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Traffic Shaping to Optimize Ad Delivery

DEEPAYAN CHAKRABARTI, McCombs School of Business, University of Texas, Austin
and ERIK VEE, Google Inc.

Web publishers must balance two objectives: how to keep users engaged by directing them to relevant con-
tent, and how to properly monetize this user traffic. The standard approach is to solve each problem in
isolation, e.g., by displaying content that is tailored to the user’s interests so as to maximize clickthrough
rates (CTR), and also by building a standalone ad serving system that displays ads depending on the user’s
characteristics, the article being viewed by the user, and advertiser-specified constraints. However, showing
the user only the articles with highest expected CTR precludes the display of some ads; if the publisher
had previously guaranteed the delivery of a certain volume of impressions to such ads, then underdelivery
penalties might have to be paid. We propose a joint optimization of article selection and ad serving that
minimizes underdelivery by shaping some of the incoming traffic to pages where underperforming ads can
be displayed, while incurring only minor drops in CTR. In addition to formulating the problem, we design
an online optimization algorithm that can find the optimal traffic shaping probabilities for each new user
using only a cache of one number per ad contract. Experiments on a large real-world ad serving web portal
demonstrate significant advantages over the standalone approach: a threefold reduction in underdelivery
with only 10% drop in CTR, or a 2.6-fold reduction with a 4% CTR drop, and similar results over a wide
range.
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1. INTRODUCTION
Online display advertising is the fastest-growing segment of global advertising, grow-
ing by 18.9% a year [Zenith Optimedia 2011]. Each display of an ad to a user is called
an impression, and in display advertising, advertisers pay for impressions; user actions
such as clicking on ads are not necessary. Display advertising campaigns are often “tar-
geted”: Advertisers specify that their ad can only be shown to users visiting webpages
where the (user, webpage) pair matches certain desired characteristics (e.g., the user
is a young male who has previously shown interest in sports, and the webpage is about
soccer). Targeting can even be more fine-grained, e.g., the ad can only be shown on cer-
tain positions on the webpage (called ad slots, such as “north”, “lrec”, etc.). We focus on
guaranteed display advertising where the advertiser is guaranteed a certain number
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of qualifying impressions on the ad within a predetermined ad lifetime, and the price
per impression is fixed.

Such guarantees can only be made if the publisher of the website can accurately fore-
cast user traffic for the lifetime of the ad. In addition, the fraction of this traffic that
matches the desired targeting attributes must also be forecast. Unfortunately, unbi-
ased forecasting is very difficult in both cases, and the high variances associated with
the forecasts only compounds the problem. Hence, the publisher must be conservative
when guaranteeing impressions, or run the risk of being liable for severe underdeliv-
ery penalties. Even if the eventual supply of impressions exceeds forecasts, those can
only be sold on the spot market for non-guaranteed display advertising, where prices
are much lower than in the guaranteed marketplace. Hence, the publisher is unable to
fully utilize the incoming user traffic.

At the core of the problem lies the following constraint: the publisher has no control
over the volume or characteristics of the user traffic visiting her website. However, this
constraint can be relaxed if we also model the flow of users from webpage to webpage.
For instance, if the publisher is able to influence a user u arriving on webpage w1 to
visit another webpage w2 such that the pair (u,w2) matches the targeting attributes
of an underdelivering ad1, and this ad can be displayed on the ad slots available on
w2, then the publisher has essentially created a revenue-generating impression. Such
traffic shaping can dynamically alter the distribution of user traffic across webpages to
reduce underdelivery, allowing the publisher to guarantee larger impression volumes
to advertisers. However, any attempt to influence users carries with it the risk of de-
grading the user experience. Thus, traffic shaping must couple the dual objectives of
reducing underdelivery as much as possible while allowing only insignificant drops in
user satisfaction metrics.

To make these ideas more precise, we focus on a case study involving a large web por-
tal. A user arriving at the portal homepage is shown a set of clickable article abstracts
(e.g., the day’s top stories displayed on www.yahoo.com). Clicking on an abstract takes
the user to the full article webpage, and ads can be displayed on any ad slots available
on the article. We assume that each article has an arbitrary number of ad slots that
is known in advance. Users can also visit these article webpages directly (say, via a
search engine). The number of impressions for an ad is then the aggregate number of
user visits on webpages where this ad is displayed.

Measuring the user’s “satisfaction” is a thornier issue. Several short-term metrics
are available, such as the clickthrough rate (CTR) of users on the displayed article
summaries, or the dwell-time on the article landing page. Satisfaction over the long
run can be measured by the total time spent by users on the portal, the number of
repeat visits, the number of active user accounts, etc. Ideally, one would like to optimize
the long-term metrics, but their understanding is still in a nascent stage. Among the
short-term metrics, the CTR is broadly used, either by itself or as a part of some other
overall metric. It also offers ease of analysis and measurement, due to which we use it
as the sole metric of satisfaction in our study.

Now, to optimize for user satisfaction (as measured by CTR), the obvious policy of the
portal’s publisher is to display articles that are most likely to be clicked by the user. If
the user’s attributes are known (e.g., the user might have been identified by cookie, or
she could have logged in to the portal), then the portal can dynamically select, from an
available pool of articles, the subset of articles that is best suited to the user’s interests.
However, suppose an ad from a sportswear company is currently underdelivering. The
advertiser has specified that this ad can only be shown to young females who visit a

1An underdelivering ad is one for which the forecasted impressions over the remaining lifetime of the ad
will be insufficient to meet its guarantee.
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sports-related webpage. Then, when a matching user visits the portal, the publisher
could preferentially display sports-related article abstracts to this particular user2.
This might lead to a loss in CTR since the displayed articles might have lower predicted
CTR as compared to other articles available in the pool, but it increases the publisher’s
utility — the number of impressions delivered to the underdelivering ad (if the user
does click on the sports-related articles)3.

The goal of traffic shaping would be to generate as many such impressions on un-
derdelivering ads as possible, while accepting a bounded loss in CTR.

A seemingly simple solution would be to preferentially display those article sum-
maries which, if clicked, would enable the display of the most underperforming ads.
Improved variants of this strategy have been proposed in prior work as well [Agarwal
et al. 2011]. However, these are reasonable only when the volume of shaped traffic is
relatively insignificant; otherwise, the very act of traffic shaping may cause impression
forecasts for ads to be grossly inaccurate, thereby impairing the determination of un-
derdelivering ads. Thus, while such strategies are useful in some scenarios, they fall
short when a general solution is required.

