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Pricing American-Style Options by Monte Carlo Simulation:

Alternatives to Ordinary Least Squares

ABSTRACT

We investigate the performance of the Ordinary Least Squares (OLS) regression
method in Monte Carlo simulation algorithms for pricing American options. We
compare OLS regression against several alternatives and find that OLS regression
underperforms methods that penalize the size of coefficient estimates. The degree
of underperformance of OLS regression is greater when the number of simulation
paths is small, when the number of functions in the approximation scheme is
large, when European option prices are included in the approximation scheme,
and when the number of exercise opportunities is large. Based on our findings,
instead of using OLS regression we recommend an alternative method based on a

modification of Matching Projection Pursuit.



Introduction

Determining the price of American and Bermudan options that depend on a large number
of underlying assets is a question of both theoretical and practical interest, and has
attracted significant attention in the literature. On the theoretical side, the interest
arises because the price of an American option is given by the value function of an
optimal stopping problem. Practical interest, on the other hand, is due to the many
applications of American options. For example, an application from the area of real
options is the estimation of the option value to build a plant and the determination
of the optimal time to build. When the option value depends on several underlying
stochastic processes, many pricing methodologies become inadequate. Methods that
make use of a grid, such as finite difference or finite element methods, or the use of
multidimensional lattices, fail due to the curse of dimensionality: computational time
increases exponentially with the number of underlying stochastic factors. The only
methods whose computational burden remains manageable as the number of underlying

stochastic factors increases are based on Monte Carlo simulation.

The apparent difficulty to reconcile Monte Carlo simulation with the dynamic pro-
gramming framework used to solve optimal stopping problems has been resolved in
several ways in the literature. In this paper we concentrate on the function approxima-
tion approach introduced by Carriere (1996), where the continuation value function at
each possible exercise date is estimated by minimizing squared errors through the use
of smooth splines and local regressions. The method was further developed by Tsitsiklis
and Van Roy (1999), Tsitsiklis and Van Roy (2001), and Longstaff and Schwartz (2001),
who approximate the continuation value function by its projection on the linear span of

a set of functions, with the objective of minimizing squared errors.

!There are slight differences between the methods: Tsitsiklis and Van Roy (2001) use all the sim-
ulated paths to estimate the continuation value, while Longstaff and Schwartz (2001) only use paths
that are in-the-money. For further discussion, extensions, as well as links with other methods, see
Glasserman (2004).



In this paper we follow the specification presented in Longstaff and Schwartz (2001),
and investigate the impact of choosing to minimize squared errors, to the quality of
the approximation. While the objective of minimizing squared errors has the advantage
that it can be implemented efficiently using Ordinary Least Squares (OLS) regression,
it is subject to overfitting and misspecification of the functions used as regressors.? As
the potential for problems is greater when the number of simulation paths is small,
we compare the performance of OLS regression against several alternatives in a set of
testcases for a varying number of simulation paths. The alternatives we examine are
quantile regression; Tikhonov regularization; Matching Projection Pursuit (MPP); a
modified version of Matching Projection Pursuit (MMPP); as well as Classification and
Regression Trees (CART), a non-parametric method. All the methods are chosen for
their perceived robustness regarding small datasets: quantile regression relies on the
estimation of the median rather than the mean, and is less susceptible to a few large
fluctuations; the objective of Tikhonov regularization, MPP and MMPP is to minimize
squared errors plus a penalty for the size of the coefficients of the linear combination of
the functions used to approximate the continuation value function; CART is designed

specifically to deal with small datasets.

While OLS regression is the estimation method that produces the estimates with
the smallest variance among unbiased estimation methods, our findings demonstrate
that in the context of valuing American options, OLS regression is often a poor choice
when the number of simulated paths is small. In addition to performing worse than
other methods, notably the MMPP method, the performance of OLS regression deteri-
orates as the number of functions used to approximate the continuation value function
increases. Including functions that are likely to be similar to the continuation value
function, such as the prices of European options, deteriorates the approximation quality

of OLS regression even more. The deterioration in both cases appears to be due to a

2Qverfitting is a loosely defined term. In the context of our paper, we consider overfitting to be poor
out-of-sample performance compared to in-sample performance.



multi-collinearity problem. We find that the quality of the approximation using OLS
regression deteriorates as the number of exercise opportunities increases, indicating that
bias introduced at an early stage in the backward induction framework propagates and
results in an approximate option price far from the true value. A potential explanation to
the underperformance of OLS regression is that the estimates computed using Tikhonov
regularization, MPP and MMPP have lower variance than the OLS estimates, although
they may be biased. The larger variance of OLS regression leads to a rapid deterioration
in the OLS estimates, as the results of one estimation are used in a recursive fashion to

compute the previous — in terms of exercise dates — estimate.

The rest of this paper is organized as follows: Section I describes the general valua-
tion algorithm and alternative methods to OLS regression. Section II presents the five
testcases that we use to evaluate the performance of the different methods. Section III
discusses the experimental design of our study and the measures we use to evaluate

performance. Section IV presents our computational results. Section V concludes the

paper.

I. Valuation Algorithm

A. General Valuation Framework

Pricing American-style options through Monte Carlo simulation involves the general
framework of dynamic programming and function approximation. We describe the Least
Squares Monte Carlo (LSM) algorithm below and in Figure 1. Further details can be
found in Longstaff and Schwartz (2001).



The algorithm involves the generation of paths for the values of the state variables
by Monte Carlo simulation.®* We use the following notation: St(i) is the value of the
state variables at time ¢ along path ¢; h is the option payoff; V' is the option value; and
{t;}X, are the possible exercise times. The algorithm approximates the continuation
value of the option at each possible exercise time by a linear combination of a set of

: . N
basis functions {¢;};*;.!

LSM Algorithm

Step 1: generate M paths for the values of the state variables at all possible exercise

times

Step 2: at the terminal time ¢y, set the option value V' equal to the payoft

V(s en) =h (80 tn) m =1, M

N

Step 3: for the set of paths {i;}~,, for which the option is in-the-money; i.e., h(StijV_1 Jn_1) >

0, find coefficients a}(tx—1) to minimize the norm

- j S(iz) 174 S(iz) "
Zaj (tN_1> ¢]( 'tN71) e_r(tN—thl) ( ty N)
j=1 : :

. S(iL) v S(Z.L) .
¢]( tN_l) ( tny ) N)

3The state variables include the prices of the assets, but may also include the values of other stochastic
processes, such as the interest rate, the volatility and the running maximum or minimum of the price
of an asset.
Ny

4We are abusing terminology by calling the set of functions {¢; }J , a basis. Ideally the linear span of

the functions {¢; };V:bl would include the continuation value. Unfortunately this can not be guaranteed
in the general case.



Step 4: for each path update the value function at time ty_;

V(S v P8I tn). it A (S0, ) = S0 @ () 5 (S0,)
tn_1o UIN=-1] =
e Tn—tn)Y/ <St(;”), tN> ., otherwise
Step b: repeat Steps 3 and 4 for possible exercise times ty_o, tn_3, ..., until time t;.

The inputs of the LSM algorithms are the number of Monte Carlo paths M, the

basis functions {¢; ;V:”l, and the vector norm || - ||. Longstaff and Schwartz (2001)
use polynomials for the basis functions and the Ly vector norm, which leads to OLS

regression.

B. Convergence

The convergence properties of the LSM algorithm have been studied by Clement, Lam-
berton, and Protter (2002). There are two types of approximations in the algorithm.

e Type I: approximate the continuation value by its projection on the linear space of a

finite set of basis functions.

e Type II: use Monte Carlo simulations and OLS regression to estimate the coefficients

of the basis functions.

Clement, Lamberton, and Protter (2002) showed that under certain regularity con-
ditions on the continuation value, Type II approximation error decreases to zero as the
number of simulation paths goes to infinity, holding the number of basis functions fixed
(fixed Type I approximation error). In addition, if the Type II approximation is exact;
i.e., the coefficients of the projection can be calculated without random errors, then the
Type I approximation error diminishes as polynomials of the state variables of increas-
ing degree are added to the basis functions. As the degree of the polynomials tends

to infinity, Type I error tends to zero; i.e., the algorithm converges to the true price



as the number of simulation paths and basis functions tends to infinity. If the linear
span of the basis functions does not include the continuation value function; i.e., the
Type I approximation is not exact, then there will always be an error in the overall

approximation, irrespective of the number of simulation paths.

Glasserman and Yu (2004) study the convergence rate of the algorithm when the
number of basis functions and the number of paths increase simultaneously. They
demonstrate that in certain cases, in order to guarantee convergence, the number of
paths must grow exponentially with the number of polynomial basis functions when the
underlying state variable follows Brownian motion, or faster than exponential when the

underlying state variable follows geometric Brownian motion.

C. Ordinary Least Squares and Alternatives

Among possible choices for the norm used in the minimization in Step 3 of the LSM al-
gorithm, the L, norm has the advantage of being easy to implement, as it corresponds to
OLS regression. In this section, we discuss the benefits and drawbacks of OLS regression

and describe alternative norms and algorithms.

C.1. Ordinary Least Squares Regression

. . L Ny
Given observations {y;},_, and a set of regressors {z;},”,

OLS regression finds the

coefficients {a,},*, that minimize the sum of squared errors:

2
=1 i=1

L L N,
min [Z (yi — Qz‘)2] = min > o lvi- (Z aj%‘)
j:l i

where ( ); corresponds to the i*" component of a vector. In the context of this paper, the

observed values correspond to discounted option values from the next possible exercise



time; i.e., y; = e*’“(tHl*tj)V(St(jll,tj). The regressors correspond to the basis functions
N,
{oitih-

OLS regression has important optimality properties. For example, among all linear,
unbiased estimators, OLS regression is guaranteed to produce estimates of the coeffi-
cients {a;}1%, with the smallest variance (Gauss-Markov theorem, see Greene (2000)).
For the purpose of pricing American-style options, using OLS regression can guarantee
the convergence of the computed price to the true option price as the number of simula-
tion paths and the number of basis functions go to infinity. However, it is possible that
biased estimators may produce estimates of the coefficients with smaller variance. The
problem of large variance in the estimation of the coefficients is particularly severe when
the number of regressors is large compared to the number of observations, and when
the regressors are highly correlated. Large variance in the estimates manifests itself as
poor out-of-sample performance, and is often loosely described as overfitting. In our
context, the problem is potentially more severe, since OLS estimates for one exercise

date influence the option values for prior exercise dates in a recursive fashion.

C.2. Quantile Regression — Least Absolute Error Regression

Quantile regression is a statistical method that estimates conditional quantile functions.
Just as OLS regression estimates the conditional mean, quantile regression estimates the
conditional median, as well as the full range of other conditional quantile functions. In
this paper, we use the median (50% quantile) regression to approximate the continuation
value. This is equivalent to the Least Absolute Error regression where one minimizes

the sum of absolute errors; i.e.,

L L N,
main [Z lyi — ?Qz|] = main Z Yi — (Z ajl’j)

i=1 =1 7j=1



The advantage of quantile regression is that the estimation is less likely to be influenced
by outliers, producing smaller variation in the coefficient estimates compared to OLS

regression.

Quantile regression software is available in most modern statistical software packages.
In this paper we use the “quantreg” package in R. More details about quantile regression

and the “quantreg” package can be found in Koenker and Hallock (2001).

C.3. Tikhonov Regularization

Tikhonov regularization is a regularization method developed by Phillips (1962) and
Tikhonov (1963) to treat ill-posed problems with nearly linearly dependent predictors.
The method involves a trade-off between the “size” of the regularized solution and the
“quality” of the solution in terms of fitting the given data. Tikhonov regularization can

be formulated as:

N, 2 L /N 2
. 9 _
o ; Yi (;a’]%>i + A ; <;LU (a; a]))
where y is the vector of observed values, x is a matrix whose columns correspond
to the predictors, a is the vector of the coefficients of the predictors, A\ is a regu-
larization parameter that determines the trade-off between the size of the solution
measured by S5 (Z;V:bl Lij(aj — C_Lj))Q, and the quality of the solution measured by
Zle (yZ — ( ;V:”l ajxj>i>2. The vector @ is a prior estimate of a.> L is a weight matrix.

In this paper, we set @ = 0 and L = I, the identity matrix.

The choice of the regularization parameter A is crucial and also case dependent.

To determine the “best” A, a graphical tool called L-curve is often used to quantify the

5Smart choices of @ can be helpful in improving the results, but hard to find with low computational
cost. Notice that when A = 0, or when a is equal to the OLS regression estimate, Tikhonov regularization
is equivalent to OLS regression. We have used Matching Projection Pursuit (described in the next
section) to generate @, but did not see any improvement in the results.



trade-off between size and quality. A typical L-curve is shown in Figure 2. The “optimal”
regularization parameter A* corresponds to the corner point in the figure. Choosing A >
A* tends to over-control the size and leads to poor quality of data fitting. On the other
hand, choosing A < \* leads to better fitting of the data, but with rapidly increasing
solution size, which is prone to overfitting. More information about the L-curve and its
applications can be found in Hansen (2001). We use the Regularization Tools package

in Matlab, developed by Hansen (1994), to perform Tikhonov regularization.

C.4. Matching Projection Pursuit

The projection pursuit method was developed by Kruskal (1969) to interpret high-
dimensional data with well-chosen lower-dimensional projections. The idea is to re-
cursively identify optimal projection directions with respect to minimizing residuals in
a hierarchical fashion, one direction at a time. A particular version of projection pur-
suit, Matching Projection Pursuit (MPP), introduced by Mallat and Zhang (1993), only
searches within a given set of directions, called a dictionary. In our context, the dic-
tionary is the set of basis functions. MPP can be considered as a greedy algorithm
of finding the optimal projection of a vector onto the linear span of a set of, possibly,
non-orthogonal vectors. Each iteration chooses among the set of available projection
directions the direction that minimizes the Ly norm of the residual vector. The chosen
direction is the one that has the largest inner product, among all the possible directions,
with the vector being projected. Given the inner product interpretation, it is possible

to implement MPP efficiently. The process can be written as an algorithm:
MPP Algorithm

Step 1: Set up a dictionary with basis functions: {xj}j.vzbl

Step 2: Determine the cutoff ¢



Step 3: Among the dictionary directions, find the direction v that best describes the
data y(©.

NOND Y [y, )| > |<y(0)7%‘>\7w
lznll 1l
ay :<y(0),x7<12)>
Hmw(l)Hz

where (y©@, ;) = S8 4 (21), and [z, =/ S ()i

Step 4: Subtract all the information along the best direction from the data and compute
the residual vector y(b.

