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1. Introduction.

Invariant curves have been widely studied as an important landmark that organizes
the long term behavior. Notably, for two dimensional systems, they completely prevent
long term diffusion and, for systems of more dimensions, even if not preventing diffusion
completely, are still the main obstacles.

The standard way of computing invariant curves is to introduce a parametrization
that identifies curves with functions and then study the functional equation that ex-
presses that the curve is invariant and that the motion on it is a rigid rotation in some
distorted coordinates. The amount of rotation – henceforth called the frequency of the
curve – appears as a parameter in the functional equation and can be used to label the
curves.

For families of maps that contain an integrable – i.e. explicitly solvable in closed
form – system, one can study the functional equation for invariant curves perturbatively
and one is led to the Lindstedt expansions of classical mechanics (see [Po] and section
3).

Even if these expansions have been in use for over a century, their analytic prop-
erties have been very hard to study. For example, due to the presence of small divisors

for diophantine frequencies (see section 3), the fact that they have a positive radius of
convergence was established only in the late 50’s with K. A. M. theory (see e.g. [SM])
and numerical values with the right order of magnitude have only been achieved in the
80’s with the use of computer assisted proofs (see [R], [LR],[CC]).

The goal of this paper is to study the domain of analyticity of these series and
to study the nature of the singularities at the boundary (previous papers concerned
with the numerical computation of the domain of analyticity of invariant curves have
been: [BC], [BCCF], [FL], [BM] [LT1], [LT2], [BT], [AB], [BMT]). Notice that once
that we know qualitatively what is the nature of the singularities at the boundary it is
possible to devise interpolation and extrapolation schemes that, being well adapted to
the functions we are dealing with, are quite efficient.

Following [BM] and [BT] we will regularize the problem by considering complex
values of the frequency. The regularized equations, as we will see, have no small divisors
and one can argue what is the structure of the boundary of analyticity. These insights
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– theoretical and numerical – can be transferred to the physical case of purely real
frequencies by taking the limit as the imaginary part of the frequency tends to zero.

Our first result is a rigorous theorem that states that, for complex frequencies with
non-zero imaginary part, provided that certain non-degeneracy conditions hold, the
nature of the singularities is discrete branch points of order two. The theorem is based
in the theory of bifurcation of compact operators and the non-degeneracy conditions –
which hold generically – can be checked à posteriori by a finite calculation.

To verify the applicability of the theorem, we implement a non-perturbative contin-
uation method and indeed confirm that for the most standard examples, the boundary
of analyticity consists of branch points of order two.

Finally, we discuss the implication of these results for the applicability of analytic
extrapolation methods. By far, the most commonly used method for analytic extrapola-
tion is the use of Padé approximants. For Lindstedt series, extrapolation Padé methods
were used in [BC] and used and refined in [BCCF], [LT1]. For Lindstedt series with
complex frequencies they were used in [BM]. Since the Padé method is based on rational
approximation, it is rather delicate to use for functions whose singularities are branch
points and not just poles. The behavior of Padé approximants for functions with branch
points has been considered in [N1], [N2], [HB1], [HB2] which make very precise conjec-
tures about their behavior and support them with analytical and numerical evidence.

We observe that the numerical results of [BM] – which we reproduce and confirm
– can be explained and fit very well the conjectures of [N1] and [N2] for functions with
the singularity structure obtained by our first result6.

Moreover, the knowledge of the nature of the singularities can be used to devise
methods that are better adapted than the Padé rational extrapolations. In our last
section, we introduce the so-called logarithmic Padé method [BGM] and we discuss the
results of implementing it as well as the ratio method.

6 After this paper was completed, we learned about [BM2] which continues the study
of [BM]. There, the authors confirm the phenomenon of accumulation of poles of Padé
approximants and, using exact solutions, they show that, in some cases, they correspond
to branch points. These observations can also be explained by our first result.

3



All the numerical results confirm spectacularly well that the singularities of the
examples we consider are branch points of order two and that, as the real part of the
frequency approaches zero, these branch points accumulate to the natural boundary
that has been previously reported in the literature. The details of this accumulation,
remain as a challenge. We also hope that the approximation of the natural boundaries
by branch points may also be useful in other problems related to K. A. M. theory.

2. Definitions and Notation.

We will study topologically nontrivial circles, invariant under an area-preserving map
belonging in an one-parameter family of maps. The maps, henceforth called “standard
like” are given by

(2.1) Fε(q, p) = (q + p + εS(q) mod 2π, p + εS(q))

The variables p, q and the parameter ε will be considered complex and the function S

is 2π periodic, analytic, with zero average over [−π, π].

The case S(q) = sin(q), called the standard map, has been extensively studied as a
qualitative model of several physical phenomena (see [A], [Ch]) and as a typical example
of breakdown of invariant curves (See [Gr], [McK]). We will also study the case when
S(q) is an odd trigonometric polynomial that can be considered as an extension of the
usual standard map.

We define the frequency ω = limn→∞ π1F̃
n(q, p)/n mod2π, whenever the limit

exists, with F̃ a lift of F and π1 the projection to the first coordinate π1(q, p) = q.
Notice that for ε = 0 the map F0 has an invariant curve for every complex frequency ω

with p = ω. We will identify invariant curves by the fixed frequency ω.

As the parameter ε varies an invariant curve is distorted and can even disappear
(as for example an invariant curve with rational frequency for ε 6= 0).
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3. Lindstedt perturbation expansions

If an invariant curve is conjugate to a rigid rotation with frequency ω,then it can be
parameterized by two functions p and q of a variable θ which satisfy:

(3.1) Fε(q(θ), p(θ)) = (q(θ + ω), p(θ + ω)).

