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ABSTRACT

Transaction costs are one of the major impediments to the implementation of dyna-

mic hedging strategies. We consider an alternative to utility maximization, similar to

the “good-deal” pricing framework in incomplete markets. We perform a dynamic risk-

reward analysis for a family of non-self-financing strategies of practical importance: de-

terministic time hedging; i.e., hedging at predetermined, fixed, times. In the limit of small

relative transaction costs, we carry out the asymptotic analysis and find that transaction

costs affect the hedge ratios and that the time between trades is related in a simple way to

the local sensitivities of the replication target.
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1. Introduction

Due to its practical relevance, the transaction cost problem has received much attention in the

literature. Practitioners favor static hedging strategies because transaction costs are known at

the contract inception. Dynamic hedging is however needed to manage derivatives books with

non-linear instruments if the combination of all static hedge positions leaves a risky, nonlinear

remainder unhedged.

When transaction costs are zero, Black and Scholes (1973) and Merton (1973) show that

any payoff function can be replicated by means of a self-financing, dynamic, trading strategy.

On the other hand, if proportional transaction costs are present, no matter how small, this dy-

namic hedging strategy, prescribed by the Black-Scholes model, becomes infinitely expensive.

This result does not imply that all claims are unhedgeable. Consider for instance the case of

a European call: by buying the stock and holding it until maturity, one can dominate the final

payoff. Soner, Shreve, and Cvitanić (1995) show that covering the call by buying a unit of the

underlying stock is actually the cheapest dominating hedging strategy (Edirisinghe, Naik, and

Uppal (1993) studied the super-replication problem in discrete time, using a binomial model).

Such a result provides the upper bound for the price of a call. Since it clearly overestimates

observed call prices, the result indicates the need for models that allow the possibility of a

loss.

Models where a loss is possible, and optimization of a trading strategy is sought instead,

have been proposed by Hodges and Neuberger (1989), Davis and Norman (1990) and sub-

sequently by Davis, Panas, and Zariphopoulou (1993). Defining optimization criteria and

hedging an option on an underlying stock that incurs transaction costs is a non-trivial task. In

the mathematical finance literature the attention focuses on self-financing strategies and mini-

mization of a utility function of the mismatch between the payoff of the option and the value

of the replicating portfolio at the expiration date of the option, for the simple reason that at that

time the price of the option is unambiguous and no assumption needs to be made for the option

price process. For the case of proportional transaction costs, the optimal trading strategy for
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a large class of utility functions has been shown to be described by a no-transaction interval

and by infinitesimal transactions at the boundary of the interval, see Hodges and Neuberger

(1989), Davis and Norman (1990), Davis, Panas, and Zariphopoulou (1993).

In an alternative approach, Leland (1985) removes the self-financing constraint and intro-

duces trading at discrete times, imitating periodic marking-to-market. In Leland’s framework

transaction costs are compensated by systematic gains accumulated during the dynamic hed-

ging process. To achieve these gains, the option price must be higher than the Black-Scholes

price. A non-linear extension of the Black-Scholes equation can be used to calculate the mo-

dified option price, which leads to a hedging strategy that, on average, generates systematic

gains. In Leland’s original paper, the systematic gains offset transaction costs on average.

Henrotte (1993), and Toft (1996) carry out an analysis of the variance of Leland’s strategies,

but do not incorporate the results in an optimization framework.

In this article, we extend Leland’s framework and incorporate elements from the literature

on “good deal” pricing in incomplete markets (see Cochrane and Saa-Requejo (2000) and Ber-

nardo and Ledoit (2000)). In particular we perform a risk-reward analysis on trading strategies

and require that optimal strategies lie on the efficient frontier, given that the risk-reward ratio

is at a certain level. Due to the difficulty of solving the general problem we restrict ourselves

to the case of a one-parameter family of hedging strategies where the parameter corresponds

to the time between transactions, and where when trading occurs, the position is rebalanced

to a position that reflects the market view.1 This choice is motivated by both industry practice

and practical constraints due to risk management concerns.2

1This choice is not necessarily optimal under the utility maximization framework. Indeed, for proportional
transaction costs, the optimal solution when maximizing terminal time utility involves a no-trade region and
small trades at the boundaries of that region. Our choice reflects the common practice of marking-to-market.

