPOs or the equity share in new issues predict the subsequent performance of characteristic-sorted portfolios.

27 The market-to-book spread is defined as the difference between the market-to-book ratios of the median firms in the high market-to-book (i.e., growth) and the low market-to-book (i.e., value) portfolios. The asset growth and the profitability spreads are defined similarly based on the high/low asset growth and profitability portfolios.
portfolios more subtle. First, high realized disruption rates increase the assets of growth firms, increasing their book values, thereby narrowing the spread between the market-to-book ratios of growth and value firms. Since investors underreact to this hard information, narrowing the dispersion of market-to-book ratios through this channel is associated with low future returns to characteristic-sorted portfolios that bet on incumbent firms. Second, negative realizations of the soft information signal decrease growth firms’ valuations, and thus decrease the cross-sectional dispersion of market-to-book ratios. Since investors overreact to such signals, narrowing the dispersion of market-to-book ratios through this channel is also associated with low future returns of characteristic-sorted portfolios that bet on the incumbents. Thus, both channels contribute to a negative relationship between the market-to-book spread and the future returns of the three characteristic-sorted portfolios analyzed in Table IV. The estimates in the table confirm this negative relationship and show that the effect is asymmetric: the abnormal performance of characteristic-sorted portfolios is especially large following periods of high market-to-book spread.

To summarize, the cross-sectional dispersion of firm characteristics reflects past realizations of both hard and soft information, and can thus predict future returns. In particular, dispersion in non-price characteristics such as asset growth and profitability rates relate to investors’ under-reaction to hard information, whereas dispersion in price-related characteristics such as market-to-book ratios reflect both under-reaction to hard information and over-reaction to soft information. As far as we know, there has been little empirical inquiry into these predictions. One exception is Cohen, Polk, and Vouleentaho (2003), who show that the value spread, which measures the cross-sectional dispersion of book-to-market ratios, positively predicts the subsequent returns of value-minus-growth strategies. Our model’s predictions
discussed above are consistent with their findings.28

C. Autocorrelation and Momentum in Characteristic-Sorted Portfolio Returns

As we have discussed in Section I.C, returns are persistently predictable in our model. Specifically, the conditional Sharpe ratio of the disruption surprise factor is a persistent process, as Equation (14) shows. In this section, we examine the implications of persistence for the autocorrelation of characteristic-sorted portfolio returns, and the performance of momentum investment strategies that exploit these autocorrelation patterns. The results are reported in Table V.

Panel A of Table V reports autocorrelations of the three characteristic-sorted long-short portfolio returns. Autocorrelations are calculated for returns measured at one-year and five-year intervals.29 In addition to population autocorrelations that are estimated by combining all simulated 50-year data samples, the table also reports some statistics on in-sample autocorrelations that are estimated within each 50-year simulated sample. Population autocorrelations are positive at one year intervals and become even larger at five year intervals. Thus, characteristic-sorted portfolio returns are highly persistent. However, strong persistence is revealed only by the population estimates. The in-sample autocorrelation estimates are small on average and become weaker at longer return intervals. Furthermore, the in-sample estimates are negative in 20\% or more of the simulated samples. Thus, the strong autocorrelation patterns in the population may not be easy to detect even with 50 years of data. We examine the

28 It should be noted that expected returns in our model vary because investors have biased estimates of future cash flows. Given this, one might also be able to test the implications of our model by directly exploring the link between characteristics and observed biases in earnings forecasts, as in La Porta (1996). Alternatively, one can indirectly infer biases by looking at the link between characteristics and abnormal stock returns on earnings announcement dates, as in Chopra, Lakonishok, and Ritter (1992) and La Porta, Lakonishok, Shleifer, and Vishny (1997).

29 In unreported results, we find that monthly return autocorrelations are close to zero. This is not surprising, as short-term return variation in our model is primarily determined by Brownian diffusion terms.
implications of these autocorrelation patterns for the distribution of in-sample Sharpe ratios of characteristic-sorted portfolios in the next subsection.

Panel B of Table V evaluates the performance of momentum investment strategies that are designed to exploit the autocorrelation of characteristic-sorted portfolio returns. Specifically, for a given portfolio and a past return period (one year or five years), the monthly-rebalanced momentum strategy takes a long position in the portfolio if the portfolio’s past return is positive, and a short position if its past return is negative. In line with the strongly positive population autocorrelation patterns in Panel A, the momentum strategies we consider generate substantially positive Sharpe ratios. These predictions of the model are consistent with the findings in Lewellen (2002), who documents that book-to-market (as well as size) portfolios exhibit momentum, and the analysis of Chen and Hong (2002), who highlight the role of positive autocorrelation for Lewellen’s momentum findings.