Moreover, assuming the invariant curve is a graph

q(θ) = θ + uε(θ), p(θ) = ω + uε(θ)− uε(θ − ω)

The conjugating function uε is called the hull function (see [A]). Combining (2.1), (3.1)

(3.2) ∆ωuε(θ) = εS(uε(θ) + θ)

where ∆ω is the operator defined by

(3.3) ∆ωuε(θ) = uε(θ + ω)− 2uε(θ) + uε(θ − ω).

Notice that a solution of (3.2) corresponds to a solution of (3.1) but the opposite
need not be the case (for the case of real variables the Birkhoff theorem ([M], [F])
guarantees that the conjugating function is a graph but we are not aware of a similar
result for the case of complex variables).

If there is a solution uε, for fixed ε, to (3.2) then uε(θ + α)− α, for α ∈ |C, is also
a solution. To fix this ambiguity we choose the normalization

(3.4)
∫ π

−π

uε(θ)dθ = 0.

Under this normalization u0 = 0 is the solution for ε = 0.

To compute the unknown hull function uε we assume that it can be expanded in a
power series in ε

(3.5) uε(θ) =
∞∑

n=0

εnun(θ).

5



The series (3.5) are called Lindstedt series. Substituting in (3.2), expanding and match-
ing formally corresponding orders in ε

(3.6)

u0(θ) = 0

∆ωu1(θ) = S(θ)

∆ωun(θ) = Rn(θ) =
1

(n− 1)!
d(n−1)

dε(n−1)

∣∣
ε=0

S(θ +
∞∑

l=1

ul(θ)ε
l), n ≥ 2

Notice that the right hand side of (3.6) depends only on u1, . . . , un−1 so that one can
solve recursively, provided that

∆ωun(θ) = Rn(θ)

has a solution, i.e.

(3.7)
∫ π

−π

Rn(θ)dθ = 0.

From the normalization condition on the hull function (3.4) we have∫ π

−π

un(θ)dθ = 0, n ≥ 1

and, using the properties of S we can show inductively that the compatibility condition
(3.7) is satisfied (see also [FL]).

In effect, if we rewrite Rn as

(3.8)

Rn(θ) =
1

(n− 1)!
d(n−1)

dε(n−1)

∣∣
ε=0

{ ∞∑
m=0

1
m!

dm

dθm
S(θ)

( ∞∑
l=1

ul(θ)ε
l

)m}

=
∞∑

m=0

(
1
m!

dm

dθm
S(θ))

1
(n− 1)!

d(n−1)

dε(n−1)

∣∣
ε=0

( ∞∑
l=1

ul(θ)ε
l

)m

=
n−1∑
j=0

(
1
j!

dj

dθj
S(θ))

∑
n1+···+nj=n−1

un1
(θ) · · ·unj

(θ), n ≥ 2.

In terms of Fourier series, the operator ∆ω is diagonal and, if

un(θ) =
∑
k 6=0

ûn,keikθ, Rn(θ) =
∑
k 6=0

R̂n,keikθ
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then

ûn,k =
R̂n,k

2(cos(kω)− 1)
, n ≥ 1, k 6= 0.

For the case of ω real, diophantine it was shown (see [SM] for an analytic proof, [CC]
for a computer-aided one) using methods from KAM theory, that the Lindstedt series
for the hull function, converges to an analytic function for |ε| < ρ for some ρ > 0.

When Im ω 6= 0, 2(cos(kω)−1) is bounded away from zero uniformly in k ∈ ZZ−{0}
so that

(3.9) sup
k 6=0

|2(cos(kω)− 1)|−1 ≤ Kω.

To estimate convergence of the Lindstedt series we introduce the norm ‖ ‖δ with ‖f‖δ =
supk∈ZZ eδ|k||f̂k|, where f̂k is the kth Fourier coefficient of f . This defines a norm on a
Banach space of analytic functions denoted henceforth as Cω,δ. Since S is a 2π periodic,
analytic function, using Cauchy inequalities we can find a constant Kδ(= 2/δ) such that
‖ 1

j!
dj

dθj S(θ)‖δ ≤ Kj
δ supθ∈I2δ

|S(θ)|, where I2δ ≡ {θ : |Im θ| < 2δ}.

Theorem 3.1. For |ε| sufficiently small and Im ω 6= 0, the Lindstedt series (3.5)

converges uniformly to an analytic function defined on Iδ ≡ {θ : |Im θ| < δ}.

Proof. From (3.6) we have ‖un‖δ ≤ Kω‖Rn‖δ. For n = 1, R1(θ) = S(θ) and ‖u1‖δ ≤
Kω supθ∈I2δ

|S(θ)|.

For n > 1, from (3.8),

(3.10) ‖un‖δ ≤ Kω‖Rn‖δ ≤ Kω

n−1∑
j=1

‖ 1
j!

dj

dθj
S(θ)‖δ

∑
n1+···+nj=n−1

‖un1
‖δ . . . ‖unj

‖δ.

To estimate the size of ‖un‖δ, we introduce the function φ : IR → IR with φ(z) =∑∞
n=0

1
n!‖

dn

dθn S(θ)‖δz
n.

Since 1
n!‖

dn

dθn S(θ)‖δ ≤ Kn
δ supθ∈I2δ

|S(θ)|, φ is an analytic function for |z| < K−1
δ .

We can bound ‖un‖δ by the coefficients σn of σ(z) =
∑∞

n=0 σnzn, where

(3.11) σ(z) = Kωzφ(σ(z)), σ(0) = 0.

7



By induction we verify that ‖un‖δ ≤ σn, n ≥ 1. Moreover, since φ is an analytic
function and ‖S(θ)‖δ 6= 0, by the implicit function theorem, σ is analytic for |z| small
enough and we can bound σn ≤ αn, for some α > 0.

This implies that the Lindstedt series converges uniformly to an analytic function
in Iδ, for ε < 1/α, and concludes the proof of Theorem 3.1.