2The issue of hedging in discrete time when transaction costs prohibit continuous trading has been studied
previously in the literature. Similar to our study, Boyle and Emanuel (1980), Leland (1985), Figlewski (1989),
Gilster (1990), Gilster (1996), Bensaid, Lesne, Pagés, and Scheinkman (1992), Boyle and Vorst (1992), Edi-
risinghe, Naik, and Uppal (1993), Henrotte (1993), Toft (1996), and Bertsimas, Kogan, and Lo (2000), study
time-based hedging strategies, in which trading occurs at an exogenous frequency. In addition, Henrotte (1993)
and Toft (1996) study move-based hedging strategies, in which trading occurs when the price of the underlying
asset changes by an exogenous amount.
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We offer two alternative optimization criteria, corresponding to the points of view of a

market-maker and a price-taker respectively. For the case of a market-maker, that sets the price

competitively, we parameterize the efficient frontier by a risk-reward ratio. By constraining

the risk-reward ratio the seller of the option is assured a certain level of compensation for the

risk undertaken, where compensation is the expected gain from the trading strategy and risk is

quantified in terms of the standard deviation of the profit and loss of the trading strategy over

the time horizon.

An alternative point of view is that of a price-taker that may only observe the implied

volatility at which an option trades. For that case we determine the strategy that maximizes

the price-taker’s compensation in terms of risk undertaken. The optimization problem can

be formulated as: for a given, traded, implied volatility, and a family of strategies, find the

strategy that maximizes the risk-reward factor over an investor-defined time horizon.3

In the limit of small transaction costs, we determine the asymptotically optimal strategy.

Our analysis provides information on the scaling relations between the time interval between

trades, the transaction cost, the surcharge over the Black-Scholes price and the sensitivities of

the replication target. A similar asymptotic analysis for the case of utility maximization was

carried out by Rogers (2000). Due to the difference in objectives, the scaling relationships

are different. In particular, under utility maximization, the transaction cost of undertaking

infinitesimal trades at the boundary of an interval of size x is of size 1/x, while the utility

cost of allowing an interval of finite size is of size x2, leading to a choice that minimizes an

expression of the form ax2 + b/x. In our framework, we allow for positive expected gains,

and also constrain the transactions to be of finite size, trading back to the position indicated

by the market. In addition, we impose a minimum level of return for any risk undertaken; i.e.,

a minimum level of a risk-reward ratio. This results in the minimization of an expression of

the form a
√

x+b/
√

x, leading to differences in the scaling relationships.

3Hodges and Neuberger (1989) and Clewlow and Hodges (1997) characterize optimally timed hedging stra-
tegies when the objective is to maximize the investor’s utility function.
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The remainder of the paper is organized as follows: in Section 2 we formulate the problem

and motivate our choice of optimization criteria. In Section 3 we present results that describe

the optimal trading strategy. In Section 4 we provide a numerical examination of the range

of validity of the asymptotic analysis in terms of the size of the transaction cost, as well as

comparative statics. Section 5 concludes the paper. All calculations and proofs are contained

in the Appendices.

2. Formulation and optimization criteria

Consider a derivative security of European type whose payoff f0 at expiration is contingent

to the price of the stock S. The stochastic process for the stock is assumed to be geometric

Brownian motion
dSt

St
= (µ−δ)dt +σdWt (1)

where µ is the growth rate of the stock, δ is the dividend rate, σ is the volatility and W is a

standard Wiener process. Pure discount bonds also trade with price

dBt = rBtdt (2)

where r is the risk-free interest rate. The parameters µ, δ, σ and r are assumed to be known

functions of S and t.

A trading strategy is described by a pair of adapted processes (a,b), where a(t) is the

number of shares and b(t) is the number of bonds held in a portfolio at time t. The value of

the portfolio at time t is equal to

Π(t) = a(t)S(t)+b(t)B(t)
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Transaction costs are modeled as proportional to the number of shares exchanged. The

cost of a trading strategy is the adapted process c(t) where dc is the cost to transact from a

portfolio (a,b) to a portfolio (a+da,b+db), given by

dc = Sda+Bdb+
k
2

S |da|

where k > 0 is the relative, round-trip, transaction cost.

In the complete market framework, described by Equations (1), (2) when k = 0, any pa-

yoff f0 satisfying mild integrability conditions, can be replicated by means of a self-financing

trading strategy. The arbitrage-free price satisfies the Black-Scholes equation

∂ fBS

∂t
+(r−δ)S

∂ fBS

∂S
+

σ2S2

2
∂2 fBS

∂S2 = r fBS (3)

with final condition fBS(S,T ) = f0(S). The payoff can be replicated by the self-financing

strategy

aBS(t) =
∂ fBS

∂S
(S(t), t), bBS(t) = B(t)−1 ( fBS(S(t), t)−SaBS(t)) .