— (Il.Z',y(l)
Step 5: Check the percentage reduction of the norm of the residual vector. If W

¢, stop; otherwise go to Step 3 and repeat using the residual vector y*).

(g™ x| [(y®, )]

(k+1) _1p, - '
L g > Vi}
el 131l
<y(k), .T,y(k+1)>
t1 =" 13
”x’Y(k+1) H2
y(k+1) :y(k) — Ay 1T (k1)

One of the inputs in the MPP algorithm is the choice of the cutoff in Step 2. We
choose the cutoff corresponding to the explanatory power of the dictionary with respect
to a random vector: we randomly generate 300 vectors with the same length as the
data; for each random vector we estimate the percentage reduction in size by finding
the best projection with respect to the dictionary. The cutoff value is set to the average
percentage reduction in the size of the random vector over the 300 random vectors. We
chose 300 as the sample size of the random vectors so that the determination of the

cutoff is stable.

10



C.5. Modified Matching Projection Pursuit

The Modified Matching Projection Pursuit (MMPP) method constrains the magnitude
of the projection in each iteration to a small quantity rather than the magnitude that

would minimize the Lo norm of the residual vector.
MMPP Algorithm

Step 1: Set up a dictionary with basis functions: {xj}j.vzbl
Step 2: Determine the cutoff c.
Step 3: Determine the step size e.

Step 4: Among the dictionary directions, find the direction 4" that best describes the
data y(©.

oo oo 80 )

lzally

4 = <?/(0), 33'7<1>>

= 2
Hmw(l)Hz

where (y@,z;) = S8 4\ (2), and ||zall, =\/ S5, (21)7.

Step 5: Project along the best direction under the step size constraint and compute

the residual vector y™).

aj =sign (a;) X min {|ay|, €}

yM =y — iz

11



Step 6: Check the percentage reduction of the norm of the residual vector. If I OIS

¢, stop; otherwise go to Step 3 and repeat using the residual vector y®).

A0 1, ‘<y(k),xh>‘ > ‘<y(’“).,a:j>|’vj}
[ET3I 12511
<y(k)7 xfy(k+1)>

Ap41 = 95
|zem ]
g =sign (ag41) X min {|ags1|, €}

(k+1) (k)

/
Yy =y - ak+1x7(;¢+1)

The step size, €, controls how aggressive the algorithm is. For a very large step size,
the MMPP method is equivalent to the MPP method. We set the step size to 1% of
the absolute value of the coefficient along the best direction found in the first round of
searching; i.e., € = 1% x |a;|. The cutoff value is computed similarly to the case of the

MPP method.

The link between shrinkage estimators and the Tikhonov and MMPP meth-
ods

An alternative to OLS regression that we are not directly investigating involves the
use of shrinkage estimators. The best known ones are ridge regression and Least Absolute
Shrinkage and Selection Operator (LASSO). In both cases the objective is to minimize
the sum of squared errors subject to a constraint on the size of estimated coefficients.
In the case of ridge regression the constraint involves the sum of the squares of the
estimated coefficients, while in the case of LASSO it involves the sum of the absolute
values of the estimated coefficients. There are free parameters in each method that
correspond to the magnitude of the constrained sums. There is a direct link between
ridge regression and Tikhonov regularization, and between LASSO and MMPP. The
choice of the magnitude of the constrained sums is similar to the choice of the parameter
A in Tikhonov regularization and to the choice of the cutoff in MMPP. Hastie, Tibshirani,
and Friedman (2001) describe the ridge regression and LASSO methods in detail, and

12
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provide a numerical algorithm for estimating the regression coefficients of LASSO that

is equivalent to the MMPP method.

C.6. Classification and Regression Tree Method — CART

The Classification and Regression Tree (CART) method was developed by Breiman,
Friedman, Olshen, and Stone (1984). It is a nonparametric method that can be used
to predict values of continuous dependent variables (regression problem) or classify cat-
egorical variables (classification problem). The method makes no assumptions on the
relationships between the predictors and the dependent variables. The main idea of
CART is to partition the space spanned by the predictors into a set of rectangles, and
then fit a simple model in each rectangle. The process of partitioning is performed re-
cursively to balance between the size of the tree and the quality of data fitting. The
intuition is that a very large tree might overfit the data, while a small tree might over-
look important details in the data. Because of its nonparametric nature, CART is well
suited for problems where there is little a priori knowledge regarding the relationship
between predictors and dependent variables. This is the situation we face when pricing
American-style options by Monte Carlo Simulation. The continuation value is unknown,
problem dependent, nonparametric, and nonlinear. We implement the regression tree

method using the “rpart” package in R.°

II. Testcases

To test the different approximation methods, we have employed a set of five testcases

that were introduced by Fu, Laprise, Madan, Su, and Wu (2001) as a benchmark for

In addition, we have examined Bayesian Additive Regression Trees (BART) on several testcases.
We found no improvement in the results and the computational time is much longer than CART. We
do not report the results based on BART in this paper.

13



evaluating the performance of Monte Carlo based numerical methods. Before describing

the testcases, we introduce some notation.

T : expiration date

t; :  possible exercise time, 1 =0, ...V

K : strike price

r:  interest rate

o volatility

Sy stock price at time ¢

Sg . stock price at time ¢ of stock 7, 7 =1,...,n

hy :  payoff if the option is exercised at time ¢ € {ti}fio

Testcase 1: Call Option with Discrete Dividends

Testcase 1 is an American call option on a single stock that at times ¢;, i = 1,2, ...]V,

distributes discrete dividends D;. The payoft function is given by:
ht — (St - K>+

The dividend D; can be deterministic or stochastic. The ex-dividend stock price drops

by the amount of the dividend; i.e.,
St-_f— - Sti - DZ,Z - 1, ,N

The stock price process net of the present value of dividends, S, follows geometric

Brownian motion under the risk-neutral measure

dgt = gt [’rdt + O'dZt]

14



The actual stock price process is given by

N
Sy = gt + Z Dje_r(tj_t), t e [tiati—f—l) ,0=20,1,..N
J=i+1

Under the assumption of a frictionless market the optimal exercise policy of a call
option is to always exercise right before an ex-dividend date or at the expiration date.
Thus, the potential early exercise dates are the ex-dividend dates {tl}fil

Testcase 2: Call Option with Continuous Dividends

Testcase 2 is an American call option on a single stock with continuous dividends paid
at a rate 0 and discrete possible exercise times {ti}iNZO. In this case the dividends are
directly embedded into the stock price dynamics. We assume that the stock price S;

follows geometric Brownian motion under the risk-neutral measure
dS; = Sy [(r — 0) dt + odZ,]

The payoff function is the same as Testcase 1.

Testcase 3: American-Asian Call Option
Testcase 3 is an American-Asian call option with payoff defined by
ht - (St - K)+

where

ng

- 1
Sy = St.
t nt—i_l]z:; t;

15



and

t; :t’+(t—t’)l
T

S, is the discrete average of the stock prices where averaging starts at a pre-specified

date ' up to the exercise time t. Similar to Fu, Laprise, Madan, Su, and Wu (2001),

we used daily averaging starting on day ¢'. n; + 1 prices are averaged in calculating

S;. We allow early exercise at times {ti}ij\io . The underlying stock price process follows

geometric Brownian motion with continuous dividends, just as Testcase 2.

Testcase 4: Put Option on a Jump-Diffusion Asset

Testcase 4 is a put option defined on a single underlying stock with discrete exercise

times. The payoff function is given by
+ N
he = (K = 8)" t € {t:i}; 2,

The stock price process follows jump-diffusion:

N(t)

Sy = Soexp | (r—o°/2)t+ oVt Zy + Z (6Z; — 6°/2)
j=1
where Z; ~ N (0,1),j =0,..., N(t), are independent, identically distributed (i.i.d.) and
N(t) ~ Poisson (At). Thus, the jump sizes are i.i.d. random variables that are lognor-
mally distributed with mean pu; = —¢%/2 and standard deviation o; = 4. With this

choice, the expected jump sizes are equal to one.

16



Testcase 5: Max-Call Option on Multiple Underlying Assets

Testcase 5 is a call option on the maximum of n stocks. The payoff function is given by:

] +
hy = {(vmax SZ) —K}
Jj=1,...n

Early exercise is possible at discrete times {ti}ij\io- The underlying assets are assumed

to follow correlated geometric Brownian motions with continuous dividends
dsi = S} [(r —&;)dt + 0;dZ}] ,j =1,..n

where Z/ is a standard Brownian motion and the instantaneous correlation between Z7
and Z* is pjj.. Similar to Fu, Laprise, Madan, Su, and Wu (2001), we assume p;z = p
forall j,k=1,....,n and j # k.

III. Experimental Design

As we mentioned in Section I.B, Clement, Lamberton, and Protter (2002) have shown
that the LSM algorithm using OLS regression converges to the true option price as the
number of simulation paths and the number of basis functions go to infinity. In practice,
both the number of basis functions and the number of simulation paths are finite, and

potentially small. In this paper, we focus on two questions:

1) What is the behavior of the different estimation methods, for a given set of basis

functions and a small number of simulation paths?

2) Given a small number of simulation paths, how does the behavior of the different

estimation methods depend on the choice of basis functions?

17



To address these questions, we have designed a numerical experiment. We study
the quality of the price calculated using the LSM algorithm with different numbers
of simulation paths and different sets of basis functions for the testcases described in
Section II using different estimation methods. The experimental design was chosen to

address several challenges, outlined below.

e The true price is unknown: The first problem in quantifying the quality of an estima-
tion method is that the prices of the options in the testcases we study are unknown.
However, once a set of basis functions is chosen, the LSM algorithm cannot do bet-
ter than approach the option value computed in the limit of an infinite number of
simulation paths. To reflect this limitation, we compare the approximate option
prices obtained by the different estimation methods, to the option price obtained
using OLS regression with a very large number of paths. In practice, we deter-
mine the limiting price by ensuring that doubling the number of paths no longer

influences the option price.

e The computed price for each estimation method is a random variable: Since simula-
tion is the basis of the LSM algorithm, the resulting approximate option prices are
random variables. In order to compare between different estimation methods, we
use multiple runs to obtain a distribution of the estimated option price. From the
distribution of the estimated option price, we calculate the mean and the standard
error of the mean. To avoid any potential bias, we use independent sets of paths

for each estimation method.

e Choice of basis functions: An important part of the algorithm is the choice of basis
functions. So far in the literature the choice has been to use polynomials, see
for example Tsitsiklis and Van Roy (2001), and Longstaff and Schwartz (2001).
Moreno and Navas (2003) found that different types of polynomials; e.g., Cheby-
shev, Hermite, Laguerre, and Legendre, lead to very small variations in the option

value when the largest degree of the different types of polynomials is the same

18



and 100,000 paths are used. Given our focus on evaluating the performance of
different estimation methods, we investigate bases that consist of polynomials of
different degrees, as well as bases that include functions corresponding to European
option prices with different strikes and maturities. Our motivation for including
such functions is that they are likely to be more similar to the continuation value
than polynomials. While one would expect that including basis functions that are
more similar to the function being estimated would improve the approximation, it
is possible that the opposite is true, especially since European option prices with

different strikes and maturities are highly correlated.

e Computational efficiency: A concern when using alternatives to OLS regression is the
potential additional computational cost. The methods we have chosen to study,
while less familiar than OLS regression, are nonetheless similar in terms of com-
putational efficiency: quantile regression reduces to a linear optimization problem;
similarly to OLS the computational time of Tikhonov regularization increases lin-
early with the number of observations; MPP and MMPP also scale linearly with
the number of observations as they reduce to matrix-vector multiplication, where
the matrix has a number of rows equal to the number of basis functions and a num-
ber of columns equal to the number of simulation paths. In numerical experiments
we have confirmed that CART also scales linearly with the number of simulation
paths. In our computations there were very small differences in computational

time between OLS regression and the alternative estimation methods.

19



IV. Computational Results

A. Setup

Following the design outlined in Section III, we estimate the asymptotic approximation
to the option price for each of the testcases using 100,000 simulation paths and OLS
regression. To evaluate the estimation methods, we compare the values obtained for dif-
ferent sets of basis functions and different numbers of simulation paths. We use samples
of 100, 1,000, 5,000, and 10,000 simulation paths and basis functions that include polyno-
mials of different degrees, as well as a mix of polynomials and European option prices in
cases where a closed form solution for European option prices exists. Our code is imple-
mented in Matlab, including path simulation, general valuation algorithm, input-output,
and several projection methods (OLS regression, MPP, and MMPP method). The other
projection methods are implemented through existing software packages: Tikhonov reg-
ularization by the Regularization Tools package of Matlab, quantile regression by the
“quantreg” package of R, and regression tree method by the “rpart” package of R. We

use antithetic paths to reduce the variance of the estimates.

In Testcases 1, 2 and 4 the basis functions include polynomials of the underlying stock
price, while in the case of the average option (Testcase 3) they include polynomials of
the running average of the stock price. The column “/N,” in the tables corresponds to
the highest degree of polynomial used in the basis. In the case of the max-call on several
assets (Testcase 5), in addition to polynomials of the underlying stock price we also
used the largest and the second largest stock price as predictors. In this case, N, = 0

corresponds to a basis with the constant function, the largest stock price Sp,), and

the second largest stock price S(,—1); IV, = 1 adds the linear functions Sy, Sy, -+, Sp;
Ny = 2 adds the diagonal quadratic terms S2, S3, --- | S?; N, = 3 adds the off-diagonal
quadratic terms; N, = 4 adds the diagonal cubic terms S?, S35, --- | S3; N, = 5 adds
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the off-diagonal cubic terms. For example, in the case of the max-call option on three

assets, the basis functions used for each value of “NN,” are listed in Table I.

When European options are included in the basis (Testcases 1, 2, 3, 4 and Testcase
5 with two assets), there are nine functions added to the set of basis functions: the
price of the European options with strikes at-the-money, 10% in-the-money, and 10%
out-of-the-money, with expiration dates of 50%, 100%, and 150% of time to expiration

of the American-style option.

B. Testcases 1, 2, 3, and 4

Panel A of Table II presents the approximation results for the different methods for
Testcase 1, as the number of simulation paths and the degree of the polynomials in the
set of basis functions changes, while Panel B augments the basis functions by including
nine additional functions, which correspond to prices of European options with different
strikes and maturities. The asymptotic value of the option is reported in the second
column of the table. It is computed using 100,000 paths and OLS regression for each
corresponding set of basis functions. The standard errors reported throughout the table
are computed by running each method 20 times using independent samples. To ease
comprehension, we indicate estimates that are at least three standard errors away from

ckskok

the asymptotic value by , and estimates that are between two and three standard

errors away from the asymptotic value by “**”.

