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Abstract

Graphs show up in a surprisingly diverse set of disciplines, ranging from computer
networks to sociology, biology, ecology and many more. How do such “normal” graphs
look like? How can we spot abnormal subgraphs within them? Which nodes/edges
are “suspicious?” How does a virus spread over a graph? Answering these questions is
vital for outlier detection (such as terrorist cells, money laundering rings), forecasting,
simulations (how well will a new protocol work on a realistic computer network?),
immunization campaigns and many other applications.

We attempt to answer these questions in two parts. First, we answer questions
targeted at applications: what patterns/properties of a graph are important for solving
specific problems? Here, we investigate the propagation behavior of a computer virus
over a network, and find a simple formula for the epidemic threshold (beyond which any
viral outbreak might become an epidemic). We find an “information survival threshold”
which determines whether, in a sensor or P2P network with failing nodes and links,
a piece of information will survive or not. We also develop a scalable, parameter-free
method for finding groups of “similar” nodes in a graph, corresponding to homogeneous
regions (or CrossAssociations) in the binary adjacency matrix of the graph. This can
help navigate the structure of the graph, and find un-obvious patterns.

In the second part of our work, we investigate recurring patterns in real-world
graphs, to gain a deeper understanding of their structure. This leads to the develop-
ment of the R-MAT model of graph generation for creating synthetic but “realistic”
graphs, which match many of the patterns found in real-world graphs, including power-
law and lognormal degree distributions, small diameter and “community” effects.

1 Introduction

Informally, a graph is a set of nodes, and a set of edges connecting some node pairs. In
database terminology, the nodes represent individual entities, while the edges represent re-
lationships between these entities. This formulation is very general and intuitive, which
accounts for the wide variety of real-world datasets which can be easily expressed as graphs.
Some examples include:

• Computer Networks: The Internet topology (at both the Router and the Autonomous
System (AS) levels) is a graph, with edges connecting pairs of routers/AS. This is a
self-graph, which can be both weighted or unweighted.

• Ecology: Food webs are self-graphs with each node representing a species, and the
species at one endpoint of an edge eats the species at the other endpoint.

• Biology: Protein interaction networks link two proteins if both are necessary for some
biological process to occur.

• Sociology: Individuals are the nodes in a social network representing ties (with labels
such as friendship, business relationship, trust, etc.) between people.
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In fact, any information relating different entities (an M : N relationship in database ter-
minology) can be thought of as a graph. This accounts for the abundance of graphs in so
many diverse topics of interest, most of them large and sparse.

There is, however, a dichotomy in graph mining applications: we can answer specific
queries on a particular graph, or we can ask questions pertaining to real-world graphs in
general. Examples of the former would include questions such as: “Find natural partitions
of nodes in a given graph,” or “Determine outlier edges in this graph,” and so on. For the
latter, we ask questions such as: “What graph patterns or laws hold for (almost) all real-
world graphs,” or “How do graphs evolve over time, in general” and so on. The separation
between the two is, however, not strict, and there are applications requiring tools from both
sides. For example, in order to answer “how quickly will viruses spread on the Internet five
years in the future,” we must have models for how the Internet will grow, how to generate a
synthetic yet realistic graph of that size, and how to estimate the spread of viral infections
on graphs.

In my thesis, I explore issues from both sides of this dichotomy. Since graphs are so gen-
eral, these problems have been studied in several different communities, including computer
science, physics, mathematics, physics and sociology. Often, this has led to independent
rediscovery of the same concepts in different communities. In my work, I have attempted to
combine these viewpoints and then improve upon them.