Instead, in this paper, we seek a unified mathematical formulation of the traffic
shaping problem. It should accept three inputs: (a) forecasts of traffic arriving at the
portal (and hence, independent of any previous traffic shaping), (b) a black box that
predicts the expected CTR when a user is shown an article abstract, and (c) another
black box that uses the targeting attributes of all available ads to determine which
ads can be shown on each ad slot ` of a given article page p if it is visited by user u.
We implicitly assume that enough characteristics of future articles are known as to
enable computation of their expected CTR and the number of ad slots on a webpage
displaying the full article4. Now, whenever a new user arrives at the portal’s website,
we must optimally select one article abstract to show to the user. We note that the
problem of picking multiple articles is the same as the single-article case, except for
the need to adjust expected CTR depending on article position (as is common for, say,
search result ranking), so we focus on the single-article problem for ease of exposition.
Business reasons might also constrain traffic shaping by requiring that certain arti-
cles are shown to some minimum (or maximum) fraction of users. For instance, the
publisher could choose to show to 90% of users the article with the maximum expected
CTR, and leave only 10% for traffic shaping; this would also lower-bound the CTR af-
ter traffic shaping. As another example, the publisher could insist that every article
receives at least 5% of the traffic, perhaps to get better CTR estimates. Finally, since
runtime speed is critical, the algorithm should only require access to the set of match-
ing ads and possibly a small cache; loading into memory the entire forecasted traffic
is out of the question. Thus, we need to not only formalize the optimization problem,
but also make it efficiently solvable. This dual requirement is what makes the problem
difficult.

Our contributions are as follows.
(1) Formulation: We formulate traffic shaping as an optimization problem. Our

framework is very generic, and incorporates domain knowledge and constraints that
are of practical importance: forecasts of user traffic, differences in the ad slots avail-

2Note that the user is merely browsing and has not expressed any intent, e.g. by issuing a search query.
Thus, article selection involves suggesting articles that may be of interest to the user based solely on his/her
prior interactions with the website. In particular, search results are not biased.
3Note that users voluntarily click on links leading them to the webpage containing the full article. So,
although it is possible to make an argument that clicks due to traffic-shaping give the publisher or advertiser
less utility than un-shaped clicks, such an effect – if any – should be minor compared to other considerations.
4In practice, only estimates will be available, but these are good enough.
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able on various article pages, constraints on the displayable ads depending on the user
and article attributes, minimum (maximum) probabilities for displaying articles, etc.

(2) Optimality: We present an algorithm that, given the attributes of a user arriving
at the portal’s webpage, assigns probabilities to the various available article abstracts.
One of these article abstracts is picked from this distribution and displayed to the user.
We prove that this strategy is optimal, assuming the correctness of the forecasts.

(3) Online reconstruction: Our algorithm pre-computes a small cache that stores one
number per ad. At runtime, for every user arriving at the portal, only the set of match-
ing ads and their cached values are needed by the algorithm. Thus, the correct solution
of the optimization problem is reconstructed for each new user from an online cache,
without having to process the entire data every time.

(4) Empirical results: On a large real-world dataset of historical logs from a web
portal, the algorithm yielded a threefold reduction in underdelivery with respect to
the standalone approach that selects articles and serves ads independently. The drop
in CTR was only 10% and can be varied according to the publisher’s preferences; for
example, a 2.6-fold reduction in underdelivery can be achieved for only a 4% CTR loss.
This clearly demonstrates the usefulness of traffic shaping and the flexibility of our
formulation.

The paper is organized is follows. In Section 2, we propose our formulation of traf-
fic shaping as a constrained optimization problem on a graph linking users, articles,
ad slots, and ad contracts. We also present our online reconstruction algorithm that
finds the optimal parameters for traffic shaping for a new user arriving at the portal.
Empirical evidence of the usefulness of our traffic shaping algorithm is presented in
Section 3. In Section 4, we generalize our approach and show how similar methods can
be applied to a broad class of problems. We review related prior work in Section 5, and
conclude in Section 6.

2. PROPOSED METHOD
We shall split the description of our work into three parts. First, we will discuss the
proposed model of traffic shaping. This includes forecasting of user traffic, and inter-
linking users with articles, the ad slots on article pages, and the ad contracts them-
selves to create a traffic shaping graph. Then, we present our formulation of the traf-
fic shaping problem as an optimization problem based on this graph. This will pro-
vide the mathematical formalization of the model, and capture the various constraints
stemming from practical concerns. Finally, we will present our online reconstruction
algorithm that computes a probability distribution over available articles based on the
attributes of the user arriving at the portal. The primary goal here is to limit the cache
size, and our proposed algorithm only needs to store only one number per ad in its
cache. This allows it to scale to millions of ads, satisfying the exacting requirements of
even the largest ad-serving systems.

2.1. Model
The overall traffic shaping problem is shown in Figure 1. A user k arrives at the portal
webpage, and the publisher can choose to show her one article abstract out of a set
of available abstracts. The displayed article abstract is clicked by the user with some
click-through rate (CTR) that depends on features of the (user, article) pair. If clicked,
the user arrives at the article page i, which has multiple ad slots `; different articles
may have different slots available. For each (user, article, slot) triple, there can be
several matching ads j. Note that the set of matching contracts depends on user and
article attributes as well as the ad slot, so the graph will be different for each user.
Our goal is to compute the traffic shaping probabilities wki (denoting the probability
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Fig. 1. Overall traffic shaping diagram

that user k is shown article page i) such that underdelivery of ads will be minimized,
subject to constraints on these probabilities.

The model has two basic ingredients: the forecasts, and the graph linking the users,
articles, and ads. Before describing these two aspects, we discuss why seemingly sim-
pler methods of underdelivery estimation are inapplicable.
DIFFICULTY OF UNDERDELIVERY ESTIMATION. Traffic shaping algorithms would be
simple and obvious if good underdelivery estimates were available for all ad contracts.
Several apparently simple solutions present themselves, but each has significant flaws,
as we discuss next.

The simplest idea is to estimate the future underdelivery of an ad from historical un-
derdeliveries of “similar” ads. However, even if a reasonable similarity function could
be defined, an ad underdelivers if not enough users with the right targeting attributes
arrive at the website, or if such user impressions are cannibalized by other similar
ads. Thus, such estimation is extremely sensitive to variations in the user traffic (by
both type and volume) and the distribution and volume of ads in the entire system. In
fact, such historical estimates are much more volatile than the original forecast prob-
lem which led to the overbooking in the first place, and generally too imprecise to be
useful.

If an ad’s underdelivery cannot be estimated, an alternative would be to forecast the
total volume of user impressions to whom the ad could be shown. However, these im-
pressions must be the (user, article, ad slot) triples mentioned above, and their volume
is clearly dependent on traffic shaping itself. Forecasting numbers that are affected by
traffic shaping, for the purposes of traffic shaping, via simple non-iterative methods
appears difficult.