If proportional transaction costs are present, no matter how small, the Black-Scholes dynamic

hedging strategy is infinitely expensive, as shown by the following lemma:

Lemma 2.1. Consider a price process fBS(S, t), t ∈ [0,T ], obeying the Black-Scholes Equa-

tion (3). Let N be a positive integer and let ∆t = N−1T . Consider the dynamic hedging strategy

for which the replicating portfolio is adjusted at times t j = j∆t, j = 1, . . . ,N, in such a way

that, at time t j, the position in the stock consists of aBS(t j) shares and bBS(t j) bonds. If the

relative transaction cost is greater than zero, k > 0, then the expected total transaction cost of

the strategy is given, to leading order in N, by

E [c(T )] =
kσ√
2∆t

E
[Z T

0
S2

∣∣∣∣
∂2 fBS

∂S2 (S, t)
∣∣∣∣dt

]
+O(1)
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For a proof of Lemma 2.1 see the appendix. The lemma implies that in the continuous

time limit; i.e., as N →∞ and ∆t → 0, the expected total transaction cost diverges. Continuous

time hedging is thus unrealistic (similar results were obtained by Leland (1985), and Soner,

Shreve, and Cvitanić (1995)).

Leland (1985) proposed to compensate for transaction costs through systematic gains accu-

mulated during the dynamic hedging process. To achieve such systematic gains the process

for the option price has to be different than the Black and Scholes process, since the discretely

rebalanced Black-Scholes strategy does not lead to systematic gains or losses. Leland has

introduced the following non-linear extension of the Black-Scholes equation for the modified

price process:

∂ fL

∂t
+(r−δ)S

∂ fL

∂S
+

σ2S2

2

(
∂2 fL

∂S2 +Λ
∣∣∣∣
∂2 fL

∂S2

∣∣∣∣
)

= r fL, fL(S,T ) = f0(S) (4)

where Λ > 0 is a positive parameter that we refer to as the Leland volatility adjustment.4 The

intuition behind the Leland volatility adjustment is the following: since transaction costs are

proportional to the number of shares traded, and since the number of shares traded is propor-

tional to how rapidly the number of shares, or Delta, ∆, of a replicating portfolio deviates from

the Delta of the option, the magnitude of the transaction costs is proportional to the derivative

of Delta; i.e., the Gamma, Γ, of a position.5 Adjusting the volatility in the equation that deter-

mines the price of an option leads to systematic gains that are also proportional to Γ, making

it possible to balance the expected gains with the expected transaction costs.

Suppose that at time t0 the hedge ratios are chosen as follows:

aL(t0) =
∂ fL

∂S
(S(t0), t0), bL(t0) = B(t0)−1 ( fL(S(t0), t0)−SaL(t0)) (5)

4Although the Leland equation is in general nonlinear, in the case of a European option with either concave
or convex payoff the Leland equation becomes linear.

5Delta, or ∆, is the first derivative of the option price with respect to the price of the underlying asset. Gamma,
or Γ, is the second derivative of the option price with respect to the price of the underlying asset.

6



and consider the difference at time t0 + τ between the option value, given by Equation (4) and

the portfolio value of a portfolio (aL(t0),bL(t0)), specified by Equation (5):

δΠ(t0 + τ) = aL(t0)S(t0 + τ)+bL(t0)B(t0 + τ)− fL (S (t0 + τ) , t0 + τ)

where τ is the — possibly random — stopping time when the next trade occurs. We have the

following result:

Lemma 2.2. To leading order for small expected values of the stopping time Et0[τ], we have

that

Et0 [δΠ(t0 + τ)] =
Λ
2
|Γ0|S2

0σ2Et0 [τ]+O
(

Et0 [τ]3/2
)

where Γ0 = ∂2 fL
∂S2 (S(t0), t0), S0 = S(t0) and expectations are taken with respect to the real

measure, and are conditional on information up to and including time t0.

Lemma 2.2 suggests that the discounted price given by the Leland equation (4) leads to

systematic gains for the strategy defined in (5). In Leland’s original paper these systematic

gains match transaction costs, on average. In this article, we take the point of view that the

systematic gains should be such that the hedging strategy belongs to the efficient risk-reward

frontier of feasible strategies.

It is useful to look at the Leland equation as a Black-Scholes equation with a modified

volatility σ̄, which depends on the sign of Γ, where

σ̄2 = σ2
(

1+Λsgn
(

∂2 fL

∂S2

))

where sgn is the sign function:

sgn(x) =





1, x > 0

0, x = 0

−1, x < 0
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The risk-reward analysis is in the spirit of the literature on good-deal pricing in incomplete

markets developed by Cochrane and Saa-Requejo (2000) and Bernardo and Ledoit (2000).

Assume that at time t0, the replicating portfolio is worth fL(S0, t0;Λ) given by the Leland

equation with parameter Λ. In the following we will suppress the dependence on Λ from

the notation for fL. Risk and reward over a time horizon ∆T are measured in terms of the

following functions:

R∆T (S0, t0) =
√

Et0 [X(t0)2]−Et0 [X(t0)]
2, G∆T (S0, t0) = Et0 [X(t0)]

where X(t0) is the present value at time t0 of the cumulative cash flows of the replicating

strategy in the time interval [t0, t0 +∆T ] and ti are the times at which trades occur:

X (t0)≡ ∑
t0<ti<∆T+t0

e−r(ti−t0)δΠ(ti)− k
2 ∑

t0<ti<∆T+t0

e−r(ti−t0)δc(ti)

Reward, G∆T , is the expected gain of the strategy given in Equation (5) over the time interval

[t0, t0 + ∆T ]. Risk, R∆T , is the standard deviation of the gains over the same time interval.