The empirical literature also documents the profitability of momentum strategies that exploit the autocorrelation of industry portfolios (see, for instance, Moskowitz and Grinblatt (1999)). A straightforward extension of our model can generate autocorrelation and momentum in industry portfolios as well. To understand this, note that the industry portfolios examined empirically include only publicly traded firms, which tend to be more mature and profitable compared to their private counterparts (e.g., young startups). In our model, in addition to active publicly traded firms, there are unborn future competitors, which can be interpreted as private firms. In this interpretation of the model, disruption shocks that improve private firms’ prospects hurt public firms’ prospects, and vice versa. Consistent with this interpretation, we find in unreported analyses that the combined market value of the active firms responds negatively to disruption shocks in our simulations. Our basic modeling framework can also be extended to multiple industries with imperfectly correlated disruption rates, which would allow for
momentum strategies that exploit the variation across industries.

IV. CHARACTERISTIC-BASED RETURN PREDICTABILITY IN FINITE SAMPLES

Our focus up to this point is on conditional return predictability in arbitrarily long samples (i.e., population moments). In this section, we turn our attention to return predictability patterns that obtain in finite samples. As we show in Section IV.A, relatively large in-sample Sharpe ratios are far more likely to arise in our model with overconfident investors, even though the unconditional return premia are zero by design.

The assumption of zero unconditional return premia in our model is intended for parsimony; it allows us to isolate the return predictability patterns that result from the main mechanisms of the model. In reality, characteristic-sorted portfolio returns may also reflect differences in unconditional expected returns of firms with different characteristics, such as value versus growth. Indeed, much of the existing literature, both rational and behavioral, views characteristic-based return predictability as evidence of expected return differences that are permanent. While our approach is different, we believe that it complements the existing explanations in the literature and that a combined approach can potentially provide a better understanding of the historical evidence. In Section IV.B we illustrate this point with an extension of the model which features non-zero unconditional expectation of returns in finite samples.

Finally, Section IV.C analyzes quantitative investment strategies that are designed to detect return predictability from past data samples. As we discuss, the return performance of such strategies provides a gauge of the degree of market inefficiency in our model.
A. Sharpe Ratio Distributions of Characteristic-Sorted Portfolios in Finite Samples

We start our analysis by computing annualized Sharpe ratios for the three characteristic-sorted long-short portfolios using 600 months (50 years) of return data in each simulated sample. We then plot the probability distributions of these Sharpe ratios across the 10,000 simulated samples. The results are reported in Table VI. Panel A of the table provides the benchmark for these Sharpe ratio distributions under the null of no return predictability. Specifically, the panel shows the t-statistic values for conventional statistical significance levels, and the annualized Sharpe ratios that these t-statistic values correspond to in a 50-year sample period.30

Panel B of Table VI reports the Sharpe ratios distributions for the three characteristic-sorted long-short portfolios that are generated in simulations with rational investors. Relative to the benchmark distribution in Panel A, the simulated distributions of the characteristic portfolios have slightly negative means and are also left-skewed. These deviations from the benchmark, which are quite small in magnitude, are likely to result in part from the fact that the returns of characteristic-sorted portfolios are not distributed i.i.d. normal.31 The basic takeaway from these simulations is that extreme Sharpe ratio realizations (e.g., magnitudes that are comparable to historically observed ones) are extremely unlikely in our model when investors are rational.

The main results of our analysis are described in Panel C of Table VI and Figure 1.32 Panel C reports the distributions of characteristic-sorted portfolios’ Sharpe ratios in simulations

30 A long-short portfolio’s Sharpe ratio is the t-statistic on its mean return divided by the square root of T, which is the number of return observations. Our sample period is 50 years, or 600 months; therefore the relevant t distribution has 599 degrees of freedom. The reported Sharpe ratios are annualized by multiplying by square root of 12.
31 Indeed, in unreported analyses we find that the realized mean returns of the characteristic-sorted portfolios are positively correlated with the realized time-series return standard deviations of those portfolios. Thus, in simulated samples where the portfolios earn positive returns on average, those returns are more volatile, dampening the realized Sharpe ratio. Such deviations from constant return volatility are not surprising in a model like ours, where the systematic factors affect firms’ valuations in non-linear ways.
32 For visual ease Figure 1 plots smoothed probability distribution function estimates that are obtained by applying a normal kernel function to simulated Sharpe ratios. Figures for the asset growth and the profitability portfolios are omitted for brevity.
with overconfident investors. Figure 1 plots the Sharpe ratio distributions for the low-minus-high market-to-book portfolio with rational and overconfident investors.\(^{33}\) As the panel and the table show, introducing the overconfidence bias results in substantially more dispersed Sharpe ratio distributions relative to the rational case. The economic magnitudes of the tail Sharpe ratios are quite large. For instance, the 90\(^{th}\) percentile of the Sharpe ratio of the low-minus-high market-to-book portfolio is more than doubled, from 0.155 with rational investors to 0.367 with overconfident investors.