Finally, it might be possible to estimate underdelivery if the traffic shaping algo-
rithm was very simple. However, our goal is to present a formal framework for traffic
shaping and find the optimal solution. In Section 3, we do design an alternative greedy
traffic shaping competitor; our proposed algorithm reduces underdelivery by over 61%
as compared to it, while retaining the advantages of fast run-time execution thanks to
our online reconstruction algorithm detailed later.
FORECASTS. Clearly, the probabilities wki must depend on the other users who visit
the website in the future, since their ad views would affect the determination of un-
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derdelivering ads. If we could directly forecast the (user, article, ad slot) impressions
that can be served to each ad, computing underdelivery would be easy; however, these
future impression volumes depend on traffic shaping itself. To avoid such circularity,
we need to forecast the expected number of users who will visit the portal homepage
during the lifetime of the currently guaranteed ads, or will arrive directly at the article
pages from some external site (say, a search engine).

In fact, we need forecasts of not only the volume of traffic but also the distribution of
user attributes in it. However, there are many user attributes of interest to advertisers
(e.g., age, gender, interests, geographical location, etc.), each of which can have many
different values. Hence, a full specification of the attribute distribution can be very
difficult to forecast and cumbersome to use.

An appealing alternative, described previously in [Vee et al. 2010], is to forecast
samples of individual impressions instead of the entire probability distribution. Briefly,
one creates an unbiased sample of future impressions and attaches, to each sample, a
weight representing how likely it is to appear. Such a sample can be created from
historical logs, e.g., by picking impressions from March, 2011 as samples for March,
2012; adjustments could also be made for any observed trends, such as changes in
user demographics. An appropriate sample size can be chosen to trade off accuracy
w.r.t. the full distribution against costs for computing time and storage space. The
particular process employed in building this sample is orthogonal to our work, and
any standard technique from the forecasting literature can be applied. Multiplying
these sample weights by the forecasted traffic volume, we get a forecast of impressions
that has both the expected volume and expected distribution of user attributes. We
assume in our work that such a forecasted sample is made available as input to our
algorithm.

One further complication is that new ads will enter the system over the forecasted
time period, and they must be accounted for. We adjust for this effect by forecasting
new ads as well, in a manner similar to that for forecasting sample impressions. Fi-
nally, we assume that even though the content of future articles is unknown, there will
always be articles with the same attributes as those available currently. Thus, current
articles can be used as proxies for all future articles.

LINKING USERS, ARTICLES, AND ADS. The forecasts give unbiased estimates of the fu-
ture states of users, articles, and ads. These must be linked together to form the traffic
shaping graph. The graph has four layers, successively connecting users to articles,
then to ad slots on those articles, and finally the ads themselves. Figure 2 shows an
example, with three forecasted users (A, B, and C) and two articles (white and black).
Users A and B arrive at the portal homepage, while C bypasses the portal’s homepage
and arrives directly at one of the article pages. Clearly, only the traffic for A and B can
be shaped, but C must be included since it affects the total forecasted traffic.

We reiterate a few points about this graph: (1) Articles can have different numbers
of ad slots (one for the white article, three for the black article); (2) each node in the
second and third layers includes a specific user attribute in its definition and can be
traced back to a unique user node from the first layer, so there are no cross-connections
in the first three layers, i.e., given `, the corresponding k and i are fixed; (3) two users
can be shown the same article and yet have different matching ads, since ads can
target different user attributes; and (4) it is possible for some (user, article, ad slot)
triples to have no matching ads. Next, we formalize the traffic shaping problem.

2.2. Mathematical Formulation
We first present some notation. We index users by k, (user, article) pairs by i, (user,
article, ad slot) triples by `, and ad contracts by j. For ease of exposition, we shall

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



Traffic Shaping to Optimize Ad Delivery 39:7

A

w ki

CTR
c ki

supply sk

(user) (user, article)

(user, article, slot)

(ad contract)

B

C

k

i

j

l

Prob.

Fig. 2. Traffic shaping graph linking forecasted users and ad contracts. Users A and B arrive at the portal’s
homepage, while C arrives directly at an article page.

occasionally use i to refer to articles and ` to refer to ad slots, but the context will
make the difference clear. Let Γ(x) represent the neighbors of node x; this encodes
the structure of the graph. Each user k has an associated sample size representing
the expected number of users of this “type” in the forecast time period, which we call
the supply sk. The click-through rate for user k on a displayed article i is assumed
to be known, and is denoted by cki. Each ad contract j requires a certain number
of impressions to be delivered to it during the forecast period in order to satisfy its
guaranteed contract; call this the demand dj . An ad “underdelivers” if it receives fewer
than dj impressions. The goal is to find the optimal traffic shaping probabilities wki so
that total underdelivery is minimized.

To compute underdelivery, we must understand how traffic “flows” from the user
nodes (the supply) to the ad contract nodes (the demand). Consider a path k → i →
`→ j from user k to ad contract j. The traffic at k that flows to i is skwkicki. This traffic
sees every ad slot present on the article i, so the traffic at ` is also skwkicki. Assuming
the fraction of traffic at ` that is shown ad j is φ`j , we find that the total flow along
the entire path is skwkickiφ`j . Summing over all paths ending in any ad j gives the
total flow reaching j, from which its underdelivery can be computed. Let Ui and Li be
pre-specified upper and lower bounds on wki.
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Then, a basic optimization setup might be the following:

Minimize
∑
j

uj such that (1)

∑
`∈Γ(j)

skwkickiφ`j + uj ≥ dj ∀j

Li ≤ wki ≤ Ui ∀i∑
i∈Γ(k)

wki ≤ 1 ∀k

∑
j∈Γ(`)

φ`j ≤ 1 ∀`

uj , wki ≥ 0

The first constraint essentially defines the underdelivery term uj as the difference
between the demand dj and the total delivered impressions

∑
`∈Γ(j) skwkickiφ`j . Recall

that there is a unique k and i for each `, so the first term of the first constraint is well-
defined. The second constraint allows the portal’s publisher to exercise fine-grained
control on the traffic shaping probabilities. For example, Li could be set to 0.95 for the
article i with the highest predicted CTR, thus ensuring that the overall CTR of the
shaped traffic is close to the maximum CTR. The third constraint merely states that
only available traffic can be shaped; the fourth constraint serves a similar purpose.

While this is a clean and intuitive formulation, it is nonetheless problematic. Traffic
arriving at the (user, article) layer gets multiplied by the number of ad slots as it flows
to the next layer, precluding the modeling of this as a “max-flow” problem. We also
have to solve for two sets of unknowns wki and φ`j . Note that these two unknowns
appear as a product in the first constraint; hence, the optimization is not stated as
a linear program that can be solved simply. Even if we could solve for both, online
reconstruction of wki in this setting appears to be difficult. The solution to this problem
comes from the following insight.