The specific problems I investigated in my research are as follows. The first three sections
investigate applications of graph mining on specific graphs. In section 2, we analyze the
problem of viral propagation in networks: “Will a viral outbreak on a computer network
spread to epidemic proportions, or will it quickly die out?” We investigate the dependence
of viral propagation on the network topology, and derive a simple and accurate epidemic
threshold that determines if a viral outbreak will die out quickly, or survive for long in
the network. In section 3, we study information survival in sensor networks: Consider a
piece of information being spread within a sensor or P2P network with failing links and
nodes. What conditions on network properties determine if the information will survive in
the network for long, or die out quickly? In section 4, we answer the question: How can
we automatically find natural node groups in a large graph? Our emphasis here is on a
completely automatic and scalable system: the user only needs to feed in the graph dataset,
and our Cross-associations algorithm determines both the number of clusters and their
memberships. In addition, we present automatic methods for detecting outlier edges and for
computing “inter-cluster distances.”

Next, in section 5, we discuss issues regarding real-world graphs in general: How can we
quickly generate a synthetic yet realistic graph? How can we spot fake graphs and outliers?
We discuss several common graph patterns, and then present our R-MAT graph generator,
which can match almost all these patterns using a very simple 3-parameter model. Finally,
section 6 presents the conclusions of this thesis.

2 Epidemic thresholds in viral propagation

“Will a viral outbreak on a computer network spread to epidemic proportions, or will it
quickly die out?”
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The importance of this question in computer security applications is obvious. Our con-
tributions, as detailed in [20], are in answering the following questions:

• How does a virus spread? Specifically, we want an analytical model of viral propagation,
that is applicable for any network topology.

• When does the virus die out, and when does it become endemic? Conceptually, a
tightly connected graph offers more possibilities for the virus to spread and survive in
the network than a sparser graph. Thus, the same virus might be expected to die out
in one graph and become an epidemic in another. What features of the graph control
this behavior? We find a simple closed-form expression for the “epidemic threshold”
below which the virus dies out, but above which it can become an epidemic.

• Below the threshold, how quickly will the virus die out? A logarithmic decay of the
virus might still be too slow to have practical impact.

We will first present our mathematical model of viral propagation in Section 2.1, and then de-
rive the epidemic threshold condition in Section 2.2. Finally, we experimentally demonstrate
the accuracy of our model in Section 2.3.

2.1 Model of Viral Propagation

We use the SIS model of viral infection on undirected graphs [3, 20]. Here, each node can
be in one of two states: healthy but suceptible (S) to infection, or infected (I). For ease
of exposition, we assume very small discrete timesteps of size ∆t → 0. Within a ∆t time
interval, an infected node i tries to infect its neighbors with probability β. At the same time,
i may be cured (and thus, susceptible again) with probability δ.

The full Markov Chain for this model is exponential in size, and intractable for large
N . Hence, we use the “independence” assumption, that is, the states of the neighbors of
any given node are independent. Thus, we replace the problem with Equation 1 (our “non-
linear dynamical system” discussed below), with only N variables instead of 2N for the full
Markov chain. This makes the problem tractable, and we can find closed-form solutions.
Note that the independence assumption places no constraints on network topology; also, the
“independence assumption” is empirically very close to the full Markov Chain.

Let the probability that a node i is infected at time t by pi(t). A node i is healthy at
time t if it did not receive infections from its neighbors at t and i was uninfected at time-step
t− 1, or was infected but was cured at t. Denoting the probability of a node i being infected
at time t by pi(t):

1− pi(t) = (1− pi(t− 1)) · ζi(t) + δ · pi(t− 1) · ζi(t) i = 1 . . . N (1)

where ζi(t) is the probability that a node i will not receive infections from its neighbors in
the next time-step, and by the independence assumption,

ζi(t) =
∏

j:neighbor of i

(pj(t− 1)(1− β) + (1− pj(t− 1)))

=
∏

j:neighbor of i

(1− β ∗ pj(t− 1)) (2)

4



Infective
1−ζ i,t

i,tζ

Susceptible

δ

Infected by neighbor

Cured

Resisted infection
Not cured

1−δ

Figure 1: The SIS model, as seen from a single node: Each node, in each time step t, is either
Susceptible (S) or Infective (I). A susceptible node i is currently healthy, but can be infected
(with probability 1− ζi,t) on receiving the virus from a neighbor. An infective node can be
cured with probability δ; it then goes back to being susceptible. Note that ζi,t depends on
the both the virus birth rate β and the network topology around node i.