To put things into a more concrete perspective, consider a Sharpe ratio of 0.40, which is within the range of the historical Sharpe ratios documented in empirical studies (a Sharpe ratio of 0.40 over a 50-year period corresponds to a \(t\)-statistic of \(0.40 \times \sqrt{50} = 2.83\)). Based on the distributions reported in Table VI, what is the likelihood of observing a 50-year sample in which characteristic-sorted portfolios achieve a Sharpe ratio of 0.40 or above in absolute value (i.e., in either tail of the distribution)? When investors are rational, this likelihood is extremely low. For instance, market-to-book sorts generate a Sharpe ratio of 0.40 or above in only 0.63% of the sample paths. With overconfident investors, however, market-to-book sorts generate a Sharpe ratio of 0.40 or above in 18.23% of the sample paths, which is a 29-fold increase relative to the case with rational investors. Similarly, at least one portfolio sorted based on the three characteristics we consider generates a Sharpe ratio of 0.40 or above in 20.64% of the sample paths. Thus, although the likelihood of generating the magnitude of historically observed characteristic-based anomalies is negligible when investors have unbiased beliefs, these magnitudes arise quite frequently when investors are overconfident.

It should be stressed that the increased frequency of high Sharpe ratios are generated in a

\(^{33}\) Figures for the asset growth and the profitability portfolios are omitted for brevity.
model where there is no unconditional return predictability, so the higher probability of extreme outcomes arises because overconfidence increase the dispersion of the Sharpe ratios. This increase in dispersion is a consequence of the persistence in returns. As discussed in the previous subsection, characteristic-sorted portfolio returns exhibit positive autocorrelation. An implication of positive autocorrelation is increased variance of long-term return realizations relative to short-term return volatility. As a result, Sharpe ratios, which scale averages of long-term return realizations by short-term volatility, exhibit greater dispersion.

B. Overconfidence versus Optimism

To illustrate the complementarity between different sources of return predictability, we now briefly consider an additional source of bias, namely, investors being initially too optimistic about the disruption climate. As Shiller (2000) points out, technological innovations such as the internet tend to create expectations of substantial opportunities and changes in the business landscape, even though the immediate commercial potential of the new technology may be far from clear. In our model, investors’ expectations may be initially biased in the manner suggested by Shiller; however, over time they do learn, so in the steady-state, returns are not influenced by this bias. Our implicit assumption is that in the early 1960s (which is when most empirical sample periods start), because of data and computational limitations, investors had not learned a lot from their past history and that their beliefs were influenced by their inherent optimism bias.

The way we introduce initial investor optimism is as follows: At the beginning of each simulated 50-year sample period, we allow for an exogenous, ad-hoc increase in investors’ estimate of the disruption climate, $\hat{\mu}_t^B$. The rest of the model applies the same as before:

34 The specific magnitude we add to $\hat{\mu}_t^B$ is two times the standard deviation of the time-invariant distribution of μ.

37
investors receive new signals, observe the realized disruption rates, and update their beliefs. We implement the initial optimism experiment in two different specifications. The first is the rational case where investors perceive the true signal precision η. In this case, investors process the new information rationally, but start the sample period with optimistic beliefs. The second specification is our base-case calibration where investors are overconfident about the precision of their signal. Since overconfident investors update their beliefs more slowly in response to the realized disruption rate, the effects of initial optimism in this second specification are likely to be more persistent.

Panel D of Table VI summarizes the results. When investors are not overconfident about the precision of their signals, initial optimism generates very weak return predictability. Relative to the fully rational case in Panel B, initial optimism shifts the Sharpe ratio distributions to the right, but the magnitude of this shift is quite small. Thus, the effects of initial optimism quickly dissipate when investors update their priors rationally. In contrast, Sharpe ratio distributions shift to the right substantially when investors are both initially optimistic and overconfident. In this case, the initial bias caused by optimism takes longer to correct since investors are also fairly confident about the precision of their initial beliefs.

The main takeaway from Table VI is that extreme return outcomes become more likely when investor beliefs adjust slowly. Characteristic-sorted portfolios may exhibit extreme Sharpe ratios in finite samples more frequently compared to the rational benchmark, even if there is no directional return predictability associated with these portfolios in the long run. In reality characteristics may directionally predict returns; for instance, value stocks may have higher expected returns than growth stocks for either rational or behavioral reasons. If so, our point about the increased likelihood of extreme return outcomes can still be a useful ingredient in rationalizing the magnitude of return predictability observed in historical data.
C. Quantitative Investment Strategies

The analyses above illustrate that characteristic-sorted portfolios can exhibit large Sharpe ratios in finite samples relatively often. It should be emphasized that this result obtains in a setting where conditional Sharpe ratios can be quite large. Indeed, from the perspective of a fully rational investor who knows the structure of the model economy and can thus observe the conditional Sharpe ratios, the market is quite inefficient. One might argue, however, that a more realistic gauge of market efficiency is provided by the profitability of “quant” investment strategies, which are designed to detect return predictability from past data. We analyze such investment strategies in this section.