We note that the definition of Reward does not include transaction costs for setting up and

for closing a hedging position. Conceptually, the inclusion of such costs would destroy the

time scaling properties for the Reward, and the costs may be best covered through a separate

charge, rather than through the trading strategy. In addition, it can be shown that such costs

are of second order in the case of small relative roundtrip transaction costs.

The efficient frontier is parameterized by the ratios

J ≡ G∆T (S, t)
R∆T (S, t)

, A≡ G∆T (S, t)√
∆T ·R∆T (S, t)

=
J√
∆T

, (6)

that we hold fixed. A fixed risk-reward factor J signifies that the hedger wishes, on average, to

achieve reward equal to J times the risk, over the hedger’s time horizon; i.e., expected gains

equal to J times the standard deviation of the expected gains. In contrast, a fixed risk-reward

factor A is independent of the time horizon and signifies that the hedger wishes, on average, to
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achieve reward equal to A times the risk per unit time. The ratios J and A can also be thought

of as Sharpe ratios corresponding to hedging the option following a prescribed strategy.

We offer two optimization criteria, appropriate for market participants with different points

of view.

Optimization Criterion 1: Given a family of trading strategies, a risk-reward factor A and a

time horizon ∆T , find the cheapest strategy for which the given risk-reward ratio is achieved.

Optimization Criterion 2: Given a family of trading strategies, an implied volatility cha-

racterized by the value of the Leland volatility adjustment Λ and a time horizon ∆T , find the

strategy that maximizes the risk-reward ratio A.

Optimization criteria 1 and 2 are complimentary. Criterion 1 corresponds to the problem

faced by a market-maker in a competitive options market. The market-maker wishes to offer

the option at the lowest possible price that guarantees a certain level of compensation with

respect to the risk undertook over the chosen time horizon. In the process, the market-maker

identifies the strategy and parameters that minimize the offering price for the option.

On the other hand, a price-taker would employ optimization criterion 2. Given the option

value, and hence the implied Leland volatility a price-taker would like to find the strategy and

the parameters that maximize the risk-reward factor over the time horizon.

Instead of trying to solve optimization criteria 1 and 2 in the space of all allowed trading

strategies, we limit our search to an one-parameter family of trading strategies that reflect

common industry practice. In addition, the chosen strategies have the common characteristic

that, in the limit of small transaction costs, the width of the no-transaction interval and the

surcharge over the Black-Scholes price shrinks to zero, the frequency of trading tends to infi-

nity, and the strategies converge to the Black-Scholes strategy. Such convergence is far from

obvious in the space of all allowed strategies, as indicated by the paper by Soner, Shreve, and

Cvitanić (1995). For example, given our objective, had we not constrained the strategies to

trade back to the Black-Scholes position, it would have been possible, for some parameter

value to optimally leave a derivative position unhedged, even with zero transaction costs. The
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family of strategies is characterized by the choice of times when trading occurs. At the times

of trade, the portfolio is rebalanced back to the replication target as specified by the Leland

equation. We denote the family as deterministic time hedging, where trading occurs at fixed

time intervals; the parameter corresponds to the time between trades.

In addition to the deterministic time hedging strategy it is possible to apply our framework

to families of strategies where the times of trade are random, and determined by the crossing

of a threshold. Such families of strategies include the delta hedging strategies, where trading

occurs whenever the difference in deltas; i.e., the number of shares in the portfolio between

the replicating portfolio and the target, exceeds a certain threshold in absolute value; and the

portfolio-value-mismatch hedging strategies, where trading occurs whenever the mismatch

between the value of the replicating portfolio and the target exceeds a certain threshold.

3. Asymptotic analysis in the limit of small transaction costs

The asymptotic analysis in the limit of small transaction costs provides information on the

scaling relations between the time interval between trades, the magnitude of the transaction

cost, the Leland volatility adjustment and the sensitivities of the replication target such as the

current Γ. The proofs of the theorems in this section are provided in the appendix. All our

results are asymptotic in the limit of small transaction costs. The relation between the length

of the time interval between trades and the time horizon of the hedger should be such that a

large number of trades takes place within the time horizon:

∆T À τ (7)

where ∆T is the time horizon of the hedger and τ the time between successive trades. Combi-

ned with the results we describe below, Equation (7) is valid when

k ¿√
πAσ

10



where k is the relative transaction cost, A is the risk-reward parameter defined in Equation (6),

and σ the volatility defined in Equation (1).