Equation 1 represents our NLDS (Non-Linear Dynamical System). Figure 1 shows the
transition diagram.

2.2 The Epidemic Threshold

Using the NLDS equation, we can determine the epidemic threshold τNLDS which determines
whether a viral outbreak dies out or becomes an epidemic under NLDS. Specifically, τNLDS

is a value such that (for NLDS)

β/δ < τNLDS ⇒ infection dies out over time, pi(t) → 0 as t →∞ ∀i
β/δ > τNLDS ⇒ infection survives and becomes an epidemic

Surprisingly, τNLDS depends only on one number: the largest eigenvalue of the graph.

Theorem 1 (Epidemic Threshold). In NLDS, the epidemic threshold τNLDS for an undi-
rected graph is

τNLDS = 1
λ1,A

(3)

where λ1,A is the largest eigenvalue of the adjacency matrix A of the network.

Definition 1 (Score). Score s = β
δ
· λ1,A.

Theorem 1 provides the conditions under which an infection dies out (s < 1) or survives
(s ≥ 1) in our dynamical system. We can ask another question: if the system is below the
epidemic threshold, how quickly will an infection die out?

Theorem 2 (Exponential Decay). When an epidemic is diminishing (therefore β/δ < 1

λ1,A

and s < 1), the probability of infection decays at least exponentially over time.

2.3 Experiments

We show simulation results on two datasets: Star-10K with 10, 000 nodes organised as a
star graph, and the Oregon graph of network connections between Autonomous Systems
(http://topology.eecs.umich.edu/data.html) with 11, 461 nodes and 32, 730 edges. All
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Figure 2: Accuracy of τNLDS: The number of infected nodes is plotted versus time for various
values of the score s. (a,b) Plots are shown on log-log scales, with the s = 1 case shown with
the dotted line. When s < 1, the infection dies out quickly, while when s > 1, it survives
in the graph. (c,d) Plots are shown in log-linear scales when s < 1 (below threshold). The
plots are linear, implying exponential decay.

nodes are initially infected, and we plot the number of infected nodes over time. Fig-
ures 2(a,b) show that when s < 1, the infection dies out, but it survives when s > 1,
agreeing with Theorem 1. Also, figures 2(c,d) show that the decay is exponential when
s < 1, showing the correctness of Theorem 2.

Thus, Theorems 1 and 2 allow us to distinguish between viral epidemic and extinction.

3 Information survival in sensor and P2P networks

“Consider a piece of information being spread within a sensor or P2P network with failing
links and nodes. What conditions on network properties determine if the information will
survive in the network for long, or die out quickly?

Sensor and Peer-to-peer (P2P) networks have recently been employed in a wide range
of applications, including oceanography, infrastructure monitoring and parking space track-
ing [13]. We look at the problem of survivability of information in a sensor or P2P network
under node and link failures. For example, consider a sensor network where the communi-
cation between nodes is subject to loss (link failures), and sensors may fail (node failures).
In such networks, we may want to maintain some static piece of information, or “datum”,
which, for the sake of exposition, we refer to as “Smith’s salary”. If only one sensor node
keeps Smith’s salary, that node will probably fail sometime and the information will be lost.
To counter this, nodes that have the datum can broadcast it to other nodes, spreading it
through the network and increasing its chances of survival in the event of node or link failures.
Under what conditions can we expect Smith’s salary to survive in the sensor network? The
problem is similar to that for viral propagation, and we again use the non-linear dynamical
systems approach.

3.1 Model for Information Propagation

As in section 2, we have a sensor/P2P/social network of N nodes (sensors or computers
or people) and E directed links between them. Our analysis assumes very small discrete
timesteps of size ∆t, where ∆t → 0. Within a ∆t time interval, each node i has a probability
ri of trying to broadcast its information every timestep, and each link i → j has a probability
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Figure 3: Transitions for each node: This shows the three states for each node, and the
probabilities of transitions between states.