LEMMA 2.1. Suppose {w∗ki, φ∗`j} is an optimal solution for problem 1. Define z`j =
w∗kiφ

∗
`j

max
`

∑
j∈Γ(`) φ

∗
`j

, w′ki = max
`

∑
j∈Γ(`) z`j , and φ′`j =

z`j
max
`

∑
j∈Γ(`) z`j

. Then,
{
w′ki, φ

′
`j

}
is also

an optimal solution.

PROOF. We may assume without loss of generality that max
`

∑
j∈Γ(`) φ

∗
`j > 0; if not,

some φ`j can be increased infinitesimally (note that this can never increase any un-
derdelivery uj). Thus, z`j is well-defined. It may easily be determined that {w′ki, φ′`j}
satisfy all the constraints while having the same objective as {w∗ki, φ∗`j}.

This lemma allows us to create an optimal solution {w′ki, φ′`j} where both are func-
tions of z`j . Thus, we can reformulate problem 1 as an optimization problem of just the
single set of unknowns z`j .

To gain an intuition about the physical meaning of z`j , let us analyze the the flow of
traffic through the middle layers of the graph. The total fraction of traffic at ` that is
served some ad is ψ` =

∑
j∈Γ(`) φ`j ; note that ψ` ≤ 1, and is strictly less than 1 if there

are no matching ads or the demands of the matching ads are already satisfied. Hence,
the total flow through ` is simply skwkicki

∑
j∈Γ(`) φ`j . Working backwards through the

graph, we can now compute the total flow through article i. Every user who arrives at
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i is exposed to all of its ad slots, and if an ad is always shown in each slot then the
flow at i equals the flow at each of its ad slots. However, ad slots can occasionally be
empty, and hence have different flows. Suppose there are two slots `1 and `2 available
on article i, with ψ`2 < ψ`1. Then, in the optimal solution, a user arriving at article i
will see ads either on both `1 and `2, or only on `1, but never only on `2. Generalizing
this to multiple ad slots, it is easily seen that the total traffic at i that sees ads is the
maximum of the traffic through each of its ad slots, i.e., skwkicki max`∈Γ(i)

∑
j∈Γ(`) φ`j .

The factor max`∈Γ(i)

∑
j∈Γ(`) φ`j can be thought of as the “efficiency” of ad serving at

article i; for every unit of traffic arriving at i, this fraction is shown some ad. Thus,
φ`j/max`∈Γ(i)

∑
j∈Γ(`) φ`j is the fraction of traffic that sees ad j in slot `, normalized by

the fraction of traffic at article i that sees any ads at all. Multiplying this by wki gives
z`j ; thus, ckiz`j is the normalized fraction of incoming users at k that see ad j.

We are now in a position to formally restate the optimization problem in terms of z`j .
Define s` = skcki; this is the supply that would be available at ` if all the user traffic
at k had been sent its way, i.e., along the path k → i → ` (recall that the entire path
is set when we specify `). Let h`j(z`j) be a continuously-differentiable strictly convex
penalty function; it is a technical device that ensures uniqueness of the solution and
can be used to bias the solution (e.g., away from extremes, such as showing only one
particular ad on some ad slot), but it can also be made arbitrarily small so that the
underdelivery penalty dominates. Then, replacing wki with max`∈Γ(i)

∑
j∈Γ(`) z`j , we

get the reformulated optimization problem:

Minimize
∑
j

uj +
∑
`

∑
j∈Γ(`)

h`j(z`j) such that (2)

∑
`∈Γ(j)

z`js` + uj ≥ dj ∀j

Li ≤ max
`∈Γ(i)

∑
j∈Γ(`)

z`j ≤ Ui ∀i

∑
i∈Γ(k)

max
`∈Γ(i)

∑
j∈Γ(`)

z`j ≤ 1 ∀k

uj , z`j ≥ 0

We note here that problem 2 differs from problem 1 in one minor way: the total frac-
tion of shaped traffic is allowed to be less than 1 (compare the second-last constraint
in both problems). This is a simplification device that ensures that the intermediate
solutions found by our algorithm are always feasible. If

∑
i wki < 1 at the optimal,

then article i is picked for display with probability wki, and no article is displayed with
probability 1−

∑
i wki, so the probabilistic interpretation of wki remains valid.

SUMMARY. Conceptually, the arrival of a user at the portal triggers two steps: (1) the
(pre-computed) forecasted graph is augmented with nodes corresponding to this user
(i.e., extra nodes in the first three layers), which are connected to available ad con-
tracts, and (2) the optimization problem 2 on this augmented graph is solved, yielding
the optimal traffic shaping probabilities for this user. The optimization is convex, and
hence can be solved in time that scales linearly with the graph size. However, the
graph itself can be huge; it has of the order of users×articles× slots + contracts nodes.
This is dominated by the first term, since a large sample of users is desirable to better
represent the full distribution of forecasted traffic. Such a huge problem is impossible
to solve at runtime for every incoming user. The next section presents our solution.
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2.3. Online Reconstruction
Computation of traffic shaping probabilities at runtime presents a thorny problem.
Time and space considerations prevent us from loading the entire graph into memory
and solving the optimization, but if the probabilities are computed without reference
to the full graph, all guarantees regarding underdelivery are lost. The optimal proba-
bilities can, nonetheless, be computed by using a small cache that captures essential
information from the graph, as discussed below.

The basic idea is to split up the optimization in two stages. The first stage is offline;
the entire graph is loaded into memory, the optimization problem is solved, and a
set of by-products (the optimization “duals”) are cached. Then, at runtime, the second
stage reconstructs the traffic shaping probabilities for the incoming user using just the
cached duals and the user’s characteristics. Only one dual per ad contract is required,
making this a very fast and space-efficient solution. The offline solution is recomputed
periodically to ensure that the cached duals remain in sync with their correct values;
we find that recomputing every 15 minutes is sufficient.

We first convert the optimization problem 2 into an equivalent form that turns out
to be easier for online reconstruction. We introduce an auxiliary variable vi which, at
the optimal solution, should equal max`∈Γ(i)

∑
j∈Γ(`) z`j . Then, we have the following

form for the optimization:

Minimize
∑
j uj +

∑
`

∑
j∈Γ(`) h`j(z`j) (3)∑

`∈Γ(j) z`js` + uj ≥ dj ∀j (dual αj) (4)∑
j∈Γ(`) z`j ≤ Ui ∀` (dual τ`) (5)∑
j∈Γ(`) z`j ≤ vi ∀` (dual σ`) (6)

vi ≥ Li ∀i (dual κi) (7)∑
i∈Γ(k) vi ≤ 1 ∀k (dual µk) (8)
uj , z`j ≥ 0

The first (offline) stage, where we solve the above convex problem on the forecasted
graph (Fig. 2), can be accomplished using any off-the-shelf solver, so it is not discussed
any further. Once solved, we cache the duals αj . Then, at runtime, when a new user
arrives at the portal, the second stage builds the graph only for this user (i.e., Fig. 1) but
also loads in the cached αj values for all ad contracts. The traffic shaping probabilities
must be reconstructed using only this information.