Our analysis requires a number of assumptions. First, we assume that the investors who exploit mispricing are risk averse with preferences described by log utility. Risk aversion is necessary to prevent the investor from taking infinite positions in mispriced assets and log utility simplifies the portfolio choice problem by shutting down hedging demands. Let \(\{ \tilde{r}_t, \sigma_t \} \) describe the investor’s opportunity set at time \(t \), where \(\tilde{r}_t \) and \(\sigma_t \) are the risky asset’s conditional expected excess return and standard deviation. The weight a log utility investor assigns to the risky asset is given by

\[
\omega_t = \frac{\tilde{r}_t}{\sigma_t^2}.
\]

Since asset prices in our model are set by a risk-neutral group of agents with homogenous beliefs, the risk-averse investors’ trades do not influence prices. In other words, the mass of risk neutral investors are willing to trade any quantity of any asset with the risk-averse investors without revising their beliefs—i.e., the two groups of investors agree to disagree—and the
resulting trades have no price impact.35

The fully rational investors we consider employ “the optimal factor timing strategy.” Specifically, the fully rational investor observes both the realized disruption rate dM, and the soft information signal ds, and in addition knows the correct signal precision. Thus, the fully rational investor can infer the biases of the other investors and can compute the conditional Sharpe ratio of the disruption surprise factor. Using Equation (13), the investment opportunity set for this investor is characterized by

$$\{\bar{r}_t, \sigma_t\} = \left\{\frac{\hat{\mu}_t^R - \hat{\mu}_t^B}{\sigma_M}, 1\right\}. \quad (16)$$

Inspecting Equations (15) and (16), the optimal factor timing strategy attempts to time the mispriced factor by increasing exposure to it when the rational estimate $\hat{\mu}_t^R$ exceeds the biased estimate $\hat{\mu}_t^B$ by a greater amount. The optimal factor timing strategy constitutes a benchmark for investment return performance in the model, in the sense that it achieves the maximum possible performance given the investor’s utility function.

Against this benchmark of a fully rational investor, we consider an ad hoc, but probably more realistic depiction of quant investors. Specifically, the ad hoc quant employs a “characteristic timing strategy” that bases trades on the past returns of characteristic-sorted long-short portfolios. The “characteristic timing quant” estimates the expected excess return \bar{r}_t and the

35 One can envision more general models where all agents are risk averse, in which case the investors who exploit mispricing would trade with price impact. Given our partial-equilibrium focus on quant investors and the profitability of their trading strategies, such a general model is beyond the scope of the current paper.
return standard deviation σ_t of a characteristic-sorted portfolio using the past 10, 25, or 50 years of return data, and then chooses his dynamic portfolio weights by using these quantities according to Equation (15). These heuristic investment strategies closely resemble real-world quantitative approaches, and since they are purely data driven, they do not require the quant investor to know the model structure.

Table VII summarizes the results for the optimal factor timing strategy and the characteristic timing strategies. For each strategy, we compute the investor’s annualized Sharpe ratio over 10-year simulated sample periods and report the distributions of these Sharpe ratios across all simulated sample paths (analogous to Table VI). The choice of a 10-year evaluation period reflects the typical length of track records investors take into account in practice.

Panel A contains the results for the optimal factor timing strategy. The strategy attains a Sharpe ratio of 0.323 in the median sample path, and generates a negative return in about 23% of the sample paths. Recall that this strategy is designed to achieve the maximum possible performance; it requires observing both the soft and the hard information, correctly assessing the signal precision, and knowing the full model structure. Despite these onerous information requirements, the strategy delivers a reasonable level of median performance and substantial downside risk, suggesting that the degree of pricing inefficiency in the calibrated model is not unrealistically high.

Panel B reports the results for the characteristic timing strategies. As indicated above, these strategies may provide a more realistic perspective on quant investors’ ability to detect mispricing: unlike the factor strategy that relies on the optimal filtering rule, the characteristic

36 Because the three characteristic-sorted portfolio returns are highly correlated with each other, we consider three separate strategies rather than a quant strategy that dynamically rotates holdings among the value, asset growth, and profitability portfolios.
strategies do not require quant investors to have any knowledge of the model. The Sharpe ratio distributions of the characteristic timing strategies show that utilizing more recent data for estimation results in better return performance. For instance, the value timing strategy generates a median Sharpe ratio of 0.134 when the quant investor forms his portfolio using data from the past 10 years, but a median Sharpe ratio of only 0.037 when data from the past 50 years is used. Even using past 10 years’ data, however, the median Sharpe ratio is quite small, and there is a 38% chance that the quant investor generates a negative return over a 10-year period.

As we mentioned at the beginning of this section, the Sharpe ratios of the timing strategies we consider provide one way to gauge the efficiency of our model’s stock market. We would conclude that our calibrated model represents a very inefficient market if it allows quant investors to generate very high Sharpe ratios on average. However, this does not seem to be the case. Although characteristic-sorted portfolios generate high Sharpe ratios in about 20% of the sample paths in the calibrated model, we find relatively low median Sharpe ratios for data-driven quant investment strategies, indicating that the historical return patterns can be generated in a market where inefficiencies are not large enough to be easily detectable and exploitable.