βij of being “up”, and thus correctly propagating the information to node j. Each node
i also has a node failure probability δi > 0 (e.g., due to battery failure in sensors). Every
dead node j has a rate γj of returning to the “up” state, but without any information in its
memory (e.g., due to the periodic replacement of dead batteries).

Again, we will convert this into a dynamical system, and answer questions in that system.
Let the probability of node i being in the “Has Info” and “No Info” states at time-step t be
pi(t) and qi(t) respectively. The equations of the dynamical system turn out to be:

pi(t) = pi(t− 1) (1− δi)

+qi(t− 1) (1− ζi(t)) (4)

qi(t) = qi(t− 1) (ζi(t)− δi)

+ (1− pi(t− 1)− qi(t− 1)) γi (5)

ζi(t) = ΠN
j=1 (1− rjβjipj(t− 1)) (6)

From now on, we will only work on this dynamical system. Specifically, we want to find the
condition for fast extinction under this system, where the expected number of “carriers” of
information die off exponentially quickly over time.

3.2 Information Survival Threshold

Define S to be the N ×N system matrix:

Sij =

{
1− δi if i = j

rjβji
γi

γi+δi
otherwise (7)

Let |λ
1,S| be the magnitude of the largest eigenvalue (in magnitude). Let Ĉ(t) to be the

expected number of carriers at time t according to this dynamical system; Ĉ(t) =
∑N

i=1 pi(t).

Theorem 3 (Condition for fast extinction). Define s = |λ
1,S| to be the “survivability

score” for the system. If

s = |λ
1,S| < 1
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Figure 4: Number of carriers versus time (simulation epochs): Each plot shows the evolution
of the dynamical system (dotted lines) and the simulation (solid lines). There are two
observations: (1) The dynamical system (dotted lines) is very close to the simulations (solid
lines), demonstrating the accuracy of Equations 4-5. (2) Also, the number of carriers dies
out very quickly below the threshold, while the information “survives” above the threshold.

then we have fast extinction in the dynamical system, that is, Ĉ(t) decays exponentially
quickly over time.

Definition 2 (Threshold). We will use the term “below threshold” when s < 1, “above
threshold” when s > 1, and “at the threshold” for s = 1.

Corollary 1 (Homogeneous case). If δi = δ, ri = r, γi = γ for all i, and B = [βij] is a
symmetric binary matrix (links are undirected, and are always up or always down), then the
condition for fast extinction is:

γr
δ(γ+δ)

λ
1,B < 1

Corollary 2. Our model subsumes the SIS model of viral infection as a special case.

3.3 Experiments

We ran experiments on (a) a 100 × 100 grid, (b) one snapshot of the Gnutella graph [19],
(c) a 54-node sensor network from Intel [15], and (d) a 40-node network from MIT [14]. As
we can see from figure 4, the information survives above the threshold, but dies off quickly
below the threshold, matching Theorem 3.

4 Automatically grouping correlated nodes using Cross-

Associations

“How can we automatically find natural node groups in a large graph?”
Clustering is one of the most common methods of data analysis, and it has many applica-

tions in graph mining. For example, given a list of customers and the products they buy, we
might want to find customer “groups,” and the product “groups” they are most interested
in. The same can be done for documents versus words, bank accounts versus transactions,
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websites connecting to other websites: in short, any problem where entities are connected
by relationships.

We focus only on unweighted graphs, which can be represented as adjacency matrices with
0/1 entries; we use the terms “graph” (with nodes) and “matrix” (with rows and columns)
interchangeably. A good graph clustering algorithm should have the following properties:
(P1) It should automatically figure out the number of clusters, (P2) It should cluster rows
and columns simultaneously, (P3) It should be scalable, (P4) It should allow incremental
updates, and (P5) It should apply to both self-graphs and bipartite graphs. For bipartite
graphs, we have row and column clusters, representing node groups in the “from” and “to”
parts of the bipartite graph. For self-graphs, we might have an additional condition that the
row and column clusters be identical (i.e., only “node” groups, instead of “from” and “to”
groups). This algorithm should have the following three goals: (G1) Find clusters, (G2)
Find outliers, and (G3) Compute inter-cluster distances.