For the case of deterministic time hedging we have the following result:

Theorem 3.1. Under optimization criterion 1, the optimal length of the time interval between

trades and the optimal Leland volatility adjustment, for the deterministic time hedging stra-

tegy, are given by

τ∗ =
k√
πAσ

+o(k) , Λ∗ = 2

√
2Ak√

πσ
+o(k)≈ 2.13

√
Ak
σ

+o(k)

Under optimization criterion 2, the optimal length of the time interval between trades and the

maximum risk-reward ratio are given by

τ∗ =
8k2

πσΛ2 +o
(
k2/Λ2) , A∗ =

Λ2σ
√

π
8k

+o(Λ2/k)≈ 0.222
Λ2σ

k
+o(Λ2/k)

The above result holds for both puts and calls. It suggests that, from the point of view

of a market-maker, to leading order in the roundtrip transaction cost the optimal length of

the time interval between trades is proportional to the size of the roundtrip transaction cost

and inversely proportional to the risk-reward factor and the volatility. The surcharge over

the Black-Scholes price is proportional to the square root of the roundtrip transaction cost, a

reminder that the price of an option is not an analytic function at k = 0.

For a price-taker, the optimal length of the time interval between trades is proportional to

the square of the roundtrip transaction cost and inversely proportional to the volatility and the

square of the Leland volatility adjustment.

In results we do not report, we have also performed the same asymptotic analysis for the

case of delta hedging and portfolio value mismatch hedging families of strategies. In both

cases, under our optimization framework, the size of the no-trade interval is proportional to
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the square root of the size of transaction costs, and only depends on the magnitude of the

relative roundtrip transaction cost, the volatility and risk-reward factor.6

Theorem 3.1 provides intuition regarding upper and lower bounds for bid and ask option

prices in a market with transaction costs. Hedging a short and a long position of the same

option on an underlying stock with proportional transaction costs leads to corrections to the

Black-Scholes price proportional to the square root of the relative roundtrip transaction cost

but with different signs. This is due to the fact that if the Γ of a long position is positive, the

Γ of a short position, for the same payoff, is negative. For example, hedging a long position

in a put, or a call, would result in a price lower than the Black-Scholes price, while hedging

a short position in the same put or call would result in a price higher than the Black-Scholes

price. This observation seems to indicate that the bid-ask spread for option prices would be

proportional to the square root of the relative roundtrip transaction cost. However the argument

is incomplete, and justified only in illiquid option markets where hedging is necessary to cover

one’s position. In a liquid market the short and long positions can be matched against each

other and only the outstanding position has to be covered. In this case the bid-ask spread may

be unrelated to the size of the relative roundtrip transaction costs for the underlying stock,

but instead depend on factors such as liquidity, inventory cost, etc. Nonetheless, the shift of

the option price with respect to the Black-Scholes price is proportional to the square root of

the relative roundtrip transaction cost and the sign of the correction is related to whether the

actively managed outstanding positions in a particular option are short or long. In a typical

situation, investment banks would be the marginal investor, and would be short Γ and hedge

their positions. This would suggest that option prices would be higher than those predicted by

the Black-Scholes model.
6Details are available from the authors.
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4. Numerical Results

4.1. Base case

To determine the range of validity of the asymptotic analysis of Section 3, we perform nu-

merical simulations around a base-case of a six-month European call option with strike of

$100 on a stock that pays no dividends, with current price $100. We undertook Monte Carlo

simulations following the optimal hedging strategy, prescribed by the results of the analysis

in Section 3. The time horizon of the option writer was set, for the base case, to one month,

∆T = 1/12. The underlying stock follows geometric Brownian motion with drift µ = 9% per

year and volatility σ = 20% per year. The interest rate of the riskless bond is set to r = 4%

per year. The relative transaction costs are 0.1%, which correspond to a bid-ask spread of

$0.10 for the current stock price of $100. For each simulation we used 10,000 paths. The risk-

reward factor was set to Jdesired = 1. This value corresponds to a hedger that wishes to achieve,

on average, gains equal to the standard deviation of the cumulative profit/loss over the time

horizon; i.e, one month. Equivalently, for a Gaussian distribution of cumulative profit/loss the

hedger wishes to make a profit 84% of the time over the one month time horizon.