From Panel A of Table II we notice that when the number of paths is very small, e.g.,
100 or 1,000, OLS regression does poorly. When the number of paths is 100, Quantile
regression, MPP, and MMPP outperform the other methods, while when the number of
paths is 1,000, Tikhonov regularization, MPP and MMPP outperform. As the number
of paths increases to 5,000 and 10,000 all methods other than Quantile regression im-

prove. Adding European options as basis functions in Table II, Panel B, improves the
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performance of Tikhonov regularization, MPP, and MMPP methods, but deteriorates
the performance of OLS regression. Overall, we note that as the number of basis func-
tions increases, the performance of OLS regression deteriorates, while the performance

of the Tikhonov regularization, MPP, and MMPP methods is only marginally affected.

The results for the case of the call option on a stock that pays continuous dividends,

presented in Table III, are similar.

Table TV corresponds to an American-Asian call. From Panel A we notice that
OLS regression outperforms the other methods, other than quantile regression. When
European options are added to the basis, in Panel B, Tikhonov regularization and the

MMPP method improve to the level of OLS regression.

In Table V we present the results for the case of an American put on an asset that
follows jump-diffusion. With a polynomial basis, OLS regression and the MMPP method
outperform the rest. When European options are added to the basis in Panel B, the
performance of OLS regression deteriorates, while Tikhonov regularization improves to

the level of the MMPP method, which is not affected by the change in the basis functions.

C. Testcase 5

Table VI presents the results for the case of a max-call option on two assets for different
strike prices. From Panel A, we notice that no method is able to accurately approxi-
mate the asymptotic price for the in-the-money option when the basis functions include
only polynomials. Panels C and E correspond to at-the-money and out-of-the-money
options with polynomial basis functions, and we notice that OLS regression, MPP and
Tikhonov regularization are able to better approximate the option prices. Adding Euro-
pean option prices to the basis — Panels B, D, F — improves the performance of Tikhonov
regularization, the MPP, and MMPP methods and deteriorates the performance of OLS

regression. Quantile regression and CART perform poorly throughout.
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Table VII presents the case of a max-call option on ten assets.” Almost all methods
perform poorly. MMPP does relatively better but still does not consistently achieve

accurate estimates.®

D. Overall Evaluation of the Five Testcases

Tables VIII and IX summarize the results for all the estimation methods and all the

.o

testcases. Fach estimation method is given a grade of “+7, , or “0”, depending
on whether it performed well, poorly, or average. Below each method the four columns
correspond to 100, 1,000, 5,000, and 10,000 simulation paths. Table VIII summarizes
the results for all the sets of basis functions, while Table IX focuses on the case of the

sets of basis functions with the largest number of functions.

Overall we find that for a small number of paths OLS regression performs poorly.
The MMPP method consistently outperforms OLS regression in the case of 100 and
1,000 paths. As the number of paths increases, OLS regression tends to catch up to the
other methods. This is not a surprise since the price estimated using OLS regression

converges to the asymptotic price in the limit of a large number of simulation paths.

The regression tree method performs poorly for most of the specifications. Checking
the approximate continuation value function generated by this method shows that the
size of the tree turns out to be too small to capture the structure of the continuation

value function.

For Testcases 1, 2, 4, and 5 with two assets, the quantile regression method converges
to a price significantly below the asymptotic price. This suggests a systematic bias that
may be caused by the convexity of the continuation value that leads to positive skewness

of the distribution of option prices.

"Results for the cases of three and five assets are similar and are available from the authors.
8We know of no easy way to compute European option prices for this case, and for this reason we
have not included European option prices to the basis.

23



Adding European option prices as basis functions improves the performance of the
Tikhonov, MPP, and MMPP methods, but deteriorates the performance of OLS regres-
sion. This improvement indicates that methods which can incorporate better informa-
tion faster, like MPP and MMPP which use a hierarchical structure for choosing the
approximation to the continuation value, benefit more from adding the European option
prices. Adding basis functions exacerbates the overfitting problem of OLS regression for

a small number of simulation paths.

There is no method that consistently provides accurate results for all the testcases
with different numbers of basis functions and paths. However, the MMPP method
appears to be the most accurate in a consistent basis, especially when functions similar

to the option price are available.

E. Performance as the Number of Exercise Dates Increases

Our results so far indicate that OLS regression underperforms the MMPP method in
the case of polynomial bases, and the Tikhonov regularization, MPP, and MMPP meth-
ods for the case of bases that include both polynomials and European option prices.
A potential reason for underperformance is the interaction between the OLS regression
estimates of the coefficients of the basis functions and the recursive nature of the esti-
mation, due to the backward induction methodology of optimal stopping problems. We
investigate this interaction in Table X, where we compute the prices for Testcase 2, and

Testcase 5 with two assets, for varying numbers of exercise dates.

[1P%))

Similar to Tables VIII, and IX, each method is given a grade of “+”, “-”  or “0”,
depending on whether it performed well, poorly, or average. Below each method the
four columns correspond to 100, 1,000, 5,000, and 10,000 simulation paths. The results
are presented in summary form for a few representative cases as the number of exercise

dates changes, for the cases of polynomial bases and bases that include polynomials
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9 From the table we notice that OLS regression

as well as European option prices.
performs better when the number of exercise opportunities is smaller, and that the
performance of OLS regression deteriorates faster than the performance of alternatives
such as Tikhonov regularization, the MPP and MMPP methods as the number of exercise
dates increases. This behavior can be understood by the nature of the methods: since
Tikhonov regularization, MPP and MMPP methods penalize the size of the coefficients
of the basis functions, the estimates of the coefficients obtained from these methods are
likely to be smaller and less variable than those obtained by OLS regression. For the same
reason, their out-of-sample performance is likely to be close to in-sample performance
compared to OLS regression. Given that the estimates of the coefficients are used in

a recursive manner, we conjecture that the more variable coefficient estimates of OLS

regression result in the faster propagation of errors compared to the other methods.

V. Conclusions

We investigated the performance of OLS regression in Monte Carlo simulation methods
of pricing American options. We found that OLS regression is prone to overfitting and
producing inaccurate estimates when the number of simulation paths is small, when the
number of functions used to approximate the continuation value function is large, when
European option prices are included in the basis functions, and when the number of
exercise dates increases. In the case of polynomial bases, an alternative that performs
as well as OLS regression and often better is the MMPP method. When European
option prices are added to the polynomial bases, Tikhonov regularization, the MPP and
MMPP methods outperform OLS regression. Given the increased use of Monte Carlo
simulation methods for pricing American options, and the fact that it is often difficult to

check whether the number of paths used is sufficiently large for the option being priced,

9 Additional details are available from the authors.
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and the set of basis functions used, we recommend the use of the MMPP method as a

way to check the accuracy of the OLS regression estimates.
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Table 1
Basis Functions of Max-Call Option On Three Assets

Ny Basis Functions

1 S1 So S
> 52 52 S
3 S15 5155 9553
4
)

St 85 53
S25,  S2S; 528,
S2S,  S2S, S2S,
15555

Notes: Sy, Sa, S3 are the prices of the three assets. S(3) is the highest price among the
three assets, and S(o) is the second highest price. For simplicity we tabulate the basis
functions in an incremental style; i.e., if “N,” equals 2, the basis functions will include
not only the three terms S?, 57, and S3, but also the six terms with “N,” less than 2.



Table I1

Call Option with Discrete Dividends

Panel A. Polynomial basis

Z

SO0 NouhAWNHO STO00No0hAWNHO SoNOOAWNRHO

Soxuouahwn=o

Asymptotic

7.82£0.00
7.80£0.01
7.87£0.01
7.88+0.00
7.884+0.01
7.88+0.01
7.89£0.00
7.88£0.00
7.89£0.01
7.88+0.01
7.88£0.01

7.82£0.00
7.80£0.01
7.87£0.01
7.88£0.00
7.88+0.01
7.88+0.01
7.89£0.00
7.88+0.00
7.89£0.01
7.88+0.01
7.88£0.01

7.82£0.00
7.80£0.01
7.87£0.01
7.88£0.00
7.88+0.01
7.88+0.01
7.89£0.00
7.88+0.00
7.89£0.01
7.884+0.01
7.88+0.01

7.82£0.00
7.80£0.01
7.87£0.01
7.88£0.00
7.88+0.01
7.88+0.01
7.89£0.00
7.88+0.00
7.89£0.01
7.88%+0.01
7.88+0.01

OLS

8.26+0.24
7.94+0.20
8.57+0.20%**
8.6440.21%+*
9.08+0.29***
9.6740.21%%*
9.6640.24***
9.99+0.29***
10.44+0.23%**
10.3040.19%**
10.0740.20%**

7.84+0.05
7.83£0.05
7.93£0.05
7.90£0.06
8.00£0.06
8.01+0.06**
8.08+0.05%**
8.07+0.08**
8.26+0.07***
8.19+0.05%**
8.14+0.06***

7.80£0.02
7.77£0.03
7.87£0.02
7.88+0.02
7.8840.02
7.91£0.03
7.91£0.03
7.954+0.03**
7.88+£0.03
7.91£0.03
7.94£0.03

7.851+0.01**
7.82+0.02
7.85£0.02
7.88+0.02
7.871+0.01
7.88+0.02
7.90£0.02
7.89+£0.01
7.90£0.01
7.89£0.02
7.89+£0.01

Quantile Tikhonov MPP
Number of Paths = 100
7.72+0.17 7.534+ 0.15 7.98+0.18
7.324:0.20*%* 7.76+ 0.18 8.05+0.17
7.661+0.28 7.854 0.20 7.53+0.17
7.624+0.18 8.544 0.18***  8.3640.15***
7.8440.22 8.65+ 0.25***  8.3840.19**
7.7940.20 8.384+ 0.13***  8.1540.23
8.38+0.27 8.474 0.17***  8.4240.24**
7.97+0.18 8.50+ 0.23** 8.4240.18**
8.5140.27** 8.564+0.11***  8.394-0.20**
8.354+0.23** 8.694+0.20%**  8.3540.26
8.3240.19** 8.7940.19%**  8.5340.15***
Number of Paths = 1000
7.5140.08***  7.504 0.06***  7.8040.06
6.67+0.07***  7.834 0.05 7.861+0.07
7.044£0.10***  7.774+ 0.06 7.88+0.06
7.074£0.08***  7.914 0.04 7.89+0.06
7.00£0.08***  7.914 0.05 7.821+0.04
7.114£0.07***  7.844-0.05 7.85+0.05
7.1840.07***  7.8240.05 8.0840.06***
7.084£0.07***  7.9040.06 7.94+0.08
7.2740.08***  7.9340.05 7.88+0.06
7.1940.07*%*  7.884+0.07 7.73+0.07**
7.1240.06***  7.964-0.06 7.91+0.06
Number of Paths = 5000
7.5840.04***%  7.514 0.02***  7.774+0.02*%*
6.604+0.05***  7.834 0.02 7.82+0.02
7.03£0.04***  7.854+ 0.02 7.89+0.03
7.1040.04***  7.884 0.02 7.85+0.02
7.27+£0.05%*%*%  7.884 0.02 7.84+0.02
7.164+0.06***  7.854+ 0.02 7.89+0.02
7.264+0.07***  7.854 0.03 7.8240.03**
7.1440.05***  7.8840.03 7.88+0.03
7.1840.05***  7.904 0.02 7.8140.03**
7.06£0.07***  7.904+ 0.02 7.84+0.02
7.244-0.05***  7.8340.03 7.84+0.02
Number of Paths = 10000
7.5440.03***  7.4940.02***  7.8340.01
6.5240.03***  7.824 0.02 7.84+0.02
7.02+0.03***  7.85+ 0.01 7.86+0.02
7.144:0.02***  7.844 0.02 7.86£0.02
7.04£0.06%**  7.894 0.02 7.87+0.02
6.984+0.06***  7.874+ 0.02 7.88+0.02
7.204:0.04***  7.854 0.02 7.87+0.02
7.234£0.03***  7.864 0.02 7.86+0.01
7.264+0.03***  7.854 0.02 7.844-0.02**
7.184+0.05***  7.854+ 0.02 7.87+0.02
7.1840.04***  7.8740.02 7.88+0.01

MMPP

8.20+0.16**
7.891+0.22
8.214+0.19
7.96£0.19
7.901+0.15
8.43+0.18***
8.46+0.22%**
8.46+0.29
8.61£0.17***
8.53+0.24**
8.44+0.22%**

7.96£0.08
7.91+0.05%*
7.89£0.06
7.91£0.06
7.90£0.03
7.94£0.07
7.87£0.05
7.90£0.05
7.91£0.05
7.91£0.05
7.95£0.05

7.81£0.02
7.79£0.03
7.87£0.03
7.83£0.03
7.84£0.02
7.86£0.03
7.87£0.02
7.88+0.02
7.90£0.02
7.93+0.02%*
7.90£0.02

7.82£0.02
7.85+0.02**
7.84£0.02
7.88£0.02
7.86+£0.02
7.88+0.02
7.87£0.02
7.87£0.02
7.87£0.02
7.87+0.01
7.914+0.01**

CART

10.08+0.23%**

8.65+0.07***

7.94£0.03

7.831+0.02**




Panel B. Polynomial and European price basis

Z

7.89£0.01
7.88+0.00
7.88£0.01
7.89£0.00
7.88+0.00
7.88+0.01
7.88+0.00
7.89£0.00
7.88£0.01
7.88+0.00
7.88+0.00

Box~wouhwrnr~o

7.89£0.01
7.88+0.00
7.88£0.01
7.89£0.00
7.88+0.00
7.88£0.01
7.88+0.00
7.89£0.00
7.88£0.01
7.88+0.00
7.88+0.00

Box~wouhwrnr—o

7.89£0.01
7.88+0.00
7.88£0.01
7.89£0.00
7.88+0.00
7.88£0.01
7.88+0.00
7.89£0.00
7.88+0.01
7.88+0.00
7.88+0.00

Boxm~woukwnro

7.89£0.01
7.88+0.00
7.88£0.01
7.89£0.00
7.88£0.00
7.88+0.01
7.88+0.00
7.89£0.00
7.88+0.01
7.88+0.00
7.88+0.00

Bow~wouhwnro

Asymptotic

OLS

9.76+£0.20***

9.88+0.16%**

10.69+0.21%**
10.6940.19%**
10.5440.16%**
10.87+£0.24%**
10.6540.17%**
10.6840.30%**
11.0140.23%**
10.6640.20%**
10.7740.25%**