In Section 4.1, we formulate our data description model, and a corresponding cost func-
tion for each possible clustering. Based on this, we describe our automatic, parameter-free
algorithm for finding good clusters in Section 4.2. We then use these clusters to find outliers
and compute inter-cluster distances in Section 4.3. Experimental results are provided in
Section 4.4.

4.1 Data Description Model

Intuitively, we seek to group rows and edges (i.e., nodes) so that the adjacency matrix
is divided into rectangular/square blocks as “similar” or “homogeneous” as possible. The
homogeneity would imply that the graph nodes in that (row or column) group are all “close”
to each other, and the density of each region would represent the strength of connections
between groups. These regions of varying density, which we call cross-associations, would
succinctly summarize the underlying structure of associations between nodes.

To compress the matrix, we would prefer to have only a few blocks, each of them being
very homogeneous. However, having more clusters lets us create more homogeneous blocks
(at the extreme, having 1 cluster per node gives M ·N perfectly homogeneous blocks of size
1×1). Thus, the best compression scheme must achieve a tradeoff between these two factors,
and this tradeoff point indicates the best values for k and `.

We accomplish this by a novel application of the overall MDL philosophy, where the
compression costs are based on the number of bits required to transmit both the “summary”
of the row/column groups, as well as each block given the groups. Thus, the user does not
need to set any parameters; our algorithm chooses them so as to minimize these costs. We
discuss the exact cost function below.

The compression cost has two parts: the description cost needed to describe the groups,
and the code cost to encode the matrix given the groups. The description cost includes the
cost for transmitting the number of clusters (log? k + log? ` for k row groups and ` column
groups), the sizes of each group, and the number of “ones” in each block of the matrix,
apart from some terms which are the same for all clusterings. The code cost is the sum of
costs to encode each block, which is just the size of the block multiplied by its entropy. The
mathematical details are in the full thesis document.

9



R
ow

 C
lu

st
er

s

Column Clusters

Original matrix

200 400 600 800

100

200

300

400

500

600

700

800

R
ow

 C
lu

st
er

s
Column Clusters

Search − Iteration 2

200 400 600 800

100

200

300

400

500

600

700

800

R
ow

 C
lu

st
er

s

Column Clusters

Search − Iteration 4

200 400 600 800

100

200

300

400

500

600

700

800

R
ow

 C
lu

st
er

s

Column Clusters

Search − Iteration 6

200 400 600 800

100

200

300

400

500

600

700

800

R
ow

 C
lu

st
er

s

Column Clusters

Search − Iteration 8

200 400 600 800

100

200

300

400

500

600

700

800

(a) Original matrix (b) Iteration 1 (c) Iteration 2 (d) Iteration 3 (e) Iteration 4

Figure 5: Snapshots of algorithm execution: Starting with the matrix in plot (a), the clus-
tering is successively refined and the number of clusters increased till we reach the correct
clustering in plot (e).

4.2 (G1) Graph Clustering Algorithm

We can now assign a cost to each possible clustering; given two distinct clusterings, we
can use the cost function to choose between the two. How can we use this to find a good
clustering? In other words, how do we pick the best numbers of clusters k∗ and `∗, and the
memberships of these clusters?

We propose an iterative two-step scheme to answer this question:

1. Shuffle (inner loop): For a given k and `, find a good arrangement (i.e., cross-
association). We do this using a greedy approach: for each row in the matrix, we
shuffle it to the row group which minimizes the code cost, and we do the same for all
columns, and iterate till no further cost benefits occur.

2. Split (outer loop): Efficiently search for the best k and ` (k, ` = 1, 2, . . .). This is
accomplished by picking out the most inhomogeneous row/column group, and splitting
it in two. The split criterion is the following: for each row/column in this group, we
send it to the new split group if its removal from the current group makes the current
group more homogeneous (measured via entropy).