V. CONCLUSION

Over the past 50 years, market-neutral portfolios formed on characteristics like value, profitability and asset growth have generated extremely high Sharpe ratios. Motivated by these observations, financial economists have developed a number of rational and behavioral asset pricing models. We contribute to this literature by offering a dynamic behavioral model that explicitly links characteristic-sorted portfolio returns to systematic risk factors that determine the evolution of firm fundamentals such as profitability and growth. Our model can generate the
high Sharpe ratios observed in the historical data, and provides additional testable implications about conditional return patterns of characteristic-sorted portfolios.

For the sake of parsimony we have made a number of assumptions. In particular, we assume risk neutrality and design a model where one economic concept generates multiple anomalies. Given our simplifications, it is not surprising that our model does not capture all salient features of the data, e.g., the correlations of characteristic-sorted portfolio returns are too high in our model. Moreover, the most extreme Sharpe ratios documented in the empirical literature cannot be generated as a likely sample path in our model. These discrepancies can potentially be addressed by incorporating insights from our model into existing risk-based or behavioral models that generate a richer structure of expected returns.

Finally, while our main focus is on overconfidence as the source of mispricing, there are likely to be a number of other impediments to learning that may have influenced historical stock returns. For example, although investors in our model are overconfident about the precision of their soft signal, they otherwise use Bayes’ rule to process all available information. In reality, there are obvious information processing costs, especially in the early part of our sample, which clearly affected learning. Indeed, financial economists were also slow to learn about return anomalies, even after having access to large data bases and fast computers. So, slow learning in reality may have as much to do with technical or institutional impediments as well as with biased perceptions. Future research can directly model those impediments, along with the innovations that relax them and make markets more efficient over time.
REFERENCES

Alpert, Marc, and Howard Raiffa, 1969, A progress report on the training of probability assessors, unpublished manuscript, Harvard University.

Kogan, Leonid, Dimitris Papanikolaou, and Noah Stoffman, 2015, Winners and losers: Creative destruction and the stock market, working paper.

Table I
Model Parameters

The table reports the parameter values in the base-case calibration. More detailed descriptions of the parameters and their calibration are provided in Section II.A.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount rate r</td>
<td>0.050</td>
</tr>
<tr>
<td>Mean reversion rate of disruption climate ρ</td>
<td>0.070</td>
</tr>
<tr>
<td>Volatility of disruption climate σ</td>
<td>0.100</td>
</tr>
<tr>
<td>Volatility of transitory disruption shocks σ</td>
<td>0.250</td>
</tr>
<tr>
<td>True signal precision η</td>
<td>0.500</td>
</tr>
<tr>
<td>Biased signal precision η_B</td>
<td>0.934</td>
</tr>
<tr>
<td>Expected time in the early growth state $1/q_{EG}$</td>
<td>3 years</td>
</tr>
<tr>
<td>Expected time in the mature growth state $1/q_{MG}$</td>
<td>4 years</td>
</tr>
<tr>
<td>Expected time in the no growth state $1/q_{NG}$</td>
<td>3 years</td>
</tr>
<tr>
<td>Project capital investment k</td>
<td>0.950</td>
</tr>
<tr>
<td>Project profitability in the early growth state a_{EG}</td>
<td>0.250</td>
</tr>
<tr>
<td>Project profitability in the mature growth state a_{MG}</td>
<td>0.125</td>
</tr>
<tr>
<td>Average project termination rate λ</td>
<td>0.150</td>
</tr>
<tr>
<td>Capital recovery rate α</td>
<td>0.650</td>
</tr>
</tbody>
</table>
Table II
Summary Statistics of Simulated Data

The table reports summary statistics of the simulated data samples. The statistics reported in the table are described in Section III.C.

Panel A: All firms

<table>
<thead>
<tr>
<th></th>
<th>Value-weighted portfolio (annual %)</th>
<th>Median capital stock K</th>
<th>Median profitability f/K</th>
<th>Median Tobin’s $q V/K$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean across all simulated samples</td>
<td>5.00</td>
<td>3.150</td>
<td>0.144</td>
<td>1.371</td>
</tr>
<tr>
<td>Standard deviation of sample means</td>
<td>0.75</td>
<td>0.232</td>
<td>0.005</td>
<td>0.055</td>
</tr>
<tr>
<td>Mean of sample standard deviations</td>
<td>2.61</td>
<td>0.267</td>
<td>0.004</td>
<td>0.077</td>
</tr>
</tbody>
</table>