8.35+0.07***
8.18+0.09***
8.30+0.05%**
8.2440.07H**
8.31+0.04***
8.28+0.06***
8.33+0.06***
8.37+0.06***
8.37+0.06%**
8.49+0.05%**
8.40+0.06***

7.93£0.02
7.93£0.03
7.961+0.027%**
7.8640.02
7.94£0.03
7.961+0.027%%*
8.00+0.02***
7.9440.02**
7.954+0.03**
7.961+0.02%**
7.9540.027%%*

7.89£0.01
7.92+0.02
7.84+0.02
7.91£0.02
7.9240.01%**
7.90£0.02
7.90£0.02
7.89£0.02
7.8940.02
7.931+0.02**
7.90£0.02

Quantile

Number of Paths = 100

8.86+0.25%**
8.78+0.20***
9.3340.21***
9.49+0.30***
9.5940.24***
9.714+0.29***
9.85+0.18***
10.1440.22%%*
9.93+0.18***
9.62+0.27***
10.074£0.16%**

Tikhonov

8.224+0.19

8.50+0.17***
8.56+0.19%**
8.571+0.22%**
8.78+0.22%**
8.48+0.16%***
8.831+0.27***
8.621+0.23***
8.90+0.23***
9.0240.21***

8.71 +0.18%**

MPP

8.13+0.21
8.46+0.23**
8.7140.20%**
8.52+0.15%**
8.6440.22%**
8.2240.14**
8.36+0.22%*
8.7240.21%+*
8.31+0.15%*
8.474+0.21%*
8.6440.25%+*

Number of Paths = 1000

7.4340.08%**
7.4940.10%**
7.4340.08%**
7.39£0.05%**
7.4440.09%**
7.3540.09%**
7.5340.08%**
7.5040.05%**
7.6540.06***
7.4840.07%**
7.73£0.09

7.88£0.06
7.96£0.06
7.98£0.06
7.93£0.04
7.94£0.05
7.88£0.05
7.95£0.06
8.00£0.06
7.98+0.05
7.90£0.08
8.011+0.03***

7.82£0.05
7.95£0.06
7.98£0.05
7.99£0.05
7.94£0.08
7.86£0.05
7.991+0.05**
7.93£0.05
7.81£0.05
7.95£0.05
7.91£0.08

Number of Paths = 5000

7.3240.04%**
7.28+0.06%**
7.3940.04%**
7.3240.05%**
7.3340.07%**
7.2940.06***
7.3140.08%**
7.4340.05%**
7.4740.07***
7.5040.04%**
7.5540.07%**

Number of Paths =

7.2840.04%**
7.38+0.04***
7.2740.04%**
7.404+0.06***
7.4140.04%**
7.2440.06%**
7.4040.06***
7.4140.05%**
7.47£0.04%**
7.4540.06%**
7.4240.06***

7.88+ 0.02 7.86£0.03
7.90£ 0.01 7.87£0.02
7.86£0.03 7.84£0.02
7.91% 0.03 7.8440.02%*
7.90£ 0.03 7.87£0.03
7.86+£0.03 7.84%0.03
7.91£0.02 7.87£0.02
7.86£0.03 7.90£0.02
7.91+0.02 7.86+0.02
7.92£0.02 7.88+0.02
7.90£0.02 7.91£0.03
10000
7.90£ 0.02 7.90£0.02
7.89+ 0.02 7.88+0.02
7.87£ 0.02 7.88£0.02
7.88% 0.02 7.91£0.02
7.89£0.01 7.88+0.02
7.85% 0.02 7.88+0.01
7.87£ 0.02 7.88+0.01
7.85+ 0.02 7.88£0.02
7.90£ 0.01 7.88+0.02
7.89£0.01 7.89£0.02
7.88£0.02 7.89£0.01

MMPP

8.534+0.21%+*
8.33+0.19**
8.90+0.25%**
8.75+0.26%**
8.18+0.17
8.55+0.29**
8.31+0.18**
8.85+0.23***
8.75+0.22%**
8.25+0.15%*
8.4240.18**

8.01+£0.06
7.93£0.07
7.95£0.07
7.9240.04
7.80£0.06
8.02+0.06**
8.00+0.06
7.89£0.06
7.89£0.08
7.89£0.06
8.08+0.05%**

7.91£0.02
7.93£0.03
7.92£0.02
7.87%£0.03
7.86£0.03
7.90£0.03
7.90£0.03
7.90£0.02
7.91+0.03
7.88+0.02
7.88£0.03

7.88+0.02
7.88+0.01
7.89£0.01
7.89£0.01
7.90£0.02
7.86£0.02
7.86£0.02
7.91£0.02
7.91£0.02
7.89£0.02
7.86£0.02

CART

9.67+0.14%**

8.65+0.07***

7.91£0.04

7.8140.02%**

Notes: The parameters are: ¢ = 0.2,r = 0.05,7 = 3,D = 5.0, 5y = 100, K = 100,
and exercise points t € {0,0.5,1,1.5,2,2.5,3}. N, denotes the highest degree of the
polynomial basis functions. The standard errors are reported after the + sign based
on 20 replications. The asymptotic value is computed by the OLS regression method
with 100,000 paths. The “**” sign means two to three standard errors away from the

asymptotic value. The

ckskok

sign means more than three standard errors away.



Table 111
Call Option with Continuous Dividends

Panel A. Polynomial basis

Z

SO0 NouhAWNHO SO0tk NHO SonNOOAWNRO

Soxuouhwn=o

Asymptotic

7.77£0.01
7.81£0.01
7.86£0.00
7.86£0.01
7.88+0.01
7.87£0.01
7.86£0.01
7.88+0.01
7.87£0.01
7.87£0.01
7.86£0.01

7.77£0.01
7.81£0.01
7.86£0.00
7.86£0.01
7.88+0.01
7.87£0.01
7.86£0.01
7.88+0.01
7.87£0.01
7.87£0.01
7.86£0.01

7.77£0.01
7.81£0.01
7.86£0.00
7.86£0.01
7.88+0.01
7.87£0.01
7.86£0.01
7.88+0.01
7.87£0.01
7.87£0.01
7.86£0.01

7.77£0.01
7.81£0.01
7.86£0.00
7.86£0.01
7.88+0.01
7.87£0.01
7.86£0.01
7.88+0.01
7.87£0.01
7.87£0.01
7.86£0.01

OLS

7.75£0.22
8.46+0.22**
8.75+0.26%**
9.0440.21%**
9.23+0.20%**
9.06+£0.20***
9.684+0.19%**
9.4140.24%**
9.39+0.26***
10.3740.31%**
9.9840.21%**

7.69£0.06
7.80£0.07
8.00+0.05%*
7.86£0.08
7.77£0.08
8.00+0.06**
8.03+0.08**
8.02£0.07
8.13+0.07***
8.10+0.08**
8.10+0.07***

7.77£0.03
7.85£0.04
7.83£0.03
7.92+0.03
7.89£0.03
7.9440.02%**
7.89£0.03
7.88+0.03
7.87£0.03
7.90£0.02
7.87£0.03

7.76£0.02
7.84+0.02
7.84+0.02
7.89£0.02
7.89£0.02
7.85+0.02
7.86£0.02
7.87£0.02
7.89£0.02
7.934+0.02**
7.89£0.02

Quantile Tikhonov MPP
Number of Paths = 100
7.45+0.23 7.424 0.14** 7.9940.21
7.224:0.26** 7.72+0.19 8.34+0.27
7.51+0.22 7.89+ 0.21 7.82+0.20
7.56+0.21 8.17+ 0.24 8.184+0.41
7.841+0.23 8.624+ 0.29** 8.231+0.19
8.18+0.31 8.36+ 0.31 8.4740.25**
7.91£0.21 8.19+ 0.25 8.5940.13%**
8.56+0.17***  8.59+0.23***  8.0940.33
8.9040.26***  8.9540.27***  8.164-0.23
8.57+0.20%**  8.74+0.19*%**  8.594+0.26**
8.4440.23** 8.6240.24***  7.9540.21
Number of Paths = 1000
7.62+0.09 7.334& 0.06%**  7.8240.08
7.0240.10***  7.744 0.04 7.83£0.07
7.03£0.10***  7.8840.07 7.83+0.07
7.1440.12%*%*  7.874 0.06 7.83+0.07
7.154+0.12%*%*  7.874+ 0.08 7.99+0.06
7.0940.09***  7.894-0.05 7.85+0.06
7.224:0.10***  7.914-0.05 7.87+0.06
7.314£0.10***  8.024 0.08 7.87+0.08
7.0640.09***  7.8740.04 7.90+0.08
7.33£0.05***  7.9040.07 7.80+0.06
7.1840.10***  7.864-0.08 7.93+0.08
Number of Paths = 5000
7.6640.03***  7.404 0.02***  7.744-0.04
6.844-0.05***  7.794 0.03 7.7340.02%**
7.234£0.04***  7.784+ 0.03** 7.89+0.03
7.244-0.03***  7.924 0.02** 7.85+0.02
7.304£0.05***  7.844 0.02 7.88+0.03
7.3540.04***  7.844-0.03 7.85+0.03
7.3040.05***  7.844 0.03 7.84+0.03
7.354+0.06***  7.834+ 0.03 7.83+0.03
7.3040.04***  7.914 0.03 7.85+0.02
7.2840.06***  7.854+ 0.03 7.83+0.03
7.2940.07***  7.9040.02 7.83+0.03
Number of Paths = 10000
7.67£0.03***  7.444 0.02***  7.7840.02
6.9040.06***  7.794 0.02 7.79+0.02
7.1440.03*** 777+ 0.02%**  7.8540.02
7.224:0.03***  7.844 0.02 7.87+0.02
7.264£0.04***  7.824 0.02** 7.8940.01
7.3540.04***  7.854 0.02 7.87+0.02
7.3040.03***  7.854 0.02 7.83£0.02
7.304£0.03***  7.834+ 0.02** 7.814+0.03**
7.3740.04***  7.854 0.02 7.84+0.02
7.384+0.03***  7.86+0.02 7.87+0.02
7.3240.03***  7.884-0.02 7.8040.02**

MMPP CART

7.94£0.20 9.08+0.21***
7.40+0.21
8.41+0.27**
8.56+0.22%***
8.55+0.28**
8.60+0.26**
8.05£0.23
8.70+£0.22***
8.69+0.29**
8.27£0.28
8.284+0.22
7.86+£0.07 8.591+0.07***
7.97+0.06**

7.95£0.07

7.91£0.07

7.85£0.06

7.87£0.07

7.93£0.05

7.86£0.06

7.96£0.07

7.78£0.06

7.91£0.05

7.77£0.03
7.85£0.03
7.84£0.03
7.86+£0.02
7.86£0.03
7.85£0.02
7.86£0.03
7.85+0.04
7.86£0.02
7.84£0.02
7.85£0.03

7.90£0.03

7.76£0.02 7.7910.02%**
7.84£0.02
7.83£0.02
7.86£0.02
7.824+0.01***
7.84£0.03
7.84%0.02
7.83+0.02**
7.87£0.02
7.87£0.03
7.84£0.02




Panel B. Polynomial and European price basis

Z

7.87£0.01
7.86£0.01
7.86£0.01
7.86+0.00
7.86£0.01
7.87£0.01
7.87£0.01
7.87£0.01
7.87£0.01
7.86£0.01
7.86£0.01

Box~wouhwrnr~o

7.87£0.01
7.86£0.01
7.86£0.01
7.86+=0.00
7.86£0.01
7.87£0.01
7.87£0.01
7.87£0.01
7.87+0.01
7.86£0.01
7.86x£0.01

Box~wouhwnr—o

7.87£0.01
7.86£0.01
7.86£0.01
7.86+=0.00
7.86£0.01
7.87£0.01
7.87£0.01
7.87£0.01
7.87+0.01
7.86£0.01
7.86£0.01

Boxm~woukwnro

7.87£0.01
7.86+0.01
7.86£0.01
7.86=0.00
7.86£0.01
7.87£0.01
7.87£0.01
7.87£0.01
7.87+0.01
7.86£0.01
7.86£0.01

Bow~wouhwnro

Asymptotic

OLS

7.57£0.19
7.81£0.23
8.74+0.31%*
9.33+0.23***
9.16+£0.27***
9.75+0.25%**
9.51+0.19***
9.1240.21%**
10.0540.32%**
9.87+0.20***
9.80+0.23***

7.76x£0.07
7.98+0.07
7.88+0.06
7.934+0.06
8.02+0.07**
8.02+0.05%*
8.05+0.08**
8.01£0.08
8.09+0.07***
8.04+0.06**
8.16+£0.06***

7.784+0.03**
7.83£0.02
7.88£0.03
7.90+0.03
7.87£0.03
7.90£0.02
7.91£0.02
7.91£0.02
7.90£0.02
7.91£0.03
7.88+£0.03

7.7940.027%%*
7.7840.02%**
7.88+0.01
7.87£0.02
7.89£0.02
7.87£0.02
7.8440.01**
7.85+0.01
7.9140.02
7.89£0.02
7.89£0.02

Quantile Tikhonov MPP
Number of Paths = 100

7.734+0.21 7.61+ 0.22 7.794+0.19
7.4440.21 7.994 0.25 7.994+0.25
7.1940.23**  8.0540.20 8.26+0.20
7.44+40.26 8.78+ 0.25%*F*  8.24+0.22
7.864+0.19 8.66+ 0.26*%**  8.23+0.18**
8.2440.31 8.76+ 0.29%**  8.174+0.30
8.534+0.26**  8.6440.31** 8.5840.21***
8.324+0.20**  8.634+0.24***  8.58+0.18%**

8.60+0.20%**
8.59+0.24***
8.90+0.27***

8.90+0.25%**
8.56+0.31%*
8.63+0.19%***

8.08+0.20
8.23+0.19
8.11+0.20

Number of Paths = 1000

7.661+0.08**

6.89+0.11***
7.0240.08%**
7.1440.11%%*
7.2540.11%**
7.36+0.09%**
7.0840.10%**
7.1740.09%**
7.1040.09***
7.31£0.11%**
7.1840.08%**

7.45+ 0.05%**
7.85+ 0.06
7.79£ 0.08
7.90+ 0.06
7.92+0.09
7.81£0.05
7.84+0.07
7.95+ 0.08
7.88£0.08
7.94+0.07
7.82%0.05