4. Bifurcation from a simple eigenvalue

We will analyze the equation satisfied by the hull function (3.2) using methods from
functional analysis and bifurcation theory. For fixed ω we define the operator T :
|C×B → C0

0

(4.1) T (ε, u)(θ) = ε∆−1
ω S(u(θ) + θ)

where C0
0 is the space of 2π periodic, continuous, complex functions with zero average

on [−π, π] under the supremum norm, i.e. ‖f‖C0
0

= maxθ∈[−π,π] |f(θ)| and B the closed
subset of C0

0 , B = {u ∈ C0
0 |
∫ π

−π
S(u(θ)+θ) = 0}. It is well known that under this norm

C0
0 is a Banach space. Also, since |C is a Banach space, |C×B is a Banach space under

the norm ‖(ε, u)‖ |C×B = |ε|+ ‖u‖C0
0
.

Lemma 4.1. The operator ∆ω : C0
0 → C0

0 , given by (3.3) is invertible and, for Im ω 6= 0
the inverse is bounded.

Proof. Decomposing ∆ω in Fourier coefficients we have

(∆ω)k,l = (eiωk + e−iωk − 2)δk,l, k 6= 0.

Since (∆ω)k,l is a diagonal matrix we can verify that the inverse ∆−1
ω : C0

0 → C0
0 exists

and is given by [∆−1
ω ]k,l = [(∆ω)k,k]−1δk,l, k 6= 0 (notice that zero average is essential

for the existence of the inverse).
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To show that ∆−1
ω is bounded for Im ω 6= 0, let η ∈ C0

0 , ‖η‖C0
0
≤ M . Then,

decomposing in Fourier coefficients

‖∆−1
ω η‖C0

0
= max

θ∈[−π,π]

∣∣∑
k 6=0

ηkeikθ

eikω + e−ikω − 2

∣∣
≤ ‖η‖C0

0

∑
k 6=0

∣∣ 1
eikω + e−ikω − 2

∣∣
= 2‖η‖C0

0

∑
k>0

∣∣ 1
eikω + e−ikω − 2

∣∣
The sum is finite for Im ω 6= 0, since the denominator grows asymptotically like ek|Im ω|.
This concludes the proof.

We will now show some interesting properties of T .

Lemma 4.2. The operator T , defined by (4.1), is Fréchet differentiable for all (ε, u) ∈
|C×B with

DT (ε, u)(ζ, η) = ζ∆−1
ω S(u + θ) + ε∆−1

ω [S′(u + θ)η].

Proof. We have the following simple computation

‖T (ε + ζ, u + η)− T (ε, u)−DT (ε, u)(ζ, η)‖C0
0

=

= ‖(ε + ζ)∆−1
ω [S(u + θ + η)− S(u + θ)− S′(u + θ)η]‖C0

0

= ‖(ε + ζ)∆−1
ω [S′′(ũ + θ)(η)2]‖C0

0

≤ |ε + ζ|‖∆−1
ω ‖C0

0
‖S′′‖C0

0
‖η‖2C0

0

Lemma 4.2 implies that T is complex analytic. We follow [ChH, pg. 23] in our
definition of a complex analytic operator.

Definition 4.3. Let X, Y be Banach spaces over |C and U be a connected open set

of X. A function f : X → Y is complex analytic in U if, for each x ∈ U , there is a
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δ(x, h) > 0, such that, for each y∗ ∈ Y ∗, f(x) is single valued and < y∗, f(x + th) > is

an analytic function of t for |t| < δ(x, h).

We state the following theorem, based on the Definition 4.3.

Theorem 4.4. ([ChH, pg. 23, theorem 1.10]) If U is an open connected set of X, f :
U → Y is single valued and locally bounded, then the following statements are equivalent

(i) f is complex analytic in U

(ii) f is Fréchet differentiable in U

(iii) f has infinitely many Fréchet derivatives

Theorem 4.5. For fixed ε0, u0 and ω, with Im ω 6= 0, the Fréchet derivative of the

map u → T (ε0, u), at u = u0 is a compact operator from B to C0
0 .

Proof. The Fréchet derivative of u → T (ε0, u) exists and is given by

DuT (ε0, u0)η = ε0∆
−1
ω [S′(u0 + θ)η].

To show that DuT (ε0, u0) is a compact operator, we have to show that it maps bounded
sets to precompact ones.

Notice that DuT (ε0, u0) is bounded, i.e. for η ∈ B such that ‖η‖C0
0
≤ M

‖DuT (ε0, u0)η‖C0
0
≤ |ε0|‖∆−1

ω ‖C0
0

max
θ∈[−π,π]

|S′(θ)|‖η‖C0
0
.

We will show that {DuT (ε0, u0)η : η ∈ B, ‖η‖C0
0
≤ M} is equicontinuous. We have

|DuT (ε0, u0)η(θ′)−DuT (ε0, u0)η(θ)| =∣∣ε0∆−1
ω [S′(u0(θ

′) + θ′)η(θ′)− S′(u0(θ) + θ)η(θ)]
∣∣

= |ε0|
∣∣∆−1

ω [F (θ′)− F (θ)]
∣∣

where F (θ) = S′(u(θ) + θ)η(θ).
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Decomposing into Fourier coefficients,

|∆−1
ω [F (θ′)− F (θ)]| =

∣∣∑
k 6=0

Fk(eikθ′ − eikθ)
eikω + e−ikω − 2

∣∣
≤ ‖F‖C0

0

∑
k 6=0

|k||θ − θ′|max θ′′ ∈ [−π, π]|eikθ′′ |
|eikω + e−ikω − 2|

≤ ‖S′η‖C0
0
|θ′ − θ|

∑
k 6=0

|k|
|eikω + e−ikω − 2|

As in the proof of Lemma 4.1 the sum is finite for Im ω 6= 0. By the Ascoli theorem (see
[Rudin, pg. 394, theorem A5]) we conclude that DuT (ε0, u0) is a compact operator.