Panel B: Median firm characteristics

<table>
<thead>
<tr>
<th></th>
<th>Capital stock K</th>
<th>Profitability f/K</th>
<th>Asset growth (%)</th>
<th>Tobin’s $q V/K$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Growth</td>
<td>2.418</td>
<td>0.171</td>
<td>22.35</td>
<td>2.242</td>
</tr>
<tr>
<td>Mature Growth</td>
<td>4.057</td>
<td>0.138</td>
<td>9.21</td>
<td>1.285</td>
</tr>
<tr>
<td>No Growth</td>
<td>2.670</td>
<td>0.138</td>
<td>-13.91</td>
<td>1.192</td>
</tr>
</tbody>
</table>

Panel C: Characteristic-sorted portfolios

<table>
<thead>
<tr>
<th></th>
<th>% Early Growth</th>
<th>% Mature Growth</th>
<th>% No Growth</th>
<th>Capital stock K</th>
<th>Profitability f/K</th>
<th>Asset growth (%)</th>
<th>Tobin’s $q V/K$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Market-to-Book</td>
<td>0.0</td>
<td>33.5</td>
<td>66.5</td>
<td>2.515</td>
<td>0.113</td>
<td>-12.22</td>
<td>1.106</td>
</tr>
<tr>
<td>High Market-to-Book</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.911</td>
<td>0.138</td>
<td>37.54</td>
<td>2.312</td>
</tr>
<tr>
<td>Low Asset Growth</td>
<td>0.1</td>
<td>0.1</td>
<td>99.8</td>
<td>1.673</td>
<td>0.122</td>
<td>-13.94</td>
<td>1.299</td>
</tr>
<tr>
<td>High Asset Growth</td>
<td>57.5</td>
<td>39.8</td>
<td>2.7</td>
<td>2.007</td>
<td>0.122</td>
<td>37.60</td>
<td>2.249</td>
</tr>
<tr>
<td>Low Profitability</td>
<td>538.5</td>
<td>234.8</td>
<td>26.7</td>
<td>1.579</td>
<td>0.092</td>
<td>12.15</td>
<td>1.296</td>
</tr>
<tr>
<td>High Profitability</td>
<td>58.1</td>
<td>24.0</td>
<td>17.9</td>
<td>3.884</td>
<td>0.212</td>
<td>8.53</td>
<td>2.049</td>
</tr>
</tbody>
</table>
Table II – continued

Panel D: Characteristic-sorted portfolio returns

<table>
<thead>
<tr>
<th></th>
<th>Volatility (annualized %)</th>
<th>Correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Low minus High Market-to-Book</td>
</tr>
<tr>
<td>Low minus High Market-to-Book</td>
<td>3.85</td>
<td>1</td>
</tr>
<tr>
<td>Low minus High Asset Growth</td>
<td>3.49</td>
<td>-</td>
</tr>
<tr>
<td>High minus Low Profitability</td>
<td>3.36</td>
<td>-</td>
</tr>
</tbody>
</table>
Table III
Characteristic-Sorted Portfolios’ Exposure to Disruption

The table reports betas of characteristic-sorted portfolios with respect to the disruption surprise factor. The betas are estimated via monthly return regressions. The unconditional betas are estimated using all simulated sample months. The conditional betas are estimated using subsamples of simulated months in which the conditioning variables are less than one standard deviation below or more than one standard deviation above their respective means. For ease of interpretation, the table reports the estimated betas multiplied by 100.

<table>
<thead>
<tr>
<th></th>
<th>Unconditional</th>
<th>Low Conditional Sharpe Ratio</th>
<th>High Conditional Sharpe Ratio</th>
<th>Low Expected Disruption</th>
<th>High Expected Disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Market-to-Book</td>
<td>−1.57</td>
<td>−1.45</td>
<td>−1.67</td>
<td>−1.19</td>
<td>−1.72</td>
</tr>
<tr>
<td>High Market-to-Book</td>
<td>1.90</td>
<td>2.23</td>
<td>1.57</td>
<td>3.35</td>
<td>0.65</td>
</tr>
<tr>
<td>Low Asset Growth</td>
<td>−2.34</td>
<td>−2.17</td>
<td>−2.47</td>
<td>−2.48</td>
<td>−2.10</td>
</tr>
<tr>
<td>High Asset Growth</td>
<td>0.60</td>
<td>0.81</td>
<td>0.40</td>
<td>2.18</td>
<td>−0.43</td>
</tr>
<tr>
<td>High Profitability</td>
<td>−1.17</td>
<td>−1.26</td>
<td>−1.12</td>
<td>−1.06</td>
<td>−1.29</td>
</tr>
<tr>
<td>Low Profitability</td>
<td>1.34</td>
<td>1.77</td>
<td>0.97</td>
<td>3.79</td>
<td>−0.18</td>
</tr>
<tr>
<td>Unprofitable / High Market-to-Book</td>
<td>3.62</td>
<td>3.61</td>
<td>3.64</td>
<td>5.88</td>
<td>2.07</td>
</tr>
<tr>
<td>Profitable / High Market-to-Book</td>
<td>0.19</td>
<td>0.15</td>
<td>0.15</td>
<td>0.84</td>
<td>−0.35</td>
</tr>
<tr>
<td>Profitable / High Asset Growth</td>
<td>−0.04</td>
<td>−0.40</td>
<td>0.09</td>
<td>−0.03</td>
<td>−0.38</td>
</tr>
<tr>
<td>Profitable / Low Asset Growth</td>
<td>−2.89</td>
<td>−2.79</td>
<td>−3.01</td>
<td>−3.17</td>
<td>−2.63</td>
</tr>
</tbody>
</table>
Table IV
Predictability of Characteristic-Sorted Portfolio Returns