The mathematical details are in the full thesis document, and in [8, 7]. The entire algorithm
is linear on the number of edges in the graph. We can also show that our algorithm matches
all our desiderata ((P1)-(P5)). Figure 5 shows an example run of this algorithm.

4.3 Finding outlier edges and inter-cluster distances

Having found the underlying structure of a graph in the form of node groups (goal (G1)),
we can utilize this information to further mine the data. Specifically, we want to detect
outlier edges (goal (G2)) and compute inter-group “distances” (goal (G3)). Again, we use
our information-theoretic approach to solve all these problems efficiently.

4.3.1 (G2) Outlier edges

Which edges between nodes are abnormal/suspicious? Intuitively, an outlier shows some
deviation from normality, and so it should hurt attempts to compress data. Thus, an edge
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whose removal significantly reduces the total encoding cost is an outlier. Our algorithm is:
find the block where removal of an edge leads to the maximum immediate reduction in cost
(that is, no iterations of Shuffle and Split are performed). All edges within that block
contribute equally to the cost, and so all of them are considered outliers.

“Outlierness” of edge (u, v) := T (A′; k, `, Φ, Ψ)− T (A; k, `, Φ, Ψ) (8)

where A′ is A without the edge (u, v). This can be used to rank the edges in terms of their
“outlierness”.

4.3.2 (G3) Computing inter-group “distances”

How “close” are two node groups to each other? Following our information theory footing,
we propose the following criterion: If two groups are “close”, then combining the two into one
group should not lead to a big increase in encoding cost. Based on this, we define “distance”
between two groups as the relative increase in encoding cost if the two were merged into one:

Dist(i, j) :=
Cost(merged)− Cost(i)− Cost(j)

Cost(i) + Cost(j)
(9)

where only the nodes in groups i and j are used in computing costs. We experimented with
other measures (such as the absolute increase in cost) but Equation 9 gave the best results.

To computing outliers and distances between groups, only the statistics of the final clus-
tering need to be used (i.e., the block sizes ni,j and their densities Pi,j). Thus, both can be
performed efficiently for large graphs.

4.4 Experiments

We demonstrate results on two real-world datasets. The first is CLASSIC, which is a bipartite
graph of Usenet documents from Cornell’s SMART collection, and the words present in
them (see [9]). The documents belong to three distinct groups: MEDLINE (medicine), CISI
(information retrieval), and CRANFIELD (aerodynamics). The second is GRANTS, a set
of NSF proposal documents from several disciplines (physics, bio-informatics, etc.), versus
the words in their abstracts. The results are shown in Figure 6.

CLASSIC: We see that the cross-associates are in agreement with the known document
classes (left axis annotations). We also annotated some of the column groups with their most
frequent words. Cross-associates belonging to the same document (row) group clearly follow
similar patterns with respect to the word (column) groups. For example, the MEDLINE row
groups are most strongly related to the first and second column groups, both of which are
related to medicine. (“insipidus,” “alveolar,” “prognosis” in the first column group; “blood,”
“disease,” “cell,” etc, in the second).

Besides being in agreement with the known document classes, the cross-associates reveal
further structure. For example, the first word group consists of more “technical” medical

11



500 1000 1500 2000 2500 3000 3500 4000

500

1000

1500

2000

2500

3000

3500
R

ow
 C

lu
st

er
s

Column Clusters

death, prognosis, intravenous
insipidus, alveolar, aortic,

cell, tissue, patient
blood, disease, clinical,

CRANFIELD

MEDLINE

CISI

shape, nasa, leading,
assumed, thin

paint, examination, fall,
raise, leave, basedabstract, notation, works

construct, bibliographies

providing, studying, records,
developments, students,
rules, community

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

2000

4000

6000

8000

10000

12000

R
ow

 C
lu

st
er

s

Column Clusters

encoding, characters,
bind, nucleus,
recombination plasma, separation, beam

coupling, deposition,

manifolds, operators,
harmonic, operator, topological

meetings, organizations,
session, participating

undergraduate, education,
national, projects

(a) CLASSIC (k∗ = 15, `∗ = 19) (b) GRANTS (k∗ = 41, `∗ = 28)

Figure 6: Cross-associations for CLASSIC and GRANTS: Due to the dataset sizes, we show
the Cross-associations via shading; darker shades correspond denser blocks (more ones). We
also show the most frequently occurring words for several of the word (column) groups; these
clearly belong to different categories of words.

terms, while second group consists of “everyday” terms, or terms that are used in medicine
often, but not exclusively1. Thus, the second word group is more likely to show up in other
document groups (and indeed it does, although not immediately apparent in the figure),
which is why our algorithm separates the two.