The duals are connected to the optimal solution via the Karush-Kuhn-Tucker (KKT)
conditions. Define the function g`j = (h′`j)

−1, where h′`j represents the first derivative
of h`j . Since h`j is continuously differentiable and strictly convex, g`j is well-defined,
smooth, and monotonically increasing. In the following, we assume that it is also piece-
wise linear; if not, it can always be approximated arbitrarily well by a piecewise linear
function. Then, at the optimal solution z`j , the KKT conditions yield the following (af-
ter some algebraic manipulation):

z`j = max{0, g`j(αjs` − τ` − σ`)} (9)

µk =
∑
`∈Γ(i)

σ` (for all {i | i ∈ Γ(k), vi > Li}) (10)

τ` ≥ 0,with equality if
∑
j∈Γ(`)

z`j < Ui (11)

σ` ≥ 0,with equality if
∑
j∈Γ(`) z`j < vi (12)
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From these equation, we prove a series of claims that motivate our online recon-
struction algorithm.

CLAIM 1. z`j is a decreasing function of (σ` + τ`).

PROOF. The proof follows from the fact that g`j is a monotonically increasing func-
tion of its argument (αjs`−σ`−τ`) and αj and s` are known (hence fixed) during online
reconstruction.

CLAIM 2.
∑
j∈Γ(`) z`j = min{Ui,

∑
j∈Γ(`) max{0, g`j(αjs` − σ`)}}.

PROOF. Let X =
∑
j∈Γ(`) max{0, g`j(αjs` − σ`)}. Then, we have:∑

j

z`j < Ui ⇒ τ` = 0⇒
∑
j

z`j = X, (13)

where the two implications come from Eqs. 11 and 9 respectively. Now, supposeX ≥ Ui.
If

∑
j z`j < Ui, then by Eq. 13,

∑
j z`j = X ≥ Ui, leading to a contradiction. Hence,∑

j z`j ≥ Ui. However,
∑
j z`j ≤ Ui from Eq. 5. Hence, we find that

∑
j z`j = Ui. Con-

versely, suppose X < Ui. Note that
∑
j z`j =

∑
j max{0, g`j(αjs` − σ` − τ`)} ≤ X from

claim 1, since τ` ≥ 0. Thus,
∑
j z`j ≤ X < Ui, which implies

∑
j z`j = X by Eq. 13.

Thus, we have:
∑
j z`j = min{Ui, X}, as desired.

Hence, z`j can essentially be treated as a decreasing function of σ` that
is clipped above to ensure that

∑
j z`j ≤ Ui. Thus, if we define ĝ`(x) =

min{Ui,max{0,
∑
j∈Γ(`) g`j(αjs` − x)}}, then

∑
j z`j = ĝ`(σ`).

CLAIM 3.
∑
j z`j ≤ ĝ`(0).

PROOF. The function ĝ` is monotonically decreasing and piecewise linear, from the
properties of g`j . The claim follows.

At optimality, vi = max`∈Γ(i)

∑
j∈Γ(`) z`j . Let the max-set Mi denote those ` that

attain this maximum value vi: Mi = {` ∈ Γ(i) |
∑
j∈Γ(`) z`j = vi}. In other words,

the max-set is the set of (user, article, ad slot) triplets which consume all the traffic
that flows in through their parent (user, article) node; recall that some ad slots might
remain empty and hence not carry all the incoming flow.

CLAIM 4. σ` is non-zero only for ` ∈Mi.

PROOF. This is just a restatement of Eq. 12.

CLAIM 5. ĝ`(0) ≥ vi ⇔ ` ∈Mi.

PROOF. ` /∈Mi ⇒ σ` = 0⇒
∑
j z`j = ĝ`(0)⇒ ĝ`(0) < vi.Hence, ĝ`(0) ≥ vi ⇒ ` ∈Mi.

Conversely, ` ∈ Mi ⇒
∑
j z`j = vi, but

∑
j z`j ≤ ĝ`(0) by claim 3, so ` ∈ Mi ⇒ ĝ`(0) ≥

vi.

The online reconstruction algorithm initially sets all σ` = 0, implying that all z`j are
at their maximum possible values (claim 3) and underdelivery is as low as possible.
If this violates constraint 8, we must reduce vi, for which we must reduce z`j for all
` ∈ Mi (by definition ofMi). This is accomplished by increasing the corresponding σ`
values (claim 1). However, increases in σ` must account for two factors: every ` that is
in the current max-set must continue to be in the max-set after vi decreases (claim 5),
and the total sum

∑
`∈Γ(i) σ` must remain the same for all {i ∈ Γ(k)|vi > Li} (Eq. 10).

The following lemma shows how σ` should be changed to satisfy these conditions.
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LEMMA 2.2. For all ` ∈ Mi, the rate of change of σ` that satisfies both of the above
conditions is given by: σ′` ∝

1/ĝ′`∑
`′∈Mi

1/ĝ′
`′

, where ĝ′`(x) = limh↓0(ĝ`(x+ h)− ĝ`(x))/h is the
right derivative of ĝ`.

PROOF. Consider an infinitesimal increase ∆σ` in σ`. This decreases
∑
j z`j by

ĝ′`∆σ`. For ` to remain in the max-set, vi must decrease by the same amount, which
means that every `′ ∈ Mi must decrease by this amount: ĝ′`∆σ` = ĝ′`′∆σ`′ = . . . = ki
for some ki that is fixed for all ` ∈ Mi. Thus, ∆σ` = ki/ĝ

′
`, and the total change in

σ` values connected to some (user, article) pair i is
∑
`∈Γ(i)∩Mi

∆σ` = ki
∑
`∈Γ(i) 1/ĝ′`.

By Equation 10, the total change should be identical for all {i ∈ Γ(k)|vi > Li}:
ki

∑
`∈Γ(i)∩Mi

1/ĝ′` = ki′
∑
`′∈Γ(i′)∩Mi′

1/ĝ′`′ = . . . = φk for some φk. Thus, we can in-

fer that ∆σ` =
1/ĝ′`∑

`′∈Mi
1/ĝ′

`′
φk, proving the claim.