The table reports Sharpe ratios of long-short characteristic-sorted portfolio returns. The Sharpe ratios are computed using monthly returns in subsamples of simulated months in which the conditioning variables are less than one standard deviation below or more than one standard deviation above their respective means. The reported Sharpe ratios are annualized.

<table>
<thead>
<tr>
<th></th>
<th>Low minus High Market-to-Book</th>
<th>Low minus High Asset Growth</th>
<th>High minus Low Profitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Conditional Sharpe Ratio</td>
<td>0.601</td>
<td>0.542</td>
<td>0.553</td>
</tr>
<tr>
<td>High Conditional Sharpe Ratio</td>
<td>−0.622</td>
<td>−0.621</td>
<td>−0.488</td>
</tr>
<tr>
<td>Low Expected Disruption</td>
<td>−0.128</td>
<td>−0.143</td>
<td>−0.074</td>
</tr>
<tr>
<td>High Expected Disruption</td>
<td>0.183</td>
<td>0.152</td>
<td>0.261</td>
</tr>
<tr>
<td>Low Asset Growth Spread</td>
<td>0.213</td>
<td>0.147</td>
<td>0.181</td>
</tr>
<tr>
<td>High Asset Growth Spread</td>
<td>−0.164</td>
<td>−0.179</td>
<td>−0.091</td>
</tr>
<tr>
<td>Low Profitability Spread</td>
<td>−0.129</td>
<td>−0.140</td>
<td>−0.095</td>
</tr>
<tr>
<td>High Profitability Spread</td>
<td>0.255</td>
<td>0.173</td>
<td>0.210</td>
</tr>
<tr>
<td>Low Market-to-Book Spread</td>
<td>−0.084</td>
<td>−0.117</td>
<td>0.008</td>
</tr>
<tr>
<td>High Market-to-Book Spread</td>
<td>0.449</td>
<td>0.400</td>
<td>0.429</td>
</tr>
</tbody>
</table>
Table V
Autocorrelation and Momentum in Characteristic-Sorted Portfolio Returns

The table reports autocorrelations of and momentum in characteristic-sorted long-short portfolio returns. Panel A reports autocorrelations of returns measured at one year and five year intervals. The population autocorrelations are computed by combining all simulated data samples, whereas in-sample autocorrelations are computed within each 50-year simulated sample. Panel B reports the annualized Sharpe ratios of momentum strategies that go long or short in each portfolio in each month based on the sign of the portfolio’s return in the prior one year or five years.

<table>
<thead>
<tr>
<th></th>
<th>Low minus High Market-to-Book</th>
<th>Low minus High Asset Growth</th>
<th>High minus Low Profitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Autocorrelations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One year:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population</td>
<td>0.209</td>
<td>0.202</td>
<td>0.165</td>
</tr>
<tr>
<td>In-sample mean</td>
<td>0.129</td>
<td>0.127</td>
<td>0.076</td>
</tr>
<tr>
<td>% of samples negative</td>
<td>20.1%</td>
<td>20.9%</td>
<td>33.7%</td>
</tr>
<tr>
<td>Five years:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population</td>
<td>0.337</td>
<td>0.324</td>
<td>0.278</td>
</tr>
<tr>
<td>In-sample mean</td>
<td>0.073</td>
<td>0.069</td>
<td>0.022</td>
</tr>
<tr>
<td>% of samples negative</td>
<td>39.4%</td>
<td>39.9%</td>
<td>47.0%</td>
</tr>
<tr>
<td>Panel B: Characteristic-Based Momentum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One-year Momentum Sharpe Ratio</td>
<td>0.208</td>
<td>0.205</td>
<td>0.146</td>
</tr>
<tr>
<td>Five-year Momentum Sharpe Ratio</td>
<td>0.264</td>
<td>0.259</td>
<td>0.194</td>
</tr>
</tbody>
</table>
Table VI
Sharpe Ratio Distributions in Finite Samples

The table reports percentiles of Sharpe ratio distributions in simulated 50-year samples. Panel A reports percentiles of the t distribution and the corresponding annualized Sharpe ratios. Panels B, C, and D report percentiles of the distributions of annualized Sharpe ratios for characteristic-sorted long-short portfolios in simulations with rational, overconfident, and initially optimistic investors, respectively.