Since DuT (ε0, u0) is a compact operator the spectrum of DuT (ε0, u0) is discrete
and has no accumulation points, apart from zero (see [Rudin]). Based on this property of
the spectrum we are able to characterize the nature of the singularities in the analyticity
domain of the hull function. This characterization is based on the following theorem
from bifurcation theory of operators in Banach spaces.

Theorem 4.6. For B1, B2 Banach spaces over |C , let K : |C × B1 → B2 be a

Fréchet differentiable operator. Assume that K(0, 0) = 0, DuK(0, 0) = A (the Fréchet

derivative of the map u → K(0, u) at u = 0) has a simple isolated eigenvalue 0, and

Null(A) = span(v0), Null(A∗) = span(w∗0), for v0 ∈ B1, w
∗
0 ∈ B∗

2 and the co-dimension

of Range(A) = 1. If

< w∗0 , DuuK(0, 0)(v0, v0) >6= 0, < w∗0 , DεK(0, 0) >6= 0

then, there are two distinct solutions to

(4.2) K(ε, u) = 0

for 0 < ε < ρ, for some ρ > 0, analytic in ε1/2.

Proof. The proof is divided in two parts. First we will use the Liapunov-Schmidt
reduction method to reduce (4.2) to an one dimensional scalar equation. Then we
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will apply the Newton polygon method to deduce the form of the solutions to the one
dimensional equation (see [GS], [ChH] for examples and applications of these methods).

Since the null space of A is one dimensional and the co-dimension of Range(A) is
one, we can decompose B1, B2 into

B1 = Null(A)⊕M, B2 = N ⊕ Range(A).

Since B2 = N⊕Range(A), there exists (see [Rudin, pg. 133, theorem 5.16]) a continuous
projection E : B2 → Range(A) with Range(E) = Range(A), Null(E) = N . Then,
K(ε, u) = 0 is equivalent to

(4.3)
EK(ε, u) = 0

(I − E)K(ε, u) = 0

Following the Liapunov-Schmidt reduction method we will use the implicit function
theorem to solve the first of (4.3) and then substitute the solution in the second. Thus
we will finally have to study a k-dimensional equation for a k-dimensional null space
(we assumed k = 1).

Let u = v + w, v ∈ Null(A), w ∈ M . Define the map F : M × Null(A) × |C →
Range(A)

(4.4) F (w, v, ε) = EK(ε, w + v).

We have that F (0, 0, 0) = 0, DwF (0, 0, 0) = A. Since A : M → Range(A) is one to one
and onto, and Range(A) is closed, A restricted to M is invertible. From Theorem 4.4
Fréchet differentiability is equivalent to complex analyticity. By the implicit function
theorem the solution of (4.4) in a neighborhood of (0, 0) ∈ Null(A) × |C is a complex
analytic function W : Null(A)× |C → M such that

F (W (v, ε), v, ε) = EK(ε, v + W (v, ε)) = 0.

Substituting in the second of the equations (4.3)

(4.5) (I − E)K(ε, v + W (v, ε)) = 0.

From [Rudin pg. 99, theorem 4.12]

Null(A∗) = Range(A)⊥ = {w∗ ∈ B∗
2 | < w∗, u >= 0,∀u ∈ Range(A)}
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We define g : |C× |C → |C,

g(z, ε) =< w∗0 , (I − E)K(ε, zv0 + W (zv0, ε)) >=< w∗0 ,K(ε, zv0 + W (zv0, ε)) > .

From the Fredholm alternative

g(z, ε) = 0 ⇐⇒ (I − E)K(ε, zv0 + W (zv0, ε)) = 0

The function g is analytic in a neighborhood of (0, 0) since K, W are complex analytic
and we compute

g(0, 0) = 0

gz(0, 0) = 0

gzz(0, 0) =< w∗0 , DuuK(0, 0)(v0, v0) >6= 0

gε(0, 0) =< w∗0 , DεK(0, 0) >6= 0

g(z, ε) =
1
2
gzz(0, 0)z2 + gε(0, 0)ε + O(ε2) + O(z3) + O(εz)

The Newton polygon is a method to identify the leading singularities for solutions of
f(z, ε) = 0 where f is a power series in z whose coefficients can be power series in ε.
For g(z, ε) = 0, the leading singular behavior is ε1/2 and if we perform the change of
variables z = ε1/2y and divide g(z(y), ε) by ε we have

(4.6)
1
2
gzz(0, 0)y2 + gε(0, 0) + O(ε1/2) = 0.

For ε = 0 (4.6) has two distinct solutions

y = ±(−2gε(0, 0)
gzz(0, 0)

)1/2

By the implicit function theorem, there are two and only two solutions yi(ε), i = 1, 2,
analytic in ε, for |ε| sufficiently small. This implies zi = ε1/2yi(ε) and, for ε sufficiently
small, there are two solutions to K(u, ε) = 0 analytic in ε1/2, with

ui = W (ε1/2yi(ε)v0, ε) + ε1/2yi(ε)v0, i = 1, 2.

This concludes the proof of the theorem.
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Using Theorem 4.5, Theorem 4.6 we find, for standard-like maps

Theorem 4.7. Suppose that for (ε0, u0) such that T (ε0, u0) = u0 (where T defined in

(4.1)), fixed ω with Im ω 6= 0, DuT (ε0, u0) has a simple eigenvalue 1. Let

Null(DuT (ε0, u0)− I) = span(v0), Null
[
(DuT (ε0, u0)− I)∗

]
= span(w∗0).