Thus, the algorithm should keep increasing σ` for Mi at the rate specified in
Lemma 2.2, until either constraint 8 is satisfied, or vi reaches its minimum allowed
value Li, or the max-set changes. The last condition occurs when vi is reduced to the
point where it equals the ` with the “second-best” value of

∑
j z`j ; note that since this

second-best ` was not in the max-set earlier, we have
∑
j z`j = ĝ`(0) by claim 3. Thus,

the sequence of `’s that join the max-set can be pre-computed. Algorithm 1 provides
the details.
COMPLEXITY. At runtime, the nodes and edges corresponding to the new user have to
be generated. Assuming that the pool of articles available at any time is bounded, and
each article has a bounded number of ad slots, the time and space required for this
graph is constant. Thus, space complexity is dominated by the cache size; assuming
the number of ads that get connected to ad slots is |A|, this needs O(|A|) space. Each
iteration of the algorithm computes z`j , which can take O(|A|) time. The number of
iterations is bounded by the number of “breakpoints” in the piecewise-linear function
ĝ`, plus a constant. If ĝ` has B` breakpoints, the number of iterations is O(

∑
`B`), giv-

ing a total time complexity of O(|A|
∑
`B`). This is far smaller than the O(graph-size)

complexity of solving the entire optimization at run-time.

3. EXPERIMENTS
The previous section described our algorithm to optimally couple a portal’s homepage
with its ad-serving engine. In this section, we will empirically demonstrate that this
coupling leads to a significant reduction in underdelivery as compared to competing
approaches. Before presenting the results, we first discuss the data and the baseline
algorithms.

3.1. Data
Our experiments were conducted on historical traffic logs from April, 2011 of a large
web portal. The entire website can be broadly divided into several sections (e.g., Sports,
News, etc.). New articles are created by editors periodically, and while their content is
varied, there are always some articles from each section. Reliable estimates of CTR
are available via a separate standalone module, as are forecasts of future traffic and
ad contracts. Experiments were run on a random subset of nearly 25K user nodes and
100K ad contracts (these are not necessarily representative of the entire dataset).

3.2. Baseline Algorithms
Any traffic shaping algorithm must answer two questions: (a) article selection: how to
pick articles to show to users, and (b) ad serving: which ads to serve on which ad slots,
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ALGORITHM 1: Traffic shaping reconstruction
Pre-process: Compute the breakpoints B`, where the function ĝ′` changes values

{ĝ′` is piecewise constant since ĝ` is piecewise linear}
Init: Set σ` = 0 for all `
Set z`j = Compute-Z(σ`); set z` =

∑
j∈Γ(`) z`j , and vi = max`∈Γ(i) z`.

while
∑

i∈Γ(k) vi > 1 do
SetMi = {` | ` ∈ Γ(i), z` = vi, vi > Li}
SetM =

⋃
iMi

ifM is empty then
Return infeasible

end if
Set v(2)

i = max{z` | ` ∈ Γ(i), z` < vi} {“second-best” z` for a given i}
for all ` ∈M do
{e(`) is the distance to the closest possible σ value where (a) ĝ′` changes value, or (b)
another `′ would have to be added toM, or (c) Li is reached}
e(`) = min{{σ | σ ∈ B`, σ > σ`}, ĝ−1

` (v
(2)
i ), ĝ−1

` (Li)} − σ`

end for
Set φ = min`∈M

{
e(`)×

∑
`′∈Mi

1/ĝ′
`′

1/ĝ′
`

}
Set σ` = σ` + φ× 1/ĝ′`∑

`′∈Mi
1/ĝ′

`′

Set z`j = Compute-Z(σ`); set z` =
∑

j∈Γ(`) z`j , and vi = max`∈Γ(i) z`.
end while
Output: Traffic shaping fractions wki =

max`∈Γ(i) z`∑
i′∈Γ(k) max`′∈Γ(i′) z′

`

ALGORITHM 2: Compute-Z
Input: σ`

if
∑

j max{0, g`j(αjs` − σ`)} > Ui then
Set τ` such that

∑
j max{0, g`j(αjs` − τ` − σ`)} = Ui

else
Set τ` = 0

end if
Set z`j = max{0, g`j(αjs` − τ` − σ`)}
Output: z`j

if the user does click on the displayed article. While heuristics are easily constructed
for article selection, designing alternate ad-serving solutions is quite non-trivial. Still,
we constructed alternative solutions for both problems, leading to the following three
baselines.
GREEDY SHAPING (GREEDY). Here, we implement a greedy alternative to both the
article selection and ad serving problems. For ad serving, we find a fraction fj for
each ad contract j such that if j gets an fj fraction of the supply at all the ad slots
connected to it, then its demand dj will be satisfied (unless the total connected supply
is insufficient to meet the demand). These fractions fj act as the counterparts of the
duals αj in our algorithm. To compute fj values, we start by finding fj for one contract,
removing an fj-fraction of the supply from each connected ad slot, and repeating this
process for the next ad contract, until all contracts are processed. Ad contracts which
do not have sufficient connected supply will underdeliver, and the underdelivery UDj

for each ad j is computed and stored. Note that supply forecasts for all (user, article, ad
slot) triples are required as input to the algorithm; that is, traffic shaping is not being
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Table I. Gains via traffic shaping

Algorithm Reduction in underdelivery Avg. CTR
Number of contracts Lift in impressions (normalized)

to underdelivering ads
CTR+Greedy 14K — —

CTR+Opt 12K 2.5 1.0
Greedy 14K 1.83 0.87

Full 14K 2.96 0.90
Constr 14K 2.57 0.96

taken into account in the forecasting or in the computation of the fj values. Article
selection at runtime is also greedy: the article selected for display is the one whose ad
slots can show the most underdelivering ads. In other words, we select article i with
the highest cki

∑
`∈Γ(i)

∑
j∈Γ(`) fjUDj .

CTR-ONLY WITH GREEDY (CTR+GREEDY). This baseline decouples article selection
from ad serving. The portal always selects the article with the highest expected CTR,
and no effort is made to increase downstream ad revenue. Ad-serving is done using the
same greedy method outlined above.
CTR-ONLY WITH UNDERDELIVERY OPTIMIZATION (CTR+OPT). Here, we pair the
article selection of CTR+Greedy with our optimization-based ad-serving. More pre-
cisely, the article with the highest expected CTR is always selected. The ad-serving
mechanism remains the same as in our algorithm, and uses the same underdelivery-
minimization objective. In essence, the ad-serving system acts as if the user had di-
rectly arrived at the article page (recall the example of user C in Figure 2 earlier).