GRANTS: Again, meaningful clusters are extracted. Figure 6(b) shows the most common
terms in several of the column clusters. They show that the groups found make intuitive
sense: we detect clusters related to biology (“encoding,” “recombination,” etc), to physics
(“coupling,” “deposition”, “plasma,” etc), to material sciences, and to several other well-
known topics.

5 The R-MAT graph generator

“How can we quickly generate a synthetic yet realistic graph? How can we spot fake graphs
and outliers?”

While we answered application-specific questions in the previous sections, the focus of
this section is on real-world graphs in general. What do real graphs look like? What
patterns or “laws” do they obey? This is intimately linked to the problem of designing a
good graph generator: a realistic generator is one which matches exactly these graph “laws.”
These patterns and generators are important for many applications, such as the detection of
abnormal subgraphs/edges/nodes, simulation studies when collecting the real-world graph
is hard or costly, checking the realism of graph samples, and so on.

1This observation is also true for nearly all of the (approximately) 600 and 100 words belonging to each
group, not only the most frequent ones shown here.
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There are several desiderata from a graph generator. (P1) Realism: It should only
generate graphs that obey all (or at least several) of the above “laws”, and it would match the
properties of real graphs (degree exponents, diameters etc., that we shall discuss later) with
the appropriate values of its parameters. (P2) Procedural generation: Instead of creating
graphs to specifically match some patterns, the generator should offer some process of graph
generation, which automatically leads to the said patterns. This is necessary to gain insight
into the process of graph generation in the real world: if a process cannot not generate
synthetic graphs with the required patterns, it is probably not the underlying process (or at
least the sole process) for graph creation in the real world. (P3) Parsimony: It should have
a few only parameters. (P4) Fast parameter-fitting: Given any real-world graph, the model
parameters should easily tunable by some published algorithms to generate graph similar
to the input graph. (P5) Generation speed: It should generate the graphs quickly, ideally,
linearly on the number of nodes and edges. (P6) Extensibility: The same method should be
able to generate directed, undirected, and bipartite graphs, both weighted or unweighted.

This is exactly the main part of this work. We propose the Recursive Matrix (R-MAT)
model, which naturally generates power-law (or “DGX” [5] ) degree distributions. We show
that it naturally leads to small-world graphs and also matches several other common graph
patterns; it is recursive (=self-similar), and it has only a small number of parameters.

The rest of this section is organized as follows: Section 5.1 provides a brief survey of
existing graph laws and generators. Section 5.2 presents the idea behind our R-MAT method.
Finally, section 5.3 gives the experimental results, where we show that R-MAT successfully
mimics large real graphs.

5.1 Related Work

We will discuss the related work in two parts: graph patterns, and graph generators.

Graph Patterns and “Laws”: The main graph patterns appear to be: power laws,
small diameters and community effects. Power laws often show up in the in- and out-degree
distributions of graphs, as well as in their eigenvalue-versus-rank plots (also known as scree
plots) [12, 2]. Recently, deviations from power laws have also been observed [18]. Another
pattern is the “hop-plot,” which measures the average growth of the neighborhood size with
the number of hops, and allows us to compute the “effective diameter” within which 95%
of the reachable node pairs are connected by a path. The “effective diameter” is typically
very small, even for large graphs. Other patterns include the distribution of components in
the first eigenvector (the “network value” of nodes), “stress” distributions (the number of
minimum shortest paths each edge lies on), and so on.