If < w∗0 , DuuT (ε0, u0)(v0, v0) >6= 0 and < w∗0 , DεT (ε0, u0) >6= 0 then, ε0 is an isolated

branch point of order 2, in the analyticity domain of the hull function.

Proof. Consider the operator

K(ε, u) = T (ε + ε0, u + u0)− I.

Then,
DuuK(0, 0) = DuuT (ε0, u0)

DεK(0, 0) = DεT (ε0, u0)

From Lemma 4.2 T is Fréchet differentiable. From Theorem 4.5 DuT (ε0, u0) is a com-
pact operator and may exhibit isolated eigenvalues. An isolated simple eigenvalue 1 for
DuT (ε0, u0) corresponds to an isolated simple eigenvalue 0 for DuT (ε0, u0) − I with
an one dimensional null space and range of co-dimension 1. Thus K fulfills all the
conditions of Theorem 4.6.

Remark. If S is an odd trigonometric polynomial, T preserves O, the space of complex,
continuous, odd functions on [−π, π], and we will restrict T : O → O. The dual space
of O is the space of complex odd measures on [−π, π]. Then u0, v0 are odd functions
and the Fourier decomposition of the operator DuT (ε0, u0) is the same in O and O∗.
Thus

(4.7)
< w∗0 , DuuT (ε0, u0)(v0, v0) > =

∫ π

−π

ε0v0(θ)∆
−1
ω [S′′(u0(θ) + θ)v2

0(θ)]dθ

< w∗0 , DεT (ε0, u0) > =
∫ π

−π

v0(θ)∆
−1
ω [S(u0(θ) + θ)]dθ

are integrals of even functions over an interval centered at the origin. Thus, typically,
the non-degeneracy conditions of Theorem 4.7 are satisfied. This remark applies in
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particular to the case of the standard map and it provides an explanation on the nature
of the singularities of the hull functions. Notice that in the presence of an additional
parameter one expects cases where the non-degeneracy conditions are not satisfied and
different bifurcations may occur. Notice that, because of the presence of the compact
operator ∆−1

ω in the integrand in (4.7), the high order Fourier coefficients in the expan-
sion of u0, v0 do not contribute very much to the integral. Since the Newton method
(see section 5) can produce error bounds for the difference between the true u0 and the
computed one and it is well known how to validate the computation of eigenvectors of
compact operators, it is quite feasible to estimate the errors in the computation and
conclude that indeed the conditions in (4.7) are verified for a particular model.

Remark. If S is an odd trigonometric polynomial and ε0 is a bifurcation point for the
hull function, then −ε0 is also a bifurcation point since u−ε0

(θ) = uε0
(θ−π) satisfies the

conditions of Theorem 4.7. Since this symmetry is not explicitly used in the algorithms,
it provides with a useful check of their accuracy.

Remark. The compactness of the operator T depends crucially on the condition Im ω 6=
0. When Im ω = 0, T is not a compact operator and the bifurcation Theorem 4.6 does
not apply.

Remark. The non-degeneracy conditions of Theorem 4.7, together with the compact-
ness of T imply that, typically, the singularities are isolated branch points of order
2.

To study numerically the domain of analyticity of the map ε 7→ uε, and the nature
of the singularities of the map we will numerically study the domain of analyticity of
maps ε → Γ[uε] where Γ is an entire map from the space of continuous functions to the
complex numbers. Clearly the domain of analyticity of ε 7→ Γ[uε] is not smaller than
the domain of analyticity of the map ε 7→ uε. One expects also that many observables
will lead to the same domain of analyticity, with singularities of the same nature. Some
observables that immediately come to mind are the evaluation of the function at certain
values and the Fourier coefficients.

Theorem 4.8. Let f : |C → C0 (C0 the space of continuous functions on [−π, π]) be a

map with ε = ε0 an isolated branch point of order 2, i.e. f(ε) =
∑∞

n=0 fn(ε−ε0)n/2, f1 6=

15



0 where the series converges for |ε − ε0| small enough. If Γ : C0 → |C is an analytic

function in C0, i.e. for any g ∈ C0, there exists δ = δ(g) > 0 such that, whenever

‖h‖C0 < δ(g), Γ(g + h) =
∑∞

k=0
1
k!D

kΓ(g)hk where the series converges uniformly in

h, and DΓ(f0)[f1] 6= 0, then, the point ε0 is an isolated branch point of order 2 of the

composition map f ◦ Γ.

Proof. Since f(ε) =
∑∞

n=0 fn(ε − ε0)n/2 converges for |ε − ε0| small enough, ‖(ε −
ε0)1/2

∑∞
n=1 fn(ε− ε0)(n−1)/2‖C0 can be made arbitrarily small, in particular less than

δ(f0). Then, by the analyticity of Γ,

Γ(f0 + (ε− ε0)
1
2

∞∑
n=1

fn(ε− ε0)
n−1

2 ) =
∞∑

k=0

1
k!

DkΓ(f0)

[
(ε− ε0)

1
2

∞∑
n=1

fn(ε− ε0)
n−1

2

]k

= Γ(f0) + DΓ(f0)[(ε− ε0)
1/2f1] + (ε− ε0)

∞∑
n=0

Γn(ε− ε0)
n/2

= Γ(f0) + (ε− ε0)
1/2DΓ(f0)[f1] + (ε− ε0)

∞∑
n=0

Γn(ε− ε0)
n/2

Since the series for Γ(f) converges for |ε − ε0| small enough, and DΓ(f0)[f1] 6= 0, ε0 is
an isolated branch point of order 2 for the composition map f ◦ Γ .

Remark. If for a map Γ, Γ(f) is constant for all ε, then the composition map ε → f ◦Γ
is actually entire in ε, since Γ(f) is independent of ε. This is the case when we take
Γ to be evaluation at θ = 0, π for standard-like maps, with S an odd trigonometric
polynomial.