These baselines are compared against our traffic shaping algorithm via a “replay”
experiment, where historical traffic patterns were presented as input to the algorithm,
which had to decide both the article summaries and the ads to show to the user. As-
suming correct CTR estimates, the number of impressions delivered to the various ad
contracts is tracked. At the end of the replay, the number of underdelivering contracts
and the total shortfall in impressions are computed and compared across algorithms.

3.3. Usefulness of Traffic Shaping
We experimented with two versions of our algorithm:

— Full shaping (Full): No constraints are placed on the shaping probabilities, i.e., we
used trivial lower and upper bounds Li = 0 and Ui = 1.

— Constrained shaping (Constr): Here, the traffic shaping algorithm is constrained to
show every user the article with the highest CTR with at least 90% probability, leav-
ing only 10% of the traffic available for shaping.

For each case, we solve the offline optimization to get the αj duals that must be
used in online reconstruction. For the baselines, we also solve for the fractions fj cor-
responding to the ad contracts. This also yields, as a by-product, the number of under-
delivering ad contracts (around 14K out of 100K contracts).

For each algorithm, we report three numbers. The first is the number of underdeliv-
ering ads that are delivered impressions thanks to the traffic shaping algorithm. The
second measures the total impressions delivered to underdelivering ads. For reasons of
confidentiality, we present this not in terms of the actual number of such impressions
but rather as a lift in the impressions by the algorithm over the impressions delivered
by CTR+Greedy. The third number we present is the average CTR of the algorithm,
again normalized by that of CTR+Greedy. Table I shows the performance of all the
algorithms.

We can make the following observations:
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(1) Both Full and Constr deliver significantly more impressions to underdelivering ads
as compared to the baselines.

(2) Overall, all algorithms are able to deliver impressions to the bulk of the underde-
livering ad contracts.

(3) The average CTR is highest for CTR+Greedy and CTR+Opt, as expected; in both,
article selection is done solely to maximize CTR. However, Full is able to achieve
90% of this CTR even though it does not enforce any constraints on the traffic shap-
ing probabilities. When we do constrain the algorithm to select the maximum-CTR
article for at least 90% of the traffic, the average CTR is actually within 96% of the
maximum (note that the maximum-CTR article can depend on user characteris-
tics, and can be different for different user nodes). This implies that the “shaped”
traffic was shown articles that had a CTR of about 60% of the maximum. It is in
fact likely that articles selected by our shaping algorithm will have moderately
high CTR: if CTR is too low, the number of users clicking on the article, and hence
the total traffic that can be delivered to underperforming ads, will be too low to be
worthwhile.

3.4. Effect of constraints
To better understand the trade-offs involved in constraining traffic shaping to the
maximum-CTR articles, we analyzed a range of constraint values (i.e., the Li values
from our optimization). Figure 3(a) and (b) plot the lift in delivered impressions and
the average CTR as functions of the constraint. As expected, when the algorithm is
forced to display the maximum-CTR article to a higher fraction of traffic, the lift in
impressions delivered to underperforming ad contracts is reduced simply because less
traffic is available for shaping. Correspondingly, the average CTR increases. A careful
analysis also reveals the existence of three distinct regimes:

(1) Li ≤ 0.25 : Both plots are flat when a 0.25 or smaller fraction of the traffic is
constrained, implying that the optimal unconstrained solution (Full) sends about
25% of the traffic to the maximum-CTR article anyway.

(2) 0.25 < Li ≤ 0.4: Here, we see that the average CTR starts climbing, implying that
the Full was shaping this traffic to articles with lower CTR. However, the change
in lift in this range is marginal. Thus, even though the articles being picked by Full
were connected to more underdelivering contracts, their lower CTR did not allow
this advantage to be translated into significant lift. Clearly, the portal’s publisher
should send at least 40% of incoming traffic to the best article; this maximizes user
engagement (as measured by CTR) while retaining practically all the advantages
of the unconstrained traffic shaping solution.

(3) Li > 0.4: When more than 0.4 fraction of the traffic is constrained, the effect is
linear over a broad range of constraint values. Every unit of traffic above the 40%
bar that is sent to the maximum-CTR article is a unit of traffic that is shown
significantly fewer underdelivering ads.

Finally, we note two points. First, impressions were delivered to all 14, 000 underper-
forming contracts for all values of Li shown in the plots. Thus, our traffic shaping al-
gorithm remains “fair” to all contracts requiring extra impressions. Second, even with
unconstrained traffic shaping, the average CTR decreases only to 90% of the maximum
possible, while yielding an almost threefold lift in reducing underdelivery. This is an
emphatic justification for the usefulness and power of traffic shaping.

4. GENERAL FORM
Our proposed algorithm was designed specifically to address the objective function and
constraints that matter for the traffic shaping problem, but its basic underlying ideas
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(a) Lift in impressions (b) Average CTR

Fig. 3. Variation in (a) lift in impressions and (b) average CTR, as the traffic shaping algorithm is con-
strained to send different fractions of incoming traffic to the maximum-CTR article.

might be applicable in many other settings. We devote this section to a presentation of
this general methodology.

Consider the following problem:

(ORIG) Minimize H(x) (14)
s.t. ∀j ∈ J cj · x+ dj ≤ 0, (15)

where the objective H(x) is strictly convex and separable (i.e. H(x) =
∑
iHi(xi)), J is a

set of indices for our constraints, and cj , dj , and x are all vectors. We will occasionally
abuse notation, referring to J as the set of constraints, rather than their indices.

In the offline phase, we solve the above problem, ensuring that we find an optimal
set of duals. That is, we find x∗ and duals αj satisfying the KKT-conditions:

∇H(x∗) +
∑
j∈J

αjcj = 0 Stationarity (16)

∀j ∈ J, αj(cj · x∗ + dj) = 0 Complementary slackness (17)
∀j ∈ J, cj · x∗ + dj ≤ 0 Primal feasibility (18)

∀j ∈ J, αj ≥ 0 Dual feasibility (19)

For the types of problems we are interested in, it is impractical or impossible to store
the full primal solution. Instead, we wish to store a small amount of information (in
the form of a subset of the dual values) and reconstruct the primal solution online, as
needed.

Our method works on problems that are shatterable into small subproblems, a con-
cept that we now define: Denote the set of indices of x by I; thus, we may think of
the variables in our problem as xi for i ∈ I. Consider the graph induced by the set of
constraints in our problem: Each node corresponds to a variable xi for i ∈ I, and an
edge (i, i′) exists if xi and xi′ appear in a constraint together. (Here, we only consider
xi to appear in constraint cj · x + dj ≤ 0 if cij 6= 0, where cij is the i-th entry in cj .)
Notice that this induced graph has a number of connected components (possibly just
one), and that the set of connected components corresponds to a partition of I.
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We say a set of constraints Jshatter ⊆ J shatters the problem into partition
I1, I2, . . . , Ik of I if removing the constraints Jshatter from the problem produces a
graph whose connected components correspond to I1, . . . , Ik.