Graph Generators: The earliest model was the Random Graph model [10]. It has very
interesting phase transition properties but does not match power laws or show any commu-
nity structure. More recently, preferential attachment generators have been proposed [4]:
these provide a process for graph generation that automatically leads to power laws, but few
other patterns are explored. Some generators develop power laws as a result of resource op-
timization under constraints [11], and others also include the effects on geography on graph
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Figure 7: The R-MAT model: The adjacency matrix is broken into four equal-sized par-
titions, and one of those four is chosen according to a (possibly non-uniform) probability
distribution. This partition is then split recursively till we reach a single cell, where an edge
is placed. Multiple such edge placements are used to generate the full synthetic graph.

generation [21, 16], but again more patterns need to be studied. More references are available
in the thesis document.

5.2 The R-MAT methodology

Most of the current graph generators focus on only one graph pattern – typically the degree
distribution – and give low importance to all the others. What we would like is a tradeoff be-
tween parsimony (property (P3)), realism (property (P1)), and efficiency (properties (P4)
and (P5)). Our R-MAT generator attempts to address all of these concerns.

The R-MAT generator creates directed graphs with 2n nodes and E edges, where both
values are provided by the user. We start with an empty adjacency matrix, and divide it into
four equal-sized partitions. One of the four partitions is chosen with probabilities a, b, c, d
respectively (a+ b+ c+d = 1), as in Figure 7. The chosen partition is again subdivided into
four smaller partitions, and the procedure is repeated until we reach a simple cell (=1 × 1
partition). The nodes (that is, row and column) corresponding to this cell are linked by an
edge in the graph. This process is repeated E times to generate the full graph. There is a
subtle point here: we may have duplicate edges (i.e., edges which fall into the same cell in
the adjacency matrix), but we only keep one of them when generating an unweighted graph.
To smooth out fluctuations in the degree distributions, some noise is added to the (a, b, c, d)
values at each stage of the recursion, followed by renormalization (so that a+ b+ c+ d = 1).
Typically, a ≥ b, a ≥ c, a ≥ d. Next, we show how this simple construction can match many
real-world patterns, while requiring only 3 parameters.

5.3 Experiments

Figure 8 shows results on a CLICKSTREAM bipartite graph of the browsing behavior of
Internet users [17]. An edge (u, p) denotes that user u accessed page p. There are 23, 396
users, 199, 308 pages and 952, 580 edges. R-MAT matches all of the patterns very well, while
several other popular/recent models (AB [1], PG [18] and GLP [6]) do not even apply. The
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Figure 8: Results on the CLICKSTREAM bipartite graph: The AB+, PG+ and GLP+
methods do not apply. The crosses and dashed lines represent the R-MAT generated
graphs, while the pluses and strong lines represent the real graph.

thesis document shows more examples on directed and undirected graphs.

6 Conclusions

Graphs are ubiquitous; they show up in fields as diverse as ecological studies, sociology,
computer networking and many others. There is a dichotomy in graph mining applications:
we can answer specific queries on a particular graph, or we can ask questions pertaining to
real-world graphs in general. I have explored issues from both sides of this dichotomy.

• How does a virus propagate over the given graph? When does a viral outbreak die out?
We proposed the NLDS model and discovered the relationship between the epidemic
threshold and the largest eigenvalue of the graph.

• Under what conditions does a piece of information survive in a given sensor network
with failing nodes and links? Once again, a non-linear dynamical system allows us to
answer this question.

• How can we automatically cluster nodes in a given graph? Our contribution is the
development of an MDL-based framework that allows us to quickly and automatically
estimate both the number of clusters in the data, and their memberships.

• What patterns and “laws” hold for most real-world graphs? How can we generate
synthetic yet “realistic” graphs? We proposed the R-MAT graph generator, which can
match many of the patterns in real-world graphs, while requiring only 3 parameters.

To conclude, we developed tools for mining graph datasets under a variety of circum-
stances, each of which is important in its own right; combined together, their usefulness is
increased even more. “How susceptible will the Internet be to viral infections if its grows by
x% nodes and y% edges?” Our work can shed some light.
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