7.74+0.06**
7.93£0.08
7.86+£0.07
7.83£0.05
7.85£0.05
7.81£0.06
7.93£0.06
7.79+0.03**
7.88+0.05
7.81£0.05
7.87£0.05

Number of Paths = 5000

7.734+0.05**

6.89+0.07***
7.2240.04%**
7.20£0.06***
7.261+0.05%**
7.3440.05%**
7.3240.05%**
7.3240.04%**
7.40£0.06***
7.3240.05%**
7.3540.05%**

7.4840.027%**
7.79+ 0.03%*
7.82+ 0.03
7.86+ 0.03
7.86+ 0.03
7.80+ 0.03**
7.90+ 0.03
7.85+ 0.03
7.88+ 0.03
7.88+ 0.03
7.87£0.03

7.81£0.03
7.77+0.03**
7.84£0.03
7.86+0.04
7.84£0.04
7.89£0.04
7.82+0.02**
7.81£0.03
7.81£0.03
7.83£0.03
7.84£0.03

Number of Paths = 10000

7.6140.04%**
6.90+0.05%**
7.1840.03***
7.264+0.03***
7.2840.04%**
7.2740.03%**
7.3040.04***
7.2940.05%**
7.31£0.04%**
7.2440.04%**
7.2340.05%**

7.4340.027%**
7.75+0.03***
7.76+ 0.02%**
7.81+ 0.02**
7.84+ 0.02
7.85+ 0.01
7.85£0.02
7.83£ 0.02
7.83+ 0.02
7.88+ 0.02
7.85£0.01

7.7440.02%**
7.85£0.02
7.84£0.02
7.86+£0.02
7.84£0.02
7.84£0.02
7.84£0.02
7.87£0.02
7.82£0.02%**
7.85£0.02
7.85£0.02

MMPP

7.841+0.23
7.83£0.25
8.44+0.25**
8.49+0.24**
8.15+0.25
8.06+0.22
8.3240.18**
7.991+0.24
8.731+0.21***
8.37£0.26
8.25+0.29

7.91£0.07
7.98+0.06
7.97£0.08
7.80£0.06
7.84£0.06
7.85£0.05
7.92£0.06
7.93£0.07
7.94£0.07
7.83£0.08
7.86+=0.06

7.80£0.04
7.80£0.03
7.91£0.04
7.82%0.03
7.84£0.03
7.89£0.02
7.84£0.04
7.90£0.03
7.85%0.03
7.84£0.03
7.85£0.03

7.7440.02%**
7.821+0.02
7.83£0.03
7.84%0.02
7.86+£0.02
7.82+0.02**
7.86£0.02
7.85£0.02
7.84£0.02
7.86+£0.02
7.86+£0.02

CART

8.77+0.20%**

8.631+0.05***

7.91£0.03

7.82£0.02

Notes: The parameters are:

o =027 =005T = 3,6 = 0.1,S = 100, K = 100,

and exercise points t € {0,0.5,1,1.5,2,2.5,3}. N, denotes the highest degree of the
polynomial basis functions. The standard errors are reported after the + sign based
on 20 replications. The asymptotic value is computed by the OLS regression method
with 100,000 paths. The “**” sign means two to three standard errors away from the

asymptotic value. The

ckskok

sign means more than three standard errors away.



American-Asian Call Option

Table IV

Panel A. Polynomial basis

Z

SO0 NouhAWNHO SO0tk NHO SonNOOAWNRO

Soxuoohwn=o

Asymptotic

5.42£0.00
5.52£0.00
5.52£0.00
5.52£0.00
5.52£0.00
5.52£0.00
5.52£0.00
5.52£0.00
5.52£0.00
5.52£0.00
5.52£0.00

5.42+0.00
9.52£0.00
5.52£0.00
5.52£0.00
5.52£0.00
5.52£0.00
5.52£0.00
5.52£0.00
5.52£0.00
5.52£0.00
5.52£0.00

5.42£0.00
5.52£0.00
5.52£0.00
5.52£0.00
5.521+0.00
5.52£0.00
5.52£0.00
5.52£0.00
5.52£0.00
5.52£0.00
5.52£0.00

5.42+0.00
5.52£0.00
5.52£0.00
5.52£0.00
5.521+0.00
5.52£0.00
5.52£0.00
5.52£0.00
5.52£0.00
5.52£0.00
5.52£0.00

OLS

5.38%0.10
5.274+0.10**
5.754+0.11**
5.52%0.09
5.52+0.13
5.41+0.10
5.56£0.11
5.56+0.11
5.38£0.13
5.78+0.11**
5.66+0.08

5.42+0.03
5.47£0.04
5.54+0.04
5.51£0.03
5.56+0.04
5.556+0.03
5.5910.03**
5.57+0.03
5.52%0.03
5.50+0.04
5.54%0.03

5.43+0.02
5.5140.02
5.57+0.01***
5.52+0.02
5.52+0.02
5.50£0.01
5.50£0.02
5.53£0.01
5.51+0.01
5.52+0.02
5.53£0.01

5.41+0.01
5.53£0.01
5.54+0.01
5.53£0.01
5.51+0.01
5.52+0.01
5.554+0.01**
5.52+0.01
5.53£0.01
5.51+0.01
5.52+0.01

Quantile Tikhonov MPP
Number of Paths = 100
5.44+0.11 5.44+ 0.08 5.39+0.11
5.59+0.11 5.60=+ 0.10 5.3940.09
5.57+0.11 5.47+ 0.12 5.56+0.10
5.65+0.13 5.294 0.10%* 5.1940.08***
5.59+0.12 5.524+ 0.13 5.561+0.10
5.4040.13 5.39+ 0.12 5.36+0.11
5.34+0.11 5.49+ 0.08 5.31£0.07**
5.364+0.10 5.314 0.08%* 5.3440.08**
5.53+0.12 5.424+ 0.11 5.304+0.10%*
5.54+0.11 5.54+ 0.11 5.49+0.08
5.54+0.11 5.72+ 0.14 5.334+0.09**
Number of Paths = 1000
5.33+£0.03**  5.414 0.04 5.424+0.04
5.5340.04 5.384 0.03***  5.3940.03***
5.49+0.03 5.41+ 0.04** 5.48+0.04
5.4940.03 5.434 0.03** 5.394+0.03***
5.53+0.04 5.424 0.04** 5.4240.04**
5.53+0.03 5.56=+ 0.04 5.384+0.04***
5.4740.04 5.434 0.03** 5.3940.03***
5.4940.03 5.49+ 0.04 5.394+0.04***
5.4740.02*%*  5.464 0.04 5.4340.03**
5.48+0.03 5.51+ 0.04 5.45+0.04
5.5340.03 5.49+ 0.04 5.4540.03**
Number of Paths = 5000
5.4340.01 5.394+ 0.02 5.4240.01
5.5240.01 5.424 0.01%**  5.454-0.01***
5.521+0.01 5.40+ 0.01***  5.3940.01***
5.5240.01 5.394 0.02*%**  5.4340.01***
5.51+0.02 5.394 0.01%**  5.4140.02*%**
5.5140.02 5.504+ 0.02 5.4140.01%**
5.5140.02 5.49+ 0.02 5.4240.01%**
5.50+0.02 5.48+ 0.02 5.4140.01%**
5.5440.02 5.454 0.02*%**  5.4040.02***
5.5140.02 5.45+ 0.01*%**  5.3940.01***
5.5240.02 5.48+ 0.02 5.404+0.01%**
Number of Paths = 10000
5.41+0.01 5.39+ 0.01** 5.42+0.01
5.5240.01 5.404 0.01%**  5.4740.01%**
5.51+0.01 5.394+ 0.01***  5.4240.01***
5.5140.01 5.384 0.01*%**  5.4340.01***
5.52+0.01 5.424 0.01%**  5.4340.01*%%*
5.5040.01 5.484 0.01*%**  5.4340.01***
5.5440.01 5.494 0.01%* 5.384+0.01%**
5.524+0.01 5.47+ 0.01**%*  5.4040.01***
5.5340.01 5.494 0.01%* 5.4040.01%**
5.52+0.01 5.47+ 0.01%**  5.4340.01*%**
5.5140.01 5.494 0.01%* 5.4240.01%**

MMPP

5.32+0.11
5.36+0.12
5.57+0.09
5.33£0.11
5.40+0.11
5.314+0.1**
5.4240.12
5.41+0.12
5.26+£0.09**
5.35+0.08**
5.39£0.09

5.41+0.04
5.53%0.03
5.4240.04**
5.45%0.05
5.44+0.04
5.46+0.03
5.44+0.04
5.38+0.03***
5.4140.03***
5.41+0.03***
5.47+£0.04

5.43+0.02
5.53£0.01
5.4240.01%%*
5.4140.02%**
5.45+0.01***
5.46+0.02**
5.49+0.02
5.4740.01%%*
5.4140.02%**
5.4240.01%**
5.4340.01%**

5.43+0.01
5.53£0.01
5.4340.01%**
5.4440.01%**
5.51+0.01
5.50£0.01
5.4940.01**
5.4540.01%**
5.4440.01%%*
5.46+0.01***
5.4340.01%**

CART

5.39£0.10

5.43+0.03**

5.4440.02%**

5.4840.01%**




Panel B. Polynomial and European price basis

N; Asymptotic OLS Quantile Tikhonov MPP MMPP CART
Number of Paths = 100
0 5.78+0.00 5.8440.07 5.81+0.10 5.89+ 0.09 5.74+0.12 5.73+0.12 5.5040.11**
1 5.784+0.00 5.73+0.12 5.93+0.09 5.84+ 0.12 5.77+0.10 5.68+0.11
2 5.78+0.00 5.71+0.10 5.78+0.12 5.80+ 0.09 5.66+0.11 5.72+0.10
3  5.784+0.00 5.73+0.09 5.75+0.11 5.81+ 0.08 5.58+0.10 5.96+0.10
4  5.7840.00 5.88+0.14 5.68+0.14 5.79+ 0.08 5.74+0.09 5.89+0.12
5  5.78+0.00 5.84+0.08 5.97+0.13 5.75+ 0.08 5.84+0.12 5.91+0.15
6  5.78+0.00 5.78+0.10 5.63+0.13 5.94+ 0.14 5.76+0.08 5.88+0.16
7  5.79+0.00 5.63+0.10 5.80+0.10 5.76+ 0.11 5.72+0.10 5.5640.09**
8 5.784+0.00 5.86+0.09 5.91+0.11 5.82+ 0.10 5.81+0.09 5.76+0.11
9  5.79+0.00 5.88+0.11 5.76+0.13 5.60+ 0.10 5.70+0.12 5.76+0.13
10 5.78+0.00 5.83+0.09 5.90+0.09 5.75+ 0.08 5.75+0.09 5.69+0.11
Number of Paths = 1000
0 5.78+0.00 5.76+0.03 5.78+0.03 5.81+ 0.02 5.81+0.03 5.76+0.03 5.4840.03***
1 5.7840.00 5.82+0.04 5.77+0.03 5.74+ 0.03 5.80+0.04 5.77+0.03
2 5.78+0.00 5.78+0.04 5.6940.04** 5.74+ 0.03 5.81+0.03 5.76+0.03
3  5.7840.00 5.79+0.03 5.80+0.04 5.72+ 0.03 5.75+0.03 5.78+0.02
4  5.7840.00 5.82+0.03 5.73+0.03 5.80+ 0.03 5.82+0.04 5.74+0.04
5  5.78+0.00 5.78+0.04 5.77+0.03 5.79+ 0.03 5.76+0.04 5.77+0.03
6  5.78+0.00 5.81+0.04 5.73+0.03 5.77+ 0.04 5.82+0.04 5.76+0.03
7  5.79+0.00 5.704+0.02***  5.8240.04 5.78+ 0.03 5.7240.03**  5.814:0.03
8 5.784+0.00 5.794+0.03 5.81+0.03 5.81+ 0.04 5.79+0.03 5.77+0.03
9  5.79+0.00 5.80+0.03 5.83+0.03 5.77+ 0.04 5.76+0.04 5.78+0.03
10 5.78+0.00 5.81+0.03 5.86+0.04 5.81+ 0.03 5.77+0.04 5.74+0.03
Number of Paths = 5000
0 5.78+0.00 5.78+0.02 5.79+0.02 5.80+ 0.02 5.78+0.01 5.78+0.02 5.444-0.02***
1 5.7840.00 5.80+0.02 5.78+0.02 5.79+ 0.02 5.79+0.02 5.814+0.02
2  5.78+0.00 5.78+0.01 5.76+0.01 5.78+ 0.01 5.76+£0.02 5.77+0.02
3  5.784+0.00 5.77+0.02 5.79+0.02 5.80+ 0.02 5.77+0.01 5.78+0.01
4  5.7840.00 5.78+0.02 5.76+0.01 5.77+ 0.01 5.78+0.02 5.80+0.01
5  5.78+0.00 5.761+0.01 5.76+0.01 5.80+ 0.01 5.80+£0.02 5.8140.01**
6  5.78+0.00 5.77+0.01 5.754+0.01%* 5.78+ 0.02 5.79+0.02 5.75+0.02
7  5.79+0.00 5.80+0.02 5.78+0.01 5.78+ 0.02 5.81+0.01 5.79+0.02
8 5.78+0.00 5.80+0.02 5.8140.02 5.79+ 0.02 5.77+0.02 5.77+0.02
9  5.79+0.00 5.77+0.01 5.77+0.01 5.76+ 0.02 5.79+0.01 5.77+0.01
10 5.78+0.00 5.77+0.01 5.7440.01*%**  5.77+0.02 5.78+0.01 5.77+0.02
Number of Paths = 10000
0 5.78+0.00 5.80+0.01 5.7540.01** 5.814+ 0.01**  5.79+0.01 5.79+0.01 5.4540.01%**
1 5.7840.00 5.784+0.01 5.78+0.01 5.79+ 0.01 5.78+0.01 5.77+0.01
2  5.78+0.00 5.77+0.01 5.76+0.01 5.77+ 0.01 5.78+0.01 5.78+0.01
3  5.78+0.00 5.79+0.01 5.77+0.01 5.78+ 0.01 5.78+0.01 5.78+0.01
4  5.7840.00 5.78+0.01 5.76+0.01 5.79+ 0.01 5.78+0.01 5.80+0.01
5  5.78+0.00 5.761+0.01 5.78+0.01 5.78+ 0.01 5.79+0.01 5.78+0.01
6  5.78+0.00 5.78+0.01 5.78+0.01 5.814+ 0.01** 5.78+0.01 5.78+0.01
7  5.79+0.00 5.77+0.01 5.77+0.01 5.78+ 0.01 5.77+0.01 5.81+0.01
8 5.7840.00 5.794+0.01 5.77+0.01 5.79+ 0.01 5.79+0.01 5.791+0.01
9  5.79+0.00 5.79+0.01 5.78+0.01 5.77+ 0.01 5.78+0.01 5.78+0.01
10 5.78+0.00 5.78+0.01 5.78+0.01 5.77+ 0.01 5.79+0.01 5.77+0.01

Notes: The parameters are: o = 0.2, = 0.09,7 = 120/365,t = 91/365, Sy = 100, K =
100, and exercise points t € {0, 105/365,108/365,111/365,114/365,117/365,120/365}.
N, denotes the highest degree of the polynomial basis functions. The standard errors are
reported after the 4+ sign based on 20 replications. The asymptotic value is computed
by the OLS regression method with 100,000 paths. The “**” sign means two to three
standard errors away from the asymptotic value. The “***” gign means more than three
standard errors away.