<table>
<thead>
<tr>
<th>Percentile</th>
<th>1st</th>
<th>5th</th>
<th>10th</th>
<th>50th</th>
<th>90th</th>
<th>95th</th>
<th>99th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Benchmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-statistic</td>
<td>−2.333</td>
<td>−1.647</td>
<td>−1.283</td>
<td>0</td>
<td>1.283</td>
<td>1.647</td>
<td>2.333</td>
</tr>
<tr>
<td>Sharpe Ratio</td>
<td>−0.330</td>
<td>−0.233</td>
<td>−0.181</td>
<td>0</td>
<td>0.181</td>
<td>0.233</td>
<td>0.330</td>
</tr>
<tr>
<td>Panel B: Rational Investors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low minus High Market-to-Book</td>
<td>−0.361</td>
<td>−0.265</td>
<td>−0.212</td>
<td>−0.034</td>
<td>0.155</td>
<td>0.211</td>
<td>0.311</td>
</tr>
<tr>
<td>Low minus High Asset Growth</td>
<td>−0.383</td>
<td>−0.285</td>
<td>−0.231</td>
<td>−0.056</td>
<td>0.120</td>
<td>0.171</td>
<td>0.268</td>
</tr>
<tr>
<td>High minus Low Profitability</td>
<td>−0.329</td>
<td>−0.243</td>
<td>−0.196</td>
<td>−0.032</td>
<td>0.126</td>
<td>0.169</td>
<td>0.237</td>
</tr>
<tr>
<td>Panel C: Overconfident Investors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low minus High Market-to-Book</td>
<td>−0.712</td>
<td>−0.505</td>
<td>−0.402</td>
<td>−0.012</td>
<td>0.367</td>
<td>0.470</td>
<td>0.656</td>
</tr>
<tr>
<td>Low minus High Asset Growth</td>
<td>−0.743</td>
<td>−0.533</td>
<td>−0.428</td>
<td>−0.039</td>
<td>0.326</td>
<td>0.428</td>
<td>0.610</td>
</tr>
<tr>
<td>High minus Low Profitability</td>
<td>−0.568</td>
<td>−0.405</td>
<td>−0.322</td>
<td>0.008</td>
<td>0.332</td>
<td>0.422</td>
<td>0.571</td>
</tr>
<tr>
<td>Panel D: Initially Optimistic Investors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without Overconfidence:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low minus High Market-to-Book</td>
<td>−0.240</td>
<td>−0.152</td>
<td>−0.103</td>
<td>0.061</td>
<td>0.240</td>
<td>0.295</td>
<td>0.396</td>
</tr>
<tr>
<td>Low minus High Asset Growth</td>
<td>−0.283</td>
<td>−0.193</td>
<td>−0.140</td>
<td>0.023</td>
<td>0.182</td>
<td>0.228</td>
<td>0.323</td>
</tr>
<tr>
<td>High minus Low Profitability</td>
<td>−0.221</td>
<td>−0.141</td>
<td>−0.099</td>
<td>0.051</td>
<td>0.191</td>
<td>0.230</td>
<td>0.295</td>
</tr>
<tr>
<td>With Overconfidence:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low minus High Market-to-Book</td>
<td>−0.480</td>
<td>−0.275</td>
<td>−0.173</td>
<td>0.210</td>
<td>0.578</td>
<td>0.684</td>
<td>0.873</td>
</tr>
<tr>
<td>Low minus High Asset Growth</td>
<td>−0.527</td>
<td>−0.328</td>
<td>−0.223</td>
<td>0.159</td>
<td>0.516</td>
<td>0.619</td>
<td>0.807</td>
</tr>
<tr>
<td>High minus Low Profitability</td>
<td>−0.374</td>
<td>−0.218</td>
<td>−0.131</td>
<td>0.191</td>
<td>0.508</td>
<td>0.596</td>
<td>0.758</td>
</tr>
</tbody>
</table>
Table VII
Sharpe Ratios of Quantitative Investment Strategies

The table reports percentiles of the distributions of Sharpe ratios generated by quantitative investment strategies. The optimal factor timing strategy dynamically rebalances the exposure to the disruption surprise factor based on the factor’s conditional Sharpe ratio. The value, the asset growth, and the profitability strategies dynamically rebalance the exposures to the low-minus-high market-to-book, low-minus-high asset growth, and high-minus-low profitability portfolios, respectively, based on the past return performance of the portfolios during the estimation period.

<table>
<thead>
<tr>
<th>Sharpe Ratio Distribution over a 10-year Investment Period</th>
<th>Percentile</th>
<th>10th</th>
<th>50th</th>
<th>90th</th>
<th>Prob. Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Optimal Factor Timing Strategy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel B: Characteristic Timing Strategies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-year Estimation Period:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asset Growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profitability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-year Estimation Period:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asset Growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profitability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-year Estimation Period:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asset Growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profitability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1
Sharpe Ratio Distributions of the Low-minus-High Market-to-Book Portfolio