Based on Theorem 4.6 and our numerical observations we formulate the following
conjecture about the behavior of the singular points of the hull function as Im ω → 0.

Conjecture 4.9. If Im ω 6= 0 the singular points in the analyticity domain of the hull

function for a dense set of standard-like maps are isolated branch points of order 2. As

Im ω → 0, the branch points move towards the origin, and accumulate, in the limit of

ω real, diophantine, to a natural boundary.
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We note that a very similar phenomenon of natural boundaries being approximated
by accumulation of branch points was discussed in [LT1] for a very different problem,
namely, invariant curves in a dissipative system. There, irrational frequencies were
approximated by rational ones and the later were shown to lead to analyticity domains
bounded by branch points. The phenomena in [LT1] were, however, very different
because the derivative of the operator was not compact, and indeed the spectrum was
uncountable.

We also note that the Greene’s criterion for complex values [FL] also suggests that,
for twist mappings, the analyticity domain for invariant curves is approximated by the
place at which periodic orbits lose stability. When the eigenvalues λ± of the orbit of
type p/q arrive at the unit circle with a rational phase (λ± = e2πi N

M ), one also expects
that the periodic orbit of period qM expressed as a function of the parameter also
experiences a branch point of order two.

5. Newton Method

In order to verify the perturbative calculations, we will use a non-perturbative method
based on numerical continuation for an appropriate operator Rε.

For fixed ε, let Rε : Cω,δ → Cω,δ with

(5.1) Rεf(θ) = ε∆−1
ω

[
S(f(θ) + θ)

]
− f(θ).

If u0 fails to satisfy (3.2) by a small amount, i.e.

Rεu0(θ) = R0(θ)

we can try to improve the approximate solution by setting it to u0(θ) + η(θ), where η

will be chosen to make the error much smaller.

Theorem 5.1. Let ω with Im ω 6= 0,Rε as in (5.1), ε, uε ∈ Cω,δ such that Rεuε(θ) = 0.

If DRε(uε) is an invertible operator with bounded inverse, then , for |ε− ε′| sufficiently

small there exists uε′ ∈ Cω,δ such that Rε′uε′(θ) = 0.

Proof. Since uε satisfies Rεuε(θ) = 0 we have

‖Rε′uε(θ)‖δ = ‖Rε′uε(θ)−Rεuε(θ)‖δ ≤ |ε′ − ε|‖∆−1
ω S(uε(θ) + θ))‖δ
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Constructing the operator

Φ(f) = − [DRε(uε)]
−1Rε′(f) + f

Φ is a contraction in ‖ ‖δ of a factor 1/2 in a neighborhood of uε that can be chosen
uniformly for |ε′ − ε| sufficiently small. Moreover, since ‖Φ(uε) − uε‖δ can be made as
small as desired by choosing |ε′ − ε| small enough, we conclude, from the contraction
mapping principle, that Φ has a fixed point uε′ for all ε′ in a neighborhood of ε. But a
fixed point of Φ is a solution of Rε′u = 0.

Remark. The above theorem does not apply at values of ε where a branch point can
occur, since DRε(uε) is not invertible at those values.

The Newton method has certain advantages over a perturbative method. A per-
turbative expansion only converges in a disc of radius bounded by the position of the
singularity closest to the origin, and does not give any information on the nature of
the singularity. Based on the Newton method, we can perform a continuation method
starting from ε = 0, when the hull function is u = 0, along paths in the complex plane.
Initial guesses can be chosen to be either the solutions computed at points nearby or, for
small values of ε, the Lindstedt series (3.5). On the other hand the Lindstedt series (3.5)
provides more global information, that can be used to locate several singular points.

In practice, the Newton method can be used to reliably compute solutions rather
close to the singularity and verify the non-degeneracy conditions of Theorem 4.7 (by
exploiting the knowledge about the nature of the singularities, it should be possible to
compute even closer).

A very dramatic confirmation can be obtained by using a Newton method to move
around a singularity in small steps. If the singularity was indeed a branch point, by
going around a closed loop once, we would move to a different sheet of the Riemann
surface. If the branch point was indeed of order 2, going around the closed loop twice
would bring us back again to the original point. This prediction has been verified quite
unmistakably in figure 1.

Note that the behavior would have been completely different should the singularity
have been a pole, a branch point of some other order or an essential singularity.
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Note also that, by using the continuation method along paths that wind around
the singularities, we could discover the global topology of the Riemmann surface of the
function defined by the Lidstedt series. We have not done that systematically since we
do not have a clear idea of what we should be expecting and looking for. Nevertheless
there are indications that the Riemann surface becomes increasingly complicated for
large |ε|.

6. Padé Approximations

A Padé approximant of order [M/N ] for an analytic function f is a rational function with
numerator P of degree at most M and denominator Q of degree at most N whose Taylor
expansion agrees with that of f up to order M + N . We also impose the normalization
condition Q(0) = 1.

We refer to [BGM], [Gi] for a survey of mathematical results about Padé approx-
imants and applications in problems of Theoretical Physics. They have been used in
almost all fields in Physics in which perturbative expansions and their breakdown play
a role. Several authors have recently used Padé approximants for perturbative expan-
sions of conjugating functions for invariant curves to estimate domains of analyticity
(see [BC], [BCCF], [FL], [BM], [LT1]).

The coefficients of the numerator and denominator of a Padé approximant can be
computed by

f(z) =
P (z)
Q(z)

+ O(zN+M+1), z → 0

or, equivalently,

P (z) = Q(z)f(z) + O(zN+M+1), z → 0

which results to a linear system of equations for Pi, Qi.