For the base case, the Black-Scholes price is $6.63, while the adjusted volatility is 22.6%

and the adjusted option price $7.35; i.e., a surcharge over the Black-Scholes price of approxi-

mately 11%. The optimal number of transactions over the hedger’s time horizon is 102, which

is approximately 5 trades a day. The average realized gain is 5.8 cents, with a standard devia-

tion of 6.2 cents. While the level of transaction costs is relatively low, there are indications of

second order effects, beyond the asymptotic analysis of Section 3. In particular, the realized

level of the risk-reward factor was 93% instead of 1, and the distribution of cumulative profit

and loss was different from a Gaussian distribution, with negative skewness with a skewness

coefficient of −0.3, and fat tails, with a kurtosis coefficient of 3.4. The standard error, for

the number of simulation paths used, was approximately 1% for the expected gain and for the

value of the realized risk-reward factor, and 0.1 for the skewness and kurtosis coefficients.
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4.2. Range of validity of asymptotic analysis

Since the results from Section 3 are valid in the limit when the relative transaction cost tends

to zero, k → 0, to check whether the results are also valid for transaction costs of finite size,

we use numerical simulation and vary the level of transaction costs. For each value of the

level of transaction costs we monitor both the realized risk-reward factor, and the deviations

of the distribution of the cumulative profit and loss from the trading strategy from the Gaussian

distribution. The results are presented in Table I.

We note that, while the deviations from the asymptotic analysis are obvious even for low

levels of relative transaction costs, these deviations are not too large, even when transaction

costs reach 1%, corresponding to bid-ask spreads of $1. From the table it is clear that only

at very low levels the higher order effects disappear. The number of transactions for relative

transaction costs of 0.01% correspond to trading approximately every 10 minutes, while for

relative transaction costs of 1% trading occurs approximately every 2 days.

As expected, the second order effects become more obvious as the relative transaction cost

increases. The difference between the realized risk-reward factor, Jreal, and the desired one,

Jdesired (which was set to one) is an indication of the magnitude of the higher-order corrections

with respect to the leading order term. We also note that even though the surcharge over

the Black-Scholes price of the option is significant, and ranges from 4% to 31%, the optimal

trading strategies produce very small expected cumulative gains over the period of a month,

ranging from 2 to 15 cents.

4.3. Comparative statics

In addition to varying the magnitude of the relative roundtrip transaction costs, we have per-

formed a study of comparative statics over the base case, by varying the drift and volatility,

the strike price and the expiration date of the option, and the time horizon of the hedger. The

results of this analysis are presented in Table II.
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From the table we notice that the volatility and the strike of the option have the biggest

impact, while the option expiration date, the time horizon of the hedger and the drift of the

underlying stock have only a minor influence. The results indicate that the surcharge in the

option price decreases as volatility increases (from a 13% surcharge when volatility is 10% to

a 9% surcharge when volatility is 40%), while the magnitude of the risk and reward increase

(from approximately 4 cents when volatility is 10% to approximately 8 cents when volatility

reaches 40%). From varying the strike we notice that deep in the money options have the

smallest surcharge (approximately 1% for a strike of 80) and the distribution of gains is closest

to a normal distribution. As the option becomes at the money and out of the money, the

surcharge in the option price increases (11% at a strike of 100, and 47% at a strike of 120),

while the tails of the distribution of cumulative profit and loss become fatter. Following the

discussion on price bounds for option prices in Section 3, we point out that if certain strikes

are more liquid than others there would be an effect on the implied bid and ask volatilities,

with the bid-ask spread widening for the illiquid strikes. On the other hand our results do

not necessary imply a smile pattern in implied volatilities, since additional information on the

identity and preferences of the marginal investor would be necessary.

From all the results in Table II, we notice that the size of the average gains increases with

the Γ of the position, and is greatest for strikes at the money, and for larger volatilities.

5. Conclusions and Summary

We have presented an extension of the framework proposed by Leland (1985) for pricing

derivatives in the presence of small transaction costs, and of the good-deal pricing literature

for incomplete markets. Within our framework, we define optimization criteria appropriate

for market-makers and for price takers. Our approach is an alternative to utility maximization

and allows for the incorporation of common market practices, such as marking-to-market and

investor-set time horizons.
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In the case of small transaction costs we have carried out an asymptotic analysis and cha-

racterized the optimal length of the time interval between trades in terms of local sensitivity

parameters (such as the option Γ), the volatility and the investor-specific parameters such as

time horizon, and desired investor risk-reward ratio.
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A. One period risk-reward analysis

We will assume that ∆T is small enough so that the leading order calculation for the gain and

reward functions G(S, t) and R(S, t) is not affected by the variation of S and Γ over the time

horizon.7 Since returns over each hedging cycle are i.i.d. random variables, thanks to the

central limit theorem, the risk and reward functions are proportional to the one period analogs

G0(S, t) and R0(S, t). More precisely we have the following

Lemma A.1. For any stopping time τ and to leading order in E[τ] as E[τ]→ 0, we have

G(S, t) =

(
∆T
E [τ]

+O

(√
∆T
E [τ]

))
·G1 (S, t)

and

R(S, t) =

(√
∆T
E [τ]

+O(1)

)
·R1 (S, t)

B. Proof of Lemma 2.1

Suppose that at time t0 the replicating portfolio is hedged to the Black-Scholes point. To the

leading order in τ as τ→ 0, we have that

E
[

k
2

S0 |δa(t0 + τ)|
]

=
kS2

0
2

∣∣∣∣
∂2 f
∂S2 (S0, t0)

∣∣∣∣E
[∣∣W (

σ2τ
)∣∣]+O(τ)

where W (t) is the standard Wiener process. The probability distribution function for the ran-

dom variable w = W (σ2τ) is

P(τ,w) =
1√

2πσ2τ
exp

(
− w2

2σ2τ

)
.