Table V
Put Option on a Jump-Diffusion Asset

Panel A. Polynomial basis

Z

SO0 NouhWNHO SO0 NocthwNHO SonNoOhWNHO

Soxouahwn=o

Asymptotic

8.65+0.01
8.68+0.01
8.71+£0.01
8.73£0.01
8.72+0.01
8.72+0.01
8.71+£0.01
8.72+0.01
8.72+0.01
8.73+0.01
8.73£0.01

8.65+0.01
8.68+0.01
8.71+£0.01
8.73£0.01
8.72+0.01
8.72+0.01
8.71+£0.01
8.72+0.01
8.72+0.01
8.73+0.01
8.73£0.01

8.65+0.01
8.68+0.01
8.71+£0.01
8.73£0.01
8.72+0.01
8.72+0.01
8.71+£0.01
8.72+0.01
8.72+0.01
8.73+0.01
8.73+0.01

8.65+0.01
8.68+0.01
8.71+£0.01
8.73£0.01
8.72+0.01
8.72+0.01
8.71+£0.01
8.72+0.01
8.72+0.01
8.73+0.01
8.73£0.01

OLS

8.77£0.21
9.20%0.26
8.93+0.32
9.0940.11%**
8.95+0.18
9.59+0.23***
9.56+0.20%**
9.13+0.24
9.5940.24***
9.38+0.24**
9.81+0.26***

8.66+0.08
8.76+0.10
8.80+0.08
8.83+£0.08
8.73£0.07
8.74£0.07
8.85%0.09
8.83+0.10
8.81+0.09
8.92+0.08**
8.78£0.07

8.70+0.04
8.73£0.04
8.69+0.04
8.79£0.05
8.72+0.03
8.73+0.03
8.78+0.04
8.76+0.03
8.76+0.04
8.76+0.03
8.77£0.03

8.65+0.03
8.64+0.02
8.76+0.02**
8.77£0.03
8.76+0.03
8.72+0.03
8.75%+0.03
8.71£0.02
8.71£0.01
8.71+0.02
8.78+0.02**

Quantile Tikhonov MPP
Number of Paths = 100
9.0240.30 8.25+ 0.29 9.12+0.32
8.1240.29 8.30+ 0.19 9.06+£0.21
8.56+0.24 8.88+ 0.25 8.951+0.21
8.56+0.30 8.80+ 0.23 8.82+0.21
8.554+0.29 9.36+ 0.17***  9.5840.30**
8.48+0.21 8.824 0.23 8.93+0.29
9.0540.30 9.31+ 0.31 8.58+0.27
8.99+0.25 8.944 0.27 8.57+0.21
9.2340.21** 8.8340.28 9.08+0.27
9.0940.32 9.76+ 0.25***  8.8040.22
9.06+0.26 8.9140.28 8.60+0.33
Number of Paths = 1000
8.884+0.08** 8.114 0.09***  8.644-0.08
8.2940.14%* 8.514+ 0.08** 8.59+0.08
8.33+0.10%**  8.46+ 0.08***  8.654+0.07
8.3940.12** 8.814+ 0.11 8.5240.09**
8.37+0.11%**  8.64+ 0.08 8.66+0.08
8.354+0.11***  8.754+ 0.08 8.63+0.09
8.33+0.11***  8.564+ 0.08 8.63+0.06
8.204+0.14***  8.75+ 0.07 8.504+0.10**
8.1940.09***  8.77+ 0.09 8.4240.12**
8.2940.09%**  8.51+0.07***  8.474+0.09**
8.264+0.10*%**  8.7240.08 8.63+0.12
Number of Paths = 5000
8.624+0.03 8.06+ 0.04***  8.6540.03
8.404+0.06***  8.57+ 0.03***  8.684-0.04
8.32+0.03***  8.64+ 0.03** 8.68+0.03
8.35+0.05***  8.66+ 0.04 8.6040.04***
8.36+0.05%**  8.68+ 0.04 8.47+0.03***
8.35+0.05***  8.69+ 0.04 8.4640.04***
8.314+0.09***  8.75+ 0.04 8.5440.04***
8.344+0.06***  8.71+ 0.04 8.6440.03**
8.2140.08***  8.754+ 0.03 8.6140.04**
8.2240.09***  8.69+ 0.04 8.66+0.04
8.3440.09***  8.68+0.03 8.68+0.03
Number of Paths = 10000
8.7440.03** 8.06+ 0.02***  8.6240.03
8.324+0.03***  8.56+ 0.01***  8.7340.02**
8.344+0.03***  8.52+0.03***  8.6440.03**

8.39+0.04***
8.32+0.03***
8.15+0.06***
7.954£0.11%**
8.33+0.06***
8.31+0.04***
8.25+0.07***
8.2340.06***

8.72+ 0.02
8.63+ 0.03**
8.69+ 0.03
8.73£ 0.01
8.68+ 0.03
8.69% 0.03
8.67+ 0.03
8.67£0.03

8.60+0.03***
8.48+0.02***
8.60+0.03***
8.60+0.03***
8.67£0.03
8.62+0.02%***
8.63+0.02***
8.65+0.03**

MMPP

8.90£0.28
9.20+0.27
8.87£0.26
8.16+0.22**
9.13+0.27
8.87£0.28
8.761+0.33
8.59+0.30
8.77£0.31
9.17+0.32
8.72+0.32

8.60£0.10
8.59£0.10
8.55£0.08
8.70£0.08
8.65+0.08
8.74£0.07
8.64+0.10
8.77£0.10
8.81£0.07
8.86+0.08
8.62£0.08

8.64+0.03
8.73£0.04
8.59+0.03***
8.66+0.04
8.67£0.03
8.73£0.03
8.72%£0.04
8.73£0.03
8.74£0.03
8.69+0.04
8.69£0.05

8.67£0.02
8.68+0.03
8.68+0.03
8.70£0.02
8.72£0.03
8.71£0.03
8.70£0.02
8.71£0.02
8.68+0.03
8.64+0.02***
8.65+0.03**

CART

10.03£0.21%**

9.1240.07***

8.73£0.04

8.65+0.02%***




Panel B. Polynomial and European price basis

N; Asymptotic OLS Quantile Tikhonov MPP MMPP
Number of Paths = 100

0 8.72+0.01 9.7440.25%** 9.6040.29***  9.1040.34 9.494-0.17***  9.1040.27

1 8.72+0.01 9.9440.23*** 9.624+0.27***  8.714+0.27 8.84+0.23 9.0510.26

2  8.72+0.01 10.324:0.24**%*  9.4140.30** 8.92+0.25 9.03+0.24 8.90+0.28

3 8.73+0.01 9.55+0.19%** 9.34+0.31 9.09+ 0.23 9.07+0.28 9.15+0.31

4  8.724+0.01 9.2940.23** 9.844-0.21***  8.904+0.17 8.90+0.25 9.6640.22%**

5 8.72+0.01 10.034:0.32***  9.564-0.28** 9.614-0.30** 9.3540.23** 9.02+0.29

6 8.71+0.01 9.77+0.26%** 9.804+0.31%**  9.21+0.18** 8.66+0.23 8.83+0.27

7  8.72+0.01 10.1740.21%%*  9.7340.32*%**  9.1340.21 9.17+0.24 8.74+0.33

8 8.73+0.01 9.364+0.29%* 9.654+0.24***  8.58+0.18 9.09+0.26 9.4440.24**

9 8.72+0.01 10.144:0.24**%*  9.904+£0.28***  9.284+0.20** 9.4740.28** 8.91+0.22

10 8.73+0.01 9.5440.31** 9.494-0.29** 8.78+0.30 9.3340.21** 8.89+0.28
Number of Paths = 1000

0 8.72+0.01 8.83+0.09 8.4440.08***  8.814+ 0.07 8.72+0.08 8.73+0.07

1 8.72+0.01 8.914+0.07** 8.31+0.11*%**  8.70+0.08 8.65+0.08 8.64+0.08

2  8.72+0.01 8.92+0.10 8.59+0.10 8.75+ 0.07 8.79+0.08 8.69+0.08

3 8.73+0.01 8.82+0.09 8.49+0.10** 8.81+ 0.08 8.61+0.08 8.78+0.08

4 8.724+0.01 8.9440.07*** 8.54+0.12 8.79+ 0.07 8.80+0.10 8.63+0.06

5 8.72+0.01 8.974+0.07*** 8.534+0.08** 8.72+0.06 8.5840.06** 8.924-0.07**

6 8.71+0.01 8.82+0.09 8.68+0.09 8.77+ 0.06 8.72+0.09 8.79+0.10

7  8.72+0.01 9.014+0.11%* 8.58+0.12 8.77+ 0.08 8.63+0.07 8.60+0.10

8 8.73+0.01 8.9440.08** 8.57+0.10 8.75+ 0.08 8.61+0.07 8.69+0.10

9 8.72+0.01 8.9240.08** 8.70+0.11 8.82+ 0.07 8.60+0.08 8.78+0.09

10 8.73+0.01 9.094+0.06*** 8.75+0.09 8.83+0.09 8.964-0.08** 8.64+0.07
Number of Paths = 5000

0 8.72+0.01 8.73+0.04 8.4140.05***  8.68+ 0.04 8.69+0.04 8.71+0.03

1 8.72+0.01 8.74+0.03 8.3940.05***  8.724+ 0.03 8.6440.03** 8.724+0.04

2  8.72+0.01 8.68+0.04 8.4940.04***  8.714 0.03 8.65+0.04 8.69+0.03

3 8.73+0.01 8.76+0.04 8.4240.06***  8.734 0.04 8.6240.03***  8.7240.04

4  8.724+0.01 8.68+0.03 8.384+0.08***  8.71+ 0.04 8.70+0.04 8.75+0.04

5 8.72+0.01 8.74+0.04 8.4640.06***  8.744 0.03 8.68+0.03 8.6640.02**

6 8.71+0.01 8.8240.04** 8.454+0.05%**  8.78+0.02***  8.64+0.03** 8.64+0.05

7 8.72+0.01 8.74+0.04 8.514+0.05***  8.784 0.03 8.69+0.05 8.70+0.03

8 8.73+0.01 8.77+0.03 8.4940.05***  8.714 0.03 8.75+0.03 8.69+0.03

9 8.72+0.01 8.76+0.03 8.4540.06***  8.744 0.03 8.71+0.04 8.7940.03**

10 8.73+0.01 8.78+0.03 8.4640.05***  8.7340.03 8.67+0.03 8.79+0.04
Number of Paths = 10000

0 8.72+0.01 8.74+0.03 8.334+0.04***  8.714 0.03 8.69+0.02 8.6740.02**

1 8.72+0.01 8.75+0.02 8.3940.04***  8.75+ 0.03 8.71+0.03 8.68+0.02

2  8.72+0.01 8.74+0.03 8.4240.06***  8.754+ 0.02 8.71+0.03 8.74+0.02

3 8.73+0.01 8.784+0.02** 8.5040.04***  8.7140.03 8.664+0.02***  8.7340.02

4  8.724+0.01 8.77+0.03 8.4240.06***  8.734+ 0.03 8.671+0.02** 8.76+0.02

5 8.72+0.01 8.75+0.03 8.3540.04***  8.774+ 0.03 8.74+0.03 8.71+0.02

6 8.71+0.01 8.74+0.02 8.4340.04***  8.71+ 0.02 8.75+0.02 8.70+0.03

7  8.72+0.01 8.71+0.03 8.4840.05***  8.694 0.02 8.654+0.03** 8.71+0.02

8 8.73+0.01 8.74+0.02 8.4940.04***  8.754 0.03 8.73+0.02 8.75+0.02

9 8.72+0.01 8.71+0.02 8.4740.05***  8.714 0.02 8.68+0.02 8.69+0.03

10 8.73+0.01 8.75+0.03 8.4740.04***  8.7540.02 8.71+0.02 8.73+0.03

CART

9.55+0.24***

9.1240.10***

8.77£0.04

8.66+0.02%***

Notes: The parameters are: ¢ = +/0.08,r = 0.1,7 = 0.5,6 = 0.2,5, = 100, K =
100, A = 2, and exercise points ¢t € {0,0.125,0.25,0.375,0.5}. N, denotes the highest
degree of the polynomial basis functions. The standard errors are reported after the +
sign based on 20 replications. The asymptotic value is computed by the OLS regression
method with 100,000 paths. The “**” sign means two to three standard errors away
from the asymptotic value. The “***” sign means more than three standard errors away.