The standard method to examine the domain of analyticity of f is to compute
the poles of the Padé approximants for f and study their behavior. According to
our conjecture the domain of analyticity of f includes branch points of order 2. The
presence of branch points affects the behavior of Padé approximants in ways that are
numerically observable. In [N1] it was shown that for a certain class of functions with
an even number of branch points of order 2 the poles and the zeros of the [N/N ] Padé
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approximants accumulate, as N →∞ , along non-intersecting arcs emanating from the
branch points. The position of the arcs is completely determined by the positions of
the branch points.

Numerical investigations (see [HB1,2]) and a conjecture of John Nuttall (see [N2])
suggest that for any function with a finite number of branch points the zeros and the
poles of the [N/N ] Padé approximants accumulate on arcs emanating from the branch
points. Our numerical results support the conjecture (see figures 2, 3).

From the arguments in section 4, the hull function uε, for Imω 6= 0, could have
an infinite number of branch points. Notice that the influence of a singularity that
is far from the origin, at z = d2, on the nth Taylor expansion coefficient decreases
asymptotically like O(|d1|n/|d2|n), where d1 is the position of the singularity closest to
the origin. In a finite precision computation only singularities close enough to the origin
can be detected.

To find experimentally the accuracy necessary to distinguish branch points far from
the origin we have computed Padé approximants for functions of the form

f(z) =
√

1− α1z +
√

1 + α1z +
√

1− α2z, |α1| > |α2|.

The [N/N ] Padé approximant for f gives no indication of a branch point at 1/α2 for α2

small enough (see figure 4 for α1 = 1, α2 = (5i)−1) even if we use very high accuracy in
the computation of the coefficients.

7. Improved algorithms based on the nature of the singularities

a) Logarithmic Padé approximants

To locate the position of the singularities we will construct approximants for func-
tions related to the hull function, with different singular behavior. The advantage in
altering the nature of the singularities is that certain types of approximants work better
for one kind of singular behavior than another. For example, Padé approximants can
better approximate functions with poles than functions with branch points.

If a function f has a branch point singularity at z = 1/α, then

(7.1) f(z) = A(1− αz)γ + g(z)
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for g analytic at z = 1/α. If γ < 0 the contribution from the singularity dominates,
and f(z) ≈ A(1 − αz)γ , for z close to 1/α. Notice that the case γ > 0 (from our
conjecture we expect γ = 1/2 for the hull function) reduces to γ̃ < 0 for f̃ = dnf

dzn , for
γ̃ = γ − n, n > γ. Assuming γ < 0, we form the function

F1(z) =
d

dz
ln f(z) =

f ′(z)
f(z)

≈ γ

z − 1
α

for z close to 1/α.

We expect a Padé approximant for F1(z) to exhibit a pole at z = 1/α with residue
γ. To form an [N/M ] Padé approximant for F1 we have

F1(z) = f ′(z)/f(z) = P (z)/Q(z) + O(zN+M+1), z → 0

or, provided f(0) 6= 0, Q(0) = 1

f ′(z)Q(z) = f(z)P (z) + O(zN+M+1), z → 0.

The coefficients of P,Q can be determined by solving a linear system involving fn (where
f(z) =

∑∞
n=0 fnzn). The location and the residue of the poles of the Padé approximants

for F1 indicate the location and the order of the branch points of f .

Another way to estimate the order of a branch point, once the location 1/α is
determined from Padé approximants for F1, is to form Padé approximants for

F2(z) = (z − 1
α

)F1(z) = (z − 1
α

)
f ′(z)
f(z)

≈ γ

and

F3(z) =
d
dz ln

[
df(z)

dz

]
d
dz ln f(z)

=
f ′′(z)f(z)
f ′(z)f ′(z)

≈ 1− 1
γ

The accuracy for γ depends on the accuracy with which the location of the branch point
is computed. For a discussion of these methods and applications in which they have
been used see [BGM, pg. 55-57], [HB1,HB2].

We point out that the presence of the function g in (7.1) can slow the convergence
of Padé approximants for F1. The reason is that for f as in (7.1)

(7.2) F1(z) =
γ

z − 1
α

+ γα(1− αz)−γ−1g(x) + · · ·
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The point z = 1/α is not a simple pole for F1. We expect the Padé approximant
for F1 to indicate, apart from a pole, the presence of a branch point at 1/α and the
convergence to γ of [N/N ] Padé approximants for F2(1/α) to be slow. The second
term in (7.2) becomes more important for |γ| small. We can increase the value of |γ| if,
instead of working with the function f of (7.1), we work with a high order derivative of
f .
b) Ratio method

The ratio method is a well known method (see [HB1, HB2]) that takes advantage
of the fact that the coefficients of the Taylor expansion are strongly influenced by the
singularity closest to the origin. The existence of additional singularities with distances
from the origin close to the radius of convergence greatly reduces the effectiveness of
the method.

In the cases we have studied, due to parity properties of S, we expect at least two
branch points at the boundary of the domain of convergence of the Taylor expansion
of the hull function at positions ε = ±1/α. To study test functions f with Taylor
expansion f(z) =

∑∞
n=0 fnzn, f(z) = (1−αz)γ + (1 + αz)γ , γ < 0 we form the ratios

rn = f2n/f2(n−1) which converge to α2 with an error of order 1/n.

We will construct an extrapolation scheme to estimate α more accurately using the
ratios rn. Consider ξn = 2n(2n−1)rn−(2n−2)(2n−3)rn−1. Plotting ξn versus n gives
a straight line with slope 8α2 and intercept −(4γ + 10)α2. Instead of using graphical
methods to find the slope and the intercept we construct

(7.3) µn =
1
8
(ξn − ξn−1) = α2, ρn = −1

4
(
ξn

α2
− 8n + 10) = γ

The value of µn can be substituted for α2 in (7.3), so that both equations (7.3) depend
only on the coefficients fn.