7In general, one needs to take into account the correlation between successive values of Γ. However, for small
values of ∆T , Γ will be largely unchanged and the application of the central limit theorem goes through.
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Hence

E
[∣∣W (

σ2τ
)∣∣] =

√
2πσ2

τ

Z ∞

−∞
dw |w|exp

(
− w2

2σ2τ

)
=

√
2σ2τ

π

and we find

E
[

k
2

S0 |δa(t0 + τ)|
]

=
√

τ
2

(
kσS2

0
) ∣∣∣∣

∂2 f
∂S2 (S0, t0)

∣∣∣∣ . (8)

By summing over all the trades in a fixed time interval, we obtain the estimate in Lemma 2.1.

C. Proof of Lemma 2.2

We have that

δΠ(τ) = aL(t0)S(t1)+aL(t0)
Z t1

t0
S(t)δdt +bL(t0)B(t1)− fL(S(t1), t1)

= bL(t0)B(t0)rτ+aL(t0)δS +aL(t0)S0δτ+ fL(S0, t0)− fL(S0 +δS, t0 + τ)+O(τ2 +δS3 + τδS)

=
(

r fL(S0, t0)− (r−δ)aL(t0)S0− ∂ fL

∂t
(S0, t0)

)
τ− 1

2
∂2 fL

∂S2 (S0, t0)δS2 +O(τ2 +δS3 + τδS)

where δS≡ S (t1)−S (t0). Using the modified Black-Scholes Equation (4) for the price fL(S, t),

we have

δΠ(τ) =
1
2

Γ0S2
0

(
σ̄2τ−

(
δS
S0

)2
)

+O(τ2 +δS3 + τδS). (9)

In the Black-Scholes limit, where Λ = 0, the expected value of δΠ(τ) is zero. The positive

bias that a positive Λ introduces is given by

E [δΠ(τ)] =
Γ0S2

0
2

Λσ2E [τ]+O
(
τ2 +δS3 + τδS

)
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D. Deterministic time strategies and Theorem 3.1

Consider a class of strategies according to which one places a trade at fixed time intervals,

which are determined based on information available either at the strategy inception date or at

the date of the previous trade. From Equation (9) we have that

G1 (S0, t0) =
Λ
2

S2
0Γ0σ2τ− k

2
S0 |δa(τ)|

The expected transaction cost is given, to leading order, from Equation (8), as

E
[

k
2

S0 |δa(t0 + τ)|
]

=
√

τ
2

(
kσS2

0
) ∣∣∣∣

∂2 f
∂S2 (S0, t0)

∣∣∣∣ .

The risk is given by

R1 (S0, t0) =
√

E
[
(δΠ)2

]
−E [δΠ]2.

We have that

E [δΠ]2 =
1
4

Γ2
0S4

0E




(
σ̄2τ−

(
δS
S0

)2

−Λσ2τ

)2



=
Γ2

0S4
0

2
√

2πσ2τ

∞Z

0

dw
(
σ̄2τ−w2−Λσ2τ

)2
exp

(
− w2

2σ2τ

)

=
1
2

Γ2
0S4

0σ4τ2

Hence the risk; i.e., the standard deviation of gains, is given by

R1 (S0, t0) =
Γ0S2

0σ2τ√
2

.

The risk-reward constraint amounts to the following equation:

A =
G1 (S, t)√
τR1 (S, t)

=
Λ√
2τ
− k√

πστ
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Hence, we find

Λ = A
√

2τ+
k
σ

√
2
πτ

. (10)

The optimal value of τ, under optimization criterion 1, is the one for which the Leland volati-

lity adjustment is minimum. i.e.

τ∗ =
k√
πAσ

Moreover, the optimal Leland volatility adjustment is

Λ∗ = 2

√
2Ak√

πσ
≈ 2.12

√
Ak
σ

.

Under optimization criterion 2, instead of choosing the time interval τ in Equation (10) to

minimize the Leland volatility adjustment, Λ, we fix Λ and choose τ to maximize the risk-

reward factor A. Theorem 3.1 follows.
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Table I
Validity of Asymptotic Analysis

This table examines the range of validity of the asymptotic analysis of Section 3. The option
priced is a six-month European call, with strike price $100, current stock price $100, volatility
σ = 20%, interest rate r = 4% per year, rate of growth µ = 9%, and time horizon of the hedger
∆T = 1 month. Trans. is the number of transactions, Adj. Vol. is the adjusted volatility, BS
Price is the Black-Scholes price, Adj. Price is the adjusted price, Gain is the average gain of
the strategy, Risk is the standard deviation of the gains, Skew and Kurt. are the skewness and
kurtosis of the distribution of the cumulative profit and loss from the trading strategy, and Jreal
the realized risk-reward ratio.