Table VI
Max-Call Option on Two Assets

Panel A. K=80, polynomial basis

N, Asymptotic OLS Quantile Tikhonov MPP MMPP CART

Number of Paths = 100
0 24.82+0.00 25.8140.18***  25.1640.15** 23.67 £0.21%**  23.87£0.23%**  25.2040.21 25.5440.17***
1 24.82+0.01 26.0840.22%**  25.7140.25%**  25.9740.18%** 23.594+0.16%**  25.734+0.20%**
2 24.87+0.00 26.86+0.17***  25.5040.22%* 26.41 £0.12%**  24.7740.23 25.7540.20%**
3 24.98+0.01 26.4940.15%**  25.9040.21***  25.9940.19*** 24.9140.23 26.1040.19***
4 25.00£0.01 27.354+0.19%**  26.2840.23*%**  26.5140.20%** 25.33£0.18 25.5740.16%**
5 25.00£0.00 27.884+0.21%*%*  25.9440.20%**  26.7840.18%** 25.2140.19 25.7440.13%**

Number of Paths = 1000
0 24.82+0.00 24.88+0.05 24.77+£0.05 23.7440.06%** 23.78+0.06*%**  24.8440.06 23.8740.06***
1 24.82+0.01 25.0440.04%*%*  24.834+0.05 24.9140.05 23.831+0.05%**  24.9640.06**
2 24.87+0.00 25.3040.05***  24.9540.06 25.1240.05*** 24.7340.05** 25.00£0.05**
3 24.98+0.01 25.1740.06***  25.0840.06 25.0740.06 24.5940.07***  24.9940.05
4 25.00£0.01 25.314+0.07*%**  25.1840.05%**  25.2340.05%** 24.804+0.06*%**  24.8140.05%**
5 25.00£0.00 25.4540.06*%**  25.0740.06 25.0340.04 24.8040.05%**  24.8240.07**

Number of Paths = 5000
0 24.82+0.00 24.82+0.03 24.674+0.03*%**  23.7140.02%** 24.004+0.03*%**  24.854+0.03 23.7140.02%**
1 24.82+0.01 24.8740.02%* 24.734+0.02*%**  24.84 £0.02 24.034+0.03*%**  24.9040.03**
2 24.87+0.00 25.014£0.03***  24.734+0.03***  24.9640.03** 24.7940.03** 24.88+0.02
3 24.98+0.01 25.064+0.02%**  24.9040.02*%**  24.974+0.03 24.76+0.02%**  24.9240.03
4 25.00£0.01 25.0540.02%* 24.8840.02*%**  24.97 £0.02 24.8040.03*%**  24.8840.02%**
5 25.00£0.00 25.1440.03***  24.9440.02** 24.98 £0.03 24.8040.03***  24.9140.03**

Number of Paths = 10000
0 24.82+0.00 24.84+0.02 24.654+0.02*%**  23.6940.02%** 24.2740.02%**  24.8440.02 23.7040.02%**
1 24.82+0.01 24.85+0.02 24.6740.02***  24.8640.02 24.234+0.01***  24.8240.02
2 24.87+0.00 24.9340.02%* 24.704+0.01%%*  24.92 £0.02** 24.8540.01 24.91+0.02
3 24.98+0.01 25.00+0.02 24.8240.02*%**  24.9440.02 24.8140.02*%**  24.9140.02%**
4 25.00£0.01 25.0440.01%*%*%  24.8840.02***  24.9540.02** 24.8040.02***  24.8840.02***
5 25.00£0.00 25.04+0.02 24.8440.01*%%*  24.9340.02%** 24.73+0.02*%**  24.9340.02%**

Panel B. K=80, polynomial and European price basis

N, Asymptotic OLS Quantile Tikhonov MPP MMPP CART

Number of Paths = 100
0 25.03+0.00 26.884+0.15***  26.03+£0.18***  25.26+0.18 25.6940.16***  26.024+0.19***  25.624+0.21**
1 25.03£0.01 27.764+0.17%%*  26.9440.27*%**  25.8340.19*** 26.044+0.23%**  25.814+0.11%**
2 25.04+0.01 28.084+0.19%**  26.8940.17***  26.1940.18%** 25.73+0.17%**  26.06+0.16***
3 25.03+0.00 27.8240.16%**  27.134£0.16%**  26.2240.19*** 25.6940.23** 26.334+0.20***
4 25.03£0.01 28.4740.20%**  27.3540.25%**  26.1640.22%** 25.801+0.20%**  26.1740.21%**
5 25.04+0.01 28.734+0.21%**  27.884+0.19*%**  26.0040.16*** 25.931+0.27%%*  26.0240.18%**

Number of Paths = 1000
0 25.03£0.00 24.99+0.05 25.384+0.06*%**  25.0940.05 25.0940.05 25.09+0.04 23.6040.06***
1 25.03+0.01 25.2940.05%**  25.4740.05%**  25.0240.04 25.0540.05 25.10+0.04
2 25.04+0.01 25.1840.06** 25.5040.06***  25.19 £0.05** 25.03£0.05 25.164+0.05**
3 25.03£0.00 25.3340.04%*%*  25.5540.04***  25.0940.05 25.08+0.05 25.13+0.05
4 25.03+0.01 25.36+0.06*%**  25.584+0.06*%**  25.0740.06 25.0540.04 25.2140.05%**
5 25.04+0.01 25.4640.08%**  25.6640.05%**  25.1040.05 25.0240.04 25.2040.05%**

Number of Paths = 5000
0 25.03£0.00 24.9040.03***  25.134+0.03***  25.0040.02 25.00£0.02 25.05+0.02 23.6940.03***
1 25.03+0.01 24.9040.03***  25.1240.02*%**  25.0340.02 25.0440.02 25.06+£0.02
2 25.04+0.01 24.99+0.03 25.1440.03***  25.0240.03 25.0240.02 25.06+0.02
3 25.03£0.00 24.97+0.03 25.164+0.02*%**  25.0040.02 24.9940.02 25.05+0.02
4 25.03+0.01 24.98+0.03 25.1440.03***  25.0440.02 24.9940.02 25.0840.02**
5 25.04+0.01 25.01+0.02 25.1640.02***  25.0440.02 25.0040.02 25.04+0.02

Number of Paths = 10000
0 25.03£0.00 24.8240.01%%*  25.0840.02** 25.00 £0.02 25.03£0.01 25.02+0.02 23.6840.02%**
1 25.03+0.01 24.854+0.02***  25.0840.01***  25.0140.02 25.0040.01** 25.03+0.01
2 25.04£0.01 24.8540.02*%**  25.1040.02** 25.03 £0.02 25.00£0.02 25.02+0.02
3 25.03+0.00 24.8940.02*%**  25.1040.01*%**  25.0140.02 25.0440.01 25.04+0.02
4 25.03+0.01 24.8940.02***  25.1040.02***  25.0540.01 25.0340.01 25.05+0.01
5 25.04+0.01 24.8940.02*%**  25.0940.01***  25.0440.01 25.0340.02 25.05+0.01




Panel C. K=100, polynomial basis

N, Asymptotic OLS Quantile Tikhonov MPP MMPP CART
Number of Paths = 100
0 9.43+0.01 10.01£0.22** 8.99+0.23 8.484 0.15*** 8.974+0.16** 9.20+0.19 9.98+0.15%*
1 9.434+0.00 10.7940.19%**  9.2540.19 9.631+0.22 8.9840.16** 9.4540.18
2 9.51£0.00 11.274£0.22%** 10.23£0.17%** 10.33 £0.18***  9.21+0.18 9.5840.20
3 9.52+0.01 11.4140.20%¥**  9.98+0.29 10.76£0.11*** 9.49+0.12 9.73+0.16
4 9.52+0.01 11.5740.14***  9.79+0.24 11.2440.19*** 9.1640.15** 9.85+0.23
5 9.53+0.01 11.58+0.21*%**  9.654+0.16 10.93+0.21%** 9.874+0.25 10.07£0.16%**
Number of Paths = 1000
0 9.434+0.01 9.48+0.05 9.2240.07** 8.754 0.05*** 8.8240.06%** 9.37+0.07 8.86+0.06%**
1 9.434+0.00 9.594+0.08 9.13£0.07*** 9.53+ 0.04** 8.89+0.05%** 9.3940.08
2 9.51+0.00 9.7040.06*** 9.3340.08** 9.67+0.08 9.1240.06%** 9.584+0.06
3 9.5240.01 9.8040.07*** 9.374+0.08 9.724 0.06*** 9.1640.04%** 9.554+0.07
4 9.5240.01 9.86£0.06%** 9.414+0.07 9.70+ 0.06** 9.25+0.04%** 9.5440.07
5 9.53+0.01 9.9140.06*** 9.43+0.06 9.68+ 0.05** 9.2740.05%** 9.514+0.05
Number of Paths = 5000
0 9.434+0.01 9.4440.03 9.20£0.02%** 8.73+ 0.02%** 8.96£0.03%** 9.4740.03 8.72+0.02%**
1 9.43+0.00 9.49+40.02%* 9.2340.03*** 9.40+0.04 8.9940.03*** 9.42+0.03
2 9.514+0.00 9.5640.02%* 9.3740.02%** 9.531+0.03 9.2640.02%** 9.50+0.03
3 9.5240.01 9.5840.03 9.39+0.03*** 9.57+ 0.03 9.27+0.02%** 9.5140.03
4 9.52+0.01 9.5840.02%* 9.3940.03*** 9.56+0.02 9.3440.03*** 9.4940.03
5 9.534+0.01 9.59+0.03 9.3740.03*** 9.55+ 0.02 9.3140.01%** 9.53+0.02
Number of Paths = 10000
0 9.43+0.01 9.454+0.02 9.2440.02%** 8.72+ 0.01%** 9.04£0.02%** 9.4340.02 8.78+0.02%**
1 9.43+0.00 9.44+0.02 9.2140.02%** 9.43+ 0.02 9.0540.02%** 9.431+0.02
2 9.514+0.00 9.5240.02 9.37+£0.02%** 9.55+ 0.02 9.31£0.02%** 9.53+0.02
3 9.5240.01 9.5440.02 9.33£0.02%** 9.50+ 0.02 9.31£0.01%** 9.5240.02
4 9.52+0.01 9.6040.02%** 9.3840.02%** 9.531+0.02 9.3240.03*** 9.4940.02
5 9.534+0.01 9.5440.02 9.3440.03*** 9.564 0.01** 9.3840.02%** 9.5240.02
Panel D. K=100, polynomial and European price basis
N, Asymptotic OLS Quantile Tikhonov MPP MMPP CART
Number of Paths = 100
0 9.55+0.01 11.6440.18***  10.1840.22** 10.10+0.23** 10.26£0.16***  10.34+0.23***  9.74+0.20
1 9.57+0.01 11.8440.18***%  10.65£0.18***  10.82 £0.19***  10.1440.21** 10.67£0.15%**
2 9.56+0.01 12.214£0.19%** 11.06+0.18%** 10.52 £0.18***  9.97+0.16** 10.50£0.19%**
3 9.57+0.01 12.3040.18***  11.60£0.17***  10.88 +0.20***  9.934+0.21 10.49+0.22%**
4 9.57+0.00 12.234£0.21**%*%  11.62£0.16*¥**  10.88 +0.14***  9.9040.18 10.16£0.16***
5 9.564+0.01 12.4740.20%**  11.86£0.26%**  10.93 £0.20*%**  10.01+£0.17** 10.814£0.24%**
Number of Paths = 1000
0 9.554+0.01 10.0040.07***  9.33+0.09** 9.641+0.06 9.5940.05 9.60+0.04 8.9540.07***
1 9.5740.01 9.98+£0.06%** 9.554+0.05 9.68+ 0.07 9.681+0.06 9.611+0.07
2 9.56+0.01 10.13£0.05***  9.62+0.05 9.661+0.08 9.531+0.05 9.6940.06**
3 9.574+0.01 10.1240.06***  9.68+0.07 9.66+0.07 9.7240.07** 9.60+0.05
4 9.5740.00 10.15£0.06*%**  9.7940.06*** 9.5840.06 9.631+0.06 9.61+0.07
5 9.56+0.01 10.2540.06***  9.75+0.08** 9.684+0.06 9.5040.04 9.6940.06**
Number of Paths = 5000
0 9.554+0.01 9.65£0.02%** 9.33£0.04%** 9.531+0.03 9.561+0.03 9.60+0.03 8.75£0.02%**
1 9.57+0.01 9.6740.02%** 9.3740.04%** 9.6240.02%* 9.55+0.02 9.60+0.03
2 9.5640.01 9.7040.02%** 9.3840.04%** 9.5940.03 9.561+0.02 9.5940.03
3 9.5740.01 9.71£0.02%** 9.45+0.03*** 9.5740.03 9.5740.02 9.5740.02
4 9.57+0.00 9.6940.02%** 9.4940.02%** 9.53+0.03 9.554+0.03 9.61+0.03
5 9.56+0.01 9.7440.02%** 9.4540.03*** 9.5940.02 9.5940.03 9.56+0.02
Number of Paths = 10000
0 9.55+0.01 9.63£0.01%** 9.324£0.03%** 9.514+0.02 9.52+0.01%* 9.5640.02 8.76£0.01***
1 9.57+0.01 9.61£0.02 9.3440.03*** 9.55+ 0.02 9.531+0.02 9.53+0.02
2 9.5640.01 9.6240.02%* 9.3540.03*** 9.5440.02 9.531+0.02 9.5740.01
3 9.57+0.01 9.62+£0.02%* 9.35£0.02%** 9.53£0.01%** 9.5640.02 9.5440.02
4 9.5740.00 9.6640.02%** 9.4340.03*** 9.561+0.02 9.5540.02 9.554+0.02
5 9.564+0.01 9.644-0.02%** 9.3440.03*** 9.5740.02 9.5440.02 9.561+0.02