The sequences µn, ρn converge to α, γ and can be used as independent verification
for the predicted value of γ.

If the function f has additional structure, as we expect for the case of the hull
function, then corrections of order 1/n are introduced to (7.3). Since we expect the
formation of a natural boundary in the limit Im ω → 0 the ratio method is not useful
for studying singularities for ω real, diophantine, and in general works only for the

22



singularities closest to the origin. The logarithmic Padé approximants on the other
hand provide information for several branch points simultaneously.

8. Numerical implementation and results

We have used a package we developed (see [LT1]) to manipulate one dimensional Fourier
series. The advantage of the package is the ability to change between double and ex-
tended precision by changing a definitions file. For the extended precision computations
we used the public domain library PARI/GP.

In the implementation of the Newton method we truncated the Fourier series rep-
resentation for the hull function to mode n, for n large

u(θ) =
n∑

k=−n

ûkeikθ

We checked the computation by verifying that it was converging quadratically. The
condition numbers obtained inverting the derivative matrix, were indicative of the prox-
imity to a branch point. The paths we chose encircled the points indicated by the Padé
methods several times. Whenever the method failed to converge quadratically due to
proximity to a branch point, we increased the size of the Fourier series. Notice that if
an initial guess is good enough, the Newton method will converge irrespective of the
way the initial guess was chosen.

We computed the coefficients of Padé approximants using Gaussian elimination
and obtained condition numbers for the computations. Although recursive methods
to compute the Padé approximants exist (see [BGM]) we do not know of any way to
assign condition numbers to such computations. The actual routines we used were
a translation into C of the well known DECOMP and SOLVE from [FMM]. To find the
zeros of the numerator and denominator of Padé approximants we used the routines
“xzroot”, “zroot” from [FPTV] translated to be compatible with the use of extended
precision arithmetic. Although, for Padé approximants in general, the residue of a
pole is indicative of its significance, in the case of functions with branch points one
expects zeros and poles to lie close together, resulting in large condition numbers and
poles with small residues. The condition numbers for computing the coefficients of
logarithmic Padé approximants were much smaller than the ones for straightforward
Padé approximants.
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An independent check of the accuracy of our computations is the symmetry of the
branch points. If ε is a branch point, so is −ε but this symmetry is not built into our
numerical method, thus can be used as an estimate of the accuracy of the computations.

Our numerical results are consistent with the predictions of section 4. We investi-
gated two standard-like maps, S1(q) = sin(q), S2(q) = sin(q) + sin(3q). Straightforward
Padé approximants for the hull function exhibited poles and zeros along lines emanat-
ing from distinct points. Logarithmic Padé approximants to the derivative of the hull
function (we used the derivative of the hull function so that, asymptotically close to
the singularities u(ε) ≈ A(1 − ε

ε0
)−

1
2 ) exhibited poles at locations consistent with the

locations indicated by the accumulation of poles and zeros of Padé approximants (see
figures 2, 3). The residue of the poles, computed both from logarithmic Padé methods
and the ratio method, was within 10% of the predicted value −1/2 as indicated in table
1. The results of the numerical continuation based on the Newton method support the
existence of an isolated branch point of order 2, within the path followed (see figure 1).
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11. Captions

Figure 1. The values of the solution of (3.2) for θ = 0.23 along a path in the complex
plane that encircles a particular point twice. Set 1 are the values through the first turn,
Set 2 the values through the second turn. After two turns we come back to the original
solution. (a) Around point ε = 0.9+2.39i. S(q) = sin(q), ω =

√
5−1
2 +0.1i. (b) Around

point ε = 0.56− 2.85i. S(q) = sin(q) + sin(3q), ω =
√

5−1
2 + 0.1i.

Figure 2. The poles and zeros of Padé approximants [25/25] for several values of θ

(Set 1) superimposed with the poles of the Padé approximant for the derivative of the
logarithm of the derivative of the hull function (u′) (Set 2). (a) S(q) = sin(q), ω =
√

5−1
2 +0.5i. (b) S(q) = sin(q), ω =

√
5−1
2 +0.1i. (c) S(q) = sin(q), ω =

√
5−1
2 +0.05i.

Figure 3. Same as figure 2. (a) S(q) = sin(q)+sin(3q), ω =
√

5−1
2 +0.5i. (b) S(q) =

sin(q) + sin(3q), ω =
√

5−1
2 + 0.1i. (c) S(q) = sin(q) + sin(3q), ω =

√
5−1
2 + 0.05i.

Figure 4. The poles and the zeros of the [35/35] Padé approximant to f(z) =
√

1− z +
√

1 + z +
√

1− z
5i . Computations performed with 60 digit accuracy.
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Tables

α β γ δ

Residue(F2) −0.53− 0.002i −0.53− 0.001i −0.56− 0.01i −0.56− 0.02i

Residue(F3) −0.52− 0.001i −0.52− 0.001i −0.56− 0.02i −0.56− 0.02i

Residue(ρ) −0.500 + 10−7i −0.500 + 10−6i — —
Position(µ) 11.886 + 14.32i 14.47 + 17.645i 0.9 + 2.4i 0.6− 2.9i

Table 1: Residues and positions of branch points in the domain of analyticity. The
positions of the points α, β, γ, δ are computed from the F1 Padé approximants. The
digits reported are accurate for each method apart from the last digit.
α = 11.889− 14.320i, ω =

√
5−1
2 + 0.5i, S(q) = sin(q)

β = 14.450 + 17.649i, ω =
√

5−1
2 + 0.5i, S(q) = sin(q) + sin(3q)

γ = 0.906 + 2.39i, ω =
√

5−1
2 + 0.1i, S(q) = sin(q)

δ = 0.56− 2.85i, ω =
√

5−1
2 + 0.1i, S(q) = sin(q) + sin(3q)
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