Trans. Cost Trans. Adj. Vol. BS Price Adj. Price Gain Risk Skew Kurt. Jreal

0.01% 1023 20.9% $6.63 $6.87 $0.020 $0.020 -0.1 3.1 97%
0.05% 205 21.9% $6.63 $7.15 $0.042 $0.045 -0.3 3.2 94%
0.10% 102 22.6% $6.63 $7.35 $0.058 $0.062 -0.4 3.2 93%
0.25% 41 24.0% $6.63 $7.74 $0.083 $0.096 -0.4 3.1 87%
0.50% 20 25.5% $6.63 $8.15 $0.113 $0.132 -0.5 3.4 86%
0.75% 14 26.6% $6.63 $8.44 $0.129 $0.157 -0.7 3.8 82%
1.00% 10 27.5% $6.63 $8.69 $0.152 $0.185 -0.8 3.9 82%



Table II
Comparative Statics

This table presents comparative statics from a base case of a six-month European call option, with strike
price $100, current stock price $100, volatility σ = 20%, interest rate r = 4% per year, rate of growth
µ = 9%, relative transaction costs of 0.1%, and time horizon of the hedger ∆T = 1 month. Trans. is the
number of transactions, Adj. Vol. is the adjusted volatility, BS Price is the Black-Scholes price, Adj.
Price is the adjusted price, Gain is the average gain of the strategy, Risk is the standard deviation of
the gains, Skew and Kurt. are the skewness and kurtosis of the distribution of the cumulative profit and
loss from the trading strategy, and Jreal the realized risk-reward ratio.

Volatility Trans. Adj. Vol. BS Price Adj. Price Gain Risk Skew Kurt. Jreal

10% 51 11.8% $3.89 $4.38 $0.037 $0.043 -0.4 3.3 88%
20% 102 22.6% $6.63 $7.35 $0.058 $0.062 -0.4 3.2 93%
30% 153 33.2% $9.39 $10.29 $0.072 $0.076 -0.3 3.0 95%
40% 205 43.8% $12.15 $13.19 $0.082 $0.089 -0.3 3.3 92%

Strike Trans. Adj. Vol. BS Price Adj. Price Gain Risk Skew Kurt. Jreal

80 102 22.6% $21.80 $21.98 $0.016 $0.019 0.0 4.0 85%
90 102 22.6% $13.15 $13.64 $0.040 $0.044 -0.3 3.4 90%
100 102 22.6% $6.63 $7.35 $0.058 $0.062 -0.4 3.2 93%
110 102 22.6% $2.76 $3.43 $0.056 $0.060 -0.3 3.2 94%
120 102 22.6% $0.96 $1.40 $0.038 $0.044 -0.2 3.9 87%

Time horizon Trans. Adj. Vol. BS Price Adj. Price Gain Risk Skew Kurt. Jreal

0.5 months 72 23.1% $6.63 $7.48 $0.033 $0.036 -0.4 3.2 91%
1.0 months 102 22.6% $6.63 $7.35 $0.058 $0.062 -0.4 3.2 93%
1.5 months 125 22.4% $6.63 $7.29 $0.078 $0.086 -0.4 3.3 90%
2.0 months 145 22.2% $6.63 $7.24 $0.099 $0.106 -0.3 3.2 93%

Expiration Trans. Adj. Vol. BS Price Adj. Price Gain Risk Skew Kurt. Jreal

3 months 102 22.6% $4.49 $5.00 $0.082 $0.091 -0.3 3.2 91%
6 months 102 22.6% $6.63 $7.35 $0.058 $0.062 -0.4 3.2 93%
9 months 102 22.6% $8.38 $9.26 $0.047 $0.050 -0.3 3.1 94%
1 year 102 22.6% $9.93 $10.93 $0.039 $0.043 -0.3 3.1 92%

Drift Trans. Adj. Vol. BS Price Adj. Price Gain Risk Skew Kurt. Jreal

5% 102 22.6% $6.63 $7.35 $0.057 $0.062 -0.3 3.2 93%
7% 102 22.6% $6.63 $7.35 $0.057 $0.062 -0.3 3.1 93%
9% 102 22.6% $6.63 $7.35 $0.058 $0.062 -0.4 3.2 93%
11% 102 22.6% $6.63 $7.35 $0.058 $0.061 -0.3 3.2 95%
13% 102 22.6% $6.63 $7.35 $0.059 $0.061 -0.3 3.1 96%
15% 102 22.6% $6.63 $7.35 $0.057 $0.062 -0.4 3.4 93%