Panel E. K=110, polynomial basis

N, Asymptotic OLS Quantile Tikhonov MPP MMPP CART
Number of Paths = 100
0 4.95+0.00 5.81+0.19***  4.374+0.37 4.65+ 0.13%* 5.1240.15 4.9140.18 5.12+0.09
1 Not enough in-the-money paths beyond this point
Number of Paths = 1000
0 4.95+0.00 4.98+0.06 4.62+0.07*¥*¥* 475+ 0.05%%*  4.73+£0.05%*%*  4.81+0.04%¥**  5.05+0.04
1 4.95+0.01 5.1240.04***  4.6440.09***  5.06+0.04** 4.814+0.05** 4.984+0.06
2 4.9940.01 5.214+0.04***  4.9040.07 5.184+ 0.06*%**  4.89+0.03***  5.02+0.06
3 4.9940.00 5.1940.06***  4.6940.06***  5.1540.05%** 4.82+0.04***  5.07+0.05
4 4.9940.00 5.184+0.05***  4.774+0.06***  5.154+0.06** 4.96+0.05 5.01£0.05
5 5.00£0.01 5.284+0.05***  4.8540.07** 5.184+0.06** 4.86+0.05%* 4.9540.05
Number of Paths = 5000
0 4.95+0.00 4.98+0.02 4.64+0.02%*%*% 4,74+ 0.02%%*  4.80+0.02*%**  4.94+0.03 4.7140.02%**
1 4.9540.01 4.9840.02 4.7440.03*** 4,98+ 0.02 4.7840.02***  4.9340.02
2 4.9940.01 5.00+0.02 4.84+0.02%** 5,03+ 0.02 4.87+0.02%*¥*%  4.97+0.02
3 4.9940.00 5.06+0.02***  4.784+0.02***  5.0240.02 4.89+0.02%**  4.98+0.02
4 4.9940.00 5.03£0.02 4.7940.02*** 5,05+ 0.02** 4.86+0.02***  5.0640.02%***
5 5.00+0.01 5.07+0.02%**  4.7740.03***  5.06+0.02** 4.86+0.02***  5.03+0.02
Number of Paths = 10000
0 4.9540.00 4.9940.02 4.73£0.03***  4.70+ 0.02%**  4.78+0.01***  4.93+0.02 4.7440.01%**
1 4.95+0.01 4.96£0.02 4.7240.02%** 495+ 0.02 4.82+0.02%**  4.95+0.02
2 4.99£0.01 4.99£0.02 4.80+0.02***  5.02+ 0.02 4.88+0.02%**  4.97+0.01
3 4.9940.00 5.01£0.02 4.7940.03***  5.02+ 0.02 4.86+0.01***  4.99+0.01
4 4.9940.00 5.02+0.02 4.80+0.02*** 503+ 0.01%%*  4.88+0.02*¥**  4.98+0.02
5 5.00£0.01 5.041+0.01***  4.7840.03***  4.9840.02 4.89+0.02***  5.00+0.01
Panel F. K=110, polynomial and European price basis
N;, Asymptotic OLS Quantile Tikhonov MPP MMPP CART
Number of Paths = 100
0 Not enough in-the-money paths beyond this point
Number of Paths = 1000
0 5.02+0.01 5.351+0.04***  4.8440.06** 5.03£0.05 5.08+0.04 5.10+£0.04 5.06+0.04
1 5.02£0.00 5.454+0.06***  4.9540.06 5.194+ 0.05%%*  4.99+0.07 5.20+0.06**
2 5.01+£0.00 5.5240.05***  5.034+0.06 5.12+ 0.05%* 5.05£0.05 5.2040.04***
3 5.02+0.01 5.444+0.06***  5.0040.05 5.29+ 0.06%**  5.10+0.05 5.04+0.04
4 5.02+0.01 5.434+0.05***  5.084+0.06 5.15+ 0.07 5.0940.06 5.16+0.07
5 5.02+0.01 5.48+0.03***  5.2240.06***  5.3040.05%** 5.1440.04** 5.1940.05***
Number of Paths = 5000
0 5.02£0.01 5.08+0.02** 4.7740.03*¥**  5.024+0.02 5.0240.02 5.084+0.02** 4.784+0.02%**
1 5.02£0.00 5.1440.02***  4.874+0.03***  5.0540.02 5.04£0.03 5.05+0.02
2 5.01£0.00 5.1440.02%**  4.9240.03** 5.02£0.03 4.99+£0.02 5.04+£0.02
3 5.02£0.01 5.16+0.02***  4.874+0.04***  5.0240.02 5.0440.02 5.0540.02
4 5.02+0.01 5.16+0.03***  4.9240.03***  5.0440.02 4.961+0.02** 5.05+0.03
5 5.02+0.01 5.16+0.03***  4.9240.03***  5.0240.02 5.01£0.01 5.06£0.03
Number of Paths = 10000
0 5.02+0.01 5.071+0.02** 4.7740.02%¥*¥*  5.01+0.01 5.03£0.01 5.03+0.01 4.73£0.02%**
1 5.02£0.00 5.06+0.01***  4.834+0.02***  5.0240.02 5.03£0.01 5.03£0.01
2 5.01£0.00 5.07+0.02** 4.85+0.02***  5.02+0.02 5.0140.01 5.03£0.01
3 5.02+0.01 5.071+0.02** 4.85+0.03***  5.02+0.02 5.00£0.02 5.02+0.02
4 5.02+0.01 5.094+0.02***  4.854+0.03***  5.034+0.01 4.98+0.02 5.02£0.02
5 5.02£0.01 5.0940.02%**  4.8640.02***  4.9940.01** 4.9940.02 5.01£0.01

Notes: The parameters are:

asymptotic value. The

kskk

oc=027r=005T-=10=0.1,5 = 100,p = 0.3, and
exercise points t € {0,1/12,2/12,...,12/12}. N, implicitly shows the number of basis
functions according to Table I. The standard errors are reported after the + sign based
on 20 replications. The asymptotic value is computed by the OLS regression method
with 100,000 paths. The “**” sign means two to three standard errors away from the
sign means more than three standard errors away.



Table VII
Max-Call Option on Ten Assets

Panel A. K=80, polynomial basis

N, Asymptotic OLS Quantile Tikhonov MPP MMPP CART

Number of Paths = 100
0 40.384+0.01 41.09+0.24** 40.6740.25 36.661+0.65%** 37.944+0.31%**  40.8040.29 38.0040.21%**
1 40.3940.01 42.60+0.22%**  41.584+0.27***  38.00+0.29*** 38.2440.30%**  42.3440.21%**
2 40.4040.01 43.17+0.25%**  41.58+0.27***  38.79+0.26*** 39.2440.19%%*  42.2840.24***
3 40.4240.01 45.53+0.23%**  42.46+0.20%**  39.43+0.22%** 39.78+0.25%* 41.761+0.26%**
4 40.4140.00 46.74+0.25%**  43.5440.24***  40.18+0.24 39.761+0.26%* 41.9240.17%**
5 Not enough in-the-money paths beyond this point

Number of Paths = 1000
0 40.384+0.01 40.4640.07 40.2640.07 37.324+0.10%** 38.544+0.09%**  40.4440.08 37.0240.07***
1 40.3940.01 40.69+0.09%**  40.84+0.08***  37.77+0.10*** 38.831+0.08*%**  40.6040.05%**
2 40.4040.01 40.9540.08***  40.7840.09***  38.6240.08*** 39.7240.09%**  40.474+0.06
3 40.4240.01 41.59+0.07***  40.87+0.06***  38.86+0.07*** 39.35+0.09%**  40.624+0.09**
4 40.4140.00 41.62+0.06%**  40.91+0.06***  39.32+0.08*** 39.75+0.09%**  40.5640.08
5 40.5440.01 44.46+0.08%**  43.04+0.08***  39.5440.08*** 39.66+0.08%**  40.49+0.08

Number of Paths = 5000
0 40.3840.01 40.4040.03 40.4140.04 37.2540.04%** 39.974+0.04*%**  40.4240.03 36.9540.05%**
1 40.3940.01 40.4440.03 40.4340.03 37.7940.04%** 39.98+0.04%*%*%  40.47+0.03**
2 40.40+0.01 40.4640.03 40.49+0.03** 38.5140.04%** 40.15+0.04*%**  40.3640.03
3 40.4240.01 40.71+0.03***  40.59+0.03***  38.89+0.03*** 40.03+0.04*%**  40.4040.04
4 40.4140.00 40.71£0.03***  40.56+£0.04***  39.25+0.03*** 40.1140.04*%**  40.4240.03
5 40.544+0.01 41.7240.03%**  41.1740.03***  39.42+0.03*** 40.074+0.03%**  40.3640.03%**

Number of Paths = 10000
0 40.384+0.01 40.4040.03 40.4140.02 37.2840.03*** 40.214+0.03*%**  40.3840.02 36.9140.03%**
1 40.394+0.01 40.45+0.02%* 40.45+0.02%* 37.774+0.03%** 40.2240.03%**  40.434+0.02
2 40.4040.01 40.4540.03 40.49+0.03** 38.5040.02%** 40.174+0.03%**  40.3740.02
3 40.4240.01 40.56+0.02%**  40.5240.02***  38.9240.03*** 40.1140.03*%**  40.4140.03
4 40.4140.00 40.60+0.03***  40.56+0.02***  39.12+0.03*** 40.1440.02*%**  40.3740.02
5 40.544-0.01 41.1940.02%**  40.95+0.03***  39.41+0.02*** 40.16+0.03*%**  40.4340.02%**

Panel B. K=100, polynomial basis

N, Asymptotic OLS Quantile Tikhonov MPP MMPP CART

Number of Paths = 100
0 21.7940.01 22.3540.25%* 22.3940.22%* 19.1140.28*** 19.98+0.24***  22.00+0.25 19.98+0.19***
1 21.80+0.01 23.684+0.27***  23.034+0.25%**  19.0340.29%** 19.61£0.18***  23.46+0.26***
2 21.81+0.01 24.134+0.20%**  22.934+0.30*%**  19.7540.19%** 20.774+0.23%**  23.1840.22%**
3 21.8340.01 27.1940.27%%*  24.2640.18%**  19.9440.23%** 20.601+0.23*%**  23.031+0.22%**
4 21.84+0.01 27.8940.27*%%*  25.974+0.25%**  20.4940.21%** 20.86+0.33%* 23.6240.27%**
5 Not enough in-the-money paths beyond this point

Number of Paths = 1000
0 21.79+0.01 21.86+0.08 22.0140.08%* 18.98+0.08*** 19.95+0.10***  21.68+0.06 19.00£0.06***
1 21.80+0.01 22.0940.09%**  21.9140.05** 19.23 +£0.07*%**  19.8040.06*%**  22.1040.08***
2 21.81+0.01 22.2740.07**¥*%  22.164£0.06%**  19.614£0.10*** 20.5540.08***  21.9440.06**
3 21.83+0.01 22.784+0.09*%**  22.3440.09*%**  20.0440.10%** 20.57+0.08%**  21.964+0.07
4 21.84+0.01 22.974+0.06%**  22.274+0.07***  20.2040.06*** 20.78+0.09*%**  21.9440.08
5 21.94+0.01 25.5040.07*%%*  24.1440.07***  20.5940.10%** 20.75+0.08%**  21.96+0.09

Number of Paths = 5000
0 21.79+0.01 21.81+0.03 21.82+0.03 19.01£0.03*** 21.154+0.05*%**  21.834+0.03 18.9040.04***
1 21.80+0.01 21.85+0.03 21.8940.03** 19.23£0.03*** 21.0440.03*%**  21.8540.03
2 21.8140.01 21.9440.03*%**  21.9140.04** 19.65 +0.02*%**  21.334+0.04***  21.774+0.03
3 21.83+0.01 22.164+0.03*%**  22.0040.04***  19.9640.04*** 21.034+0.04*%**  21.8540.04
4 21.84+0.01 22.1740.03*%**  21.9440.03***  20.1340.04*** 21.154+0.04*%**  21.8040.04
5 21.9440.01 23.0940.03***  22.3940.04***  20.6510.03%** 21.164+0.04*%**  21.884+0.04

Number of Paths = 10000
0 21.79+0.01 21.81+0.02 21.82+0.02 18.95+£0.02*** 21.554+0.02*%**  21.7840.02 18.98+0.02***
1 21.8040.01 21.8140.02 21.8440.02 19.20+0.02*** 21.48+0.02*%**  21.874+0.03**
2 21.81+£0.01 21.8840.02*%**  21.9140.03***  19.6340.02%** 21.474+0.02*%**  21.784+0.03
3 21.83+0.01 21.9540.02*%**  21.9040.03** 19.91 £0.02*%**  21.3140.02*%**  21.7840.03
4 21.8440.01 22.0040.02%**  21.9340.03** 20.15 £0.02***  21.26+£0.02***  21.77+0.02***
5 21.94+0.01 22.5440.02*%**  22.2440.03*%**  20.6240.02*%** 21.304+0.02%**  21.8240.02*%**




Panel C. K=110, polynomial basis

N, Asymptotic

13.85+0.00
13.86+0.01

N=O

13.8540.00
13.86+0.01
13.88+0.01
13.8940.01
13.8940.01

AR WNHO

13.8540.00
13.86+0.01
13.884+0.01
13.8940.01
13.89+0.01
14.00+0.01

b WNHO

13.85+0.00
13.86+0.01
13.88+0.01
13.89+0.01
13.89+0.01
14.0040.01

R WNH-O

OLS

13.77+0.24
15.79+0.18%**

13.9440.07

14.104£0.06%**
14.3140.06%**
14.9240.077%%*
15.104£0.05%**

13.84+0.03
13.9440.03**
14.01+£0.03%**
14.19+40.03%**
14.2240.03%**
14.86-£0.027%**

13.84+0.02
13.85+0.02
13.96£0.02%**
14.07+£0.03%**
14.0640.03%**
14.4940.02%**

Quantile

Tikhonov

MPP

Number of Paths = 100

13.77+0.23
14.48+0.22%*

Not enough in-the-money paths beyond this point

12.5440.21%%*
12.72 £0.24%%*

12.3840.19%**
12.48+0.18%**

Number of Paths = 1000

13.7240.08
14.0440.06**
14.04+0.10
13.9540.07
14.1940.08%**

Not enough in-the-money paths beyond this point

12.1240.06%**
12.35 £0.06%**
12.5240.05%**
12.7240.06%**
12.7240.07%%*

12.65+0.08%**
12.5740.07%%*
13.03+0.08%**
12.90+0.07***
13.1240.07%**

Number of Paths = 5000

13.8440.03
13.88+0.02
13.8840.03
13.9040.03
13.92+0.03
14.29+0.03%**

Number

13.87£0.02
13.86£0.02
13.96+0.03**
13.93£0.02
13.9540.02**
14.0940.03**

12.2240.03%**
12.3540.02%**
12.53+0.03%**
12.66+£0.02%**
12.80+0.02%**
13.03£0.03%**

13.1340.04%**
13.03+£0.03%**
13.39+0.03%**
13.2740.03%**
13.3240.03%**
13.274+0.03%**

of Paths = 10000

12.204+0.03%**
12.3440.02%**
12.49 £0.02%**
12.614+0.02%**
12.79 £0.02%**
13.00 £0.03%**

13.38+0.02%**
13.3340.03%**
13.5540.03%**
13.45+0.02%**
13.4340.02%**
13.3540.03%**

MMPP

13.1740.22%%*
14.26+0.23

13.78+0.08
14.06+0.09**
13.92+0.10
14.00+0.05**
14.074+0.08**

13.90£0.03
13.91+0.04
13.8240.04
13.88+0.04
13.90+0.03
13.83£0.03%**

13.9240.02%**
13.90+0.02
13.88+0.03
13.84+0.02**
13.90+0.02
13.9540.03

CART

13.464+0.19**

12.36£0.07%**

12.2240.03%**

12.2740.02%**

Notes: The parameters are: ¢ = 0.2,r = 0.05,7 = 1,0 = 0.1,5y = 100, K = 110,p =
0.3, and exercise points t € {0,1/12,2/12,...,12/12}. N, implicitly shows the number
of basis functions according to Table I. The standard errors are reported after the £
sign based on 20 replications. The asymptotic value is computed by the OLS regression
method with 100,000 paths. The “**” sign means two to three standard errors away
from the asymptotic value. The “***” sign means more than three standard errors away.
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