Why is this concept so useful? Consider the following problem

Minimize G(x) (20)
s.t. ∀j ∈ J \ Jshatter cj · x+ dj ≤ 0, (21)

In the case that G(x) is separable (i.e., G(x) =
∑
i∈I Gi(xi)), this problem actually

breaks into k smaller problems, each of the form

Minimize
∑
i∈I` Gi(xi) (22)

s.t. ∀j ∈ J`, cj · x+ dj ≤ 0, (23)

where J` is the set of constraints from J \ Jshatter for which some xi appears for i ∈ I`
(i.e. the connected component corresponding to I`).

In the problem we studied in this paper, the demand constraints shattered our prob-
lem into a number of subproblems, one for each user. Thus, in the online reconstruction
phase, we solved a small subproblem that depended only on the connected component
involving an individual user.

Again, our technique is suited towards problems that can be shattered into appro-
priate subproblems. In this case, let Jshatter be the shattering constraints. After the
offline phase, we store the dual values αj for these constraints j ∈ Jshatter (and forget
the primal solution and all other dual values).

During online reconstruction, if we need to find the value of some xi with i ∈ I`, we
simply solve a smaller problem:

Minimize
∑
i∈I` Hi(xi) +

∑
j∈Jshatter

αj
∑
i∈I` cijxi (24)

s.t. ∀j ∈ J`, cj · x+ dj ≤ 0, (25)

where the αj are now fixed constants that were determined in the offline phase.
In general, this problem may be solved using the same technique as the original

problem, albeit much more quickly due to its smaller size. Of course, in many cases
(such as the problem we study), this subproblem may be solved even more efficiently.

Finally, we need to argue that the solution produced by online reconstruction is iden-
tical to the solution of the original problem. Note that although we have solved a num-
ber of smaller problems, the solution to each of these problems together is the same as
the following larger problem:

(SUB) Minimize H(x) +
∑
j∈Jshatter

αj(cj · x+ dj) (26)
s.t. ∀j ∈ J \ Jshatter, cj · x+ dj ≤ 0 (27)

Notice that we have somewhat suggestively added
∑
j αjdj to the objective function.

This is just a constant, so it does not affect the optimal solution. We have the following.

CLAIM 6. The primal solution to (SUB) is identical to the primal solution of (ORIG).

PROOF. We will prove the case for Jshatter of size 1, say Jshatter = {1}. The proof for
larger Jshatter follows by induction.

Let y∗ be the optimal solution to

Minimize H(x) + α1(c1 · x+ d1) (28)
s.t. ∀j ∈ J \ {1} cj · x+ dj ≤ 0 (29)
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Note that x∗, the optimal solution to (ORIG), is also a solution to the above problem.
We wish to show that y∗ = x∗. Suppose this is not the case, and y∗ 6= x∗. We will show
that H(x∗) + α1(c1 · x∗ + d1) < H(y∗) + α1(c1 · y∗ + d1), hence y∗ cannot be optimal.

Define p(t) = H(x(t)) +α1(c1 ·x(t) +d1), where x(t) = ty∗+ (1− t)x∗. (Intuitively, this
is the restriction of the new objective function to the line segment from x∗ to y∗.) Note
that p(0) = H(x∗) + α1(c1 · x∗ + d1), while p(1) = H(y∗) + α1(c1 · y∗ + d1). Further, since
H is strictly convex, it follows by definition that p is strictly convex as well.

Consider the derivative of p,
p′(t) = ∇H(x(t)) · (y∗ − x∗) + α1c1 · (y∗ − x∗) (30)

Hence,
p′(0) = ∇H(x∗) · (y∗ − x∗) + α1c1 · (y∗ − x∗) (31)

= −
∑
j∈J\{1} αjcj · (y∗ − x∗), (32)

where the second equality follows from the stationarity condition for (ORIG). Further,
by the complementary slackness conditions for (ORIG), we see that for all j ∈ J \ {1},
either αj = 0 or cj · x∗ + dj = 0. Since cj · y∗ + dj ≤ 0 for j ∈ J \ {1}, this implies that
−αjcj · (y∗ − x∗) ≥ 0. Hence, p′(0) ≥ 0.

Continuing, since p is strictly convex on [0, 1], its derivative is strictly increasing.
Hence, p′(t) > 0 on (0, 1]. That is, p is strictly increasing. Hence, p(0) < p(1). So we
have

H(x∗) + α1(c1 · x∗ + d1) < H(y∗) + α1(c1 · y∗ + d1)

as claimed. That is, x∗ is the unique optimal solution to our modified problem. The
proof follows.

5. BACKGROUND AND RELATED WORK
To the best of our knowledge, this work is the first paper focused on delivering web
content in a way that enhances short-term engagement with the user, while simulta-
neously enhancing the delivery guarantees of a pre-existing large-scale system.

There have been previous efforts that dealt with selecting content to increase en-
gagement. Most of this work has been concerned with single metrics, like clickthrough
rate ([Agarwal et al. 2008; Das et al. 2007]). More generally, [Yang et al. 2010] con-
sider balancing multiple objectives, including both increasing clickthrough rate as well
as those objectives associated with guaranteed delivery contracts. Recently, the work
of [Agarwal et al. 2011] has taken engagement to involve balancing a variety of metrics,
including potential downstream revenue. This downstream impact includes consider-
ations like increasing the total time spent on web pages. (Users who are shown good
content are likely to stay around longer.) However, these considerations were treated
as static values. Even if these values are updated frequently, they fail to capture the
interplay between content and ad delivery.

In contrast, our work allows the associated guaranteed ad delivery system to book ad
contracts more aggressively, knowing that shortfalls in inventory can be corrected dy-
namically. Further, even when no over-booking happens, we can balance the allocation
and delivery goals of publishers with the short-term engagement of users.

A second issue we address is how to make online decisions to deliver content in a
near-optimal way. One of the main difficulties is that real systems must be robust —
delivering content in a good fashion regardless of what users appear — while main-
taining just a small amount of state. There has been work on content optimization
that modeled this as a multi-armed bandit problem [Dudı́k et al. 2011; Agarwal et al.
2009]. However, this work fails to capture the interactions of content choices with a
larger guaranteed ad delivery system.
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Our technique utilizes a pre-existing forecast to compute an optimal solution. (Note
that such a forecast must already exist in order for a guaranteed delivery system to en-
sure that the guarantees are deliverable.) Although this seems straightforward at first
blush, it is actually only the starting point for content delivery. Storing the entire solu-
tion on each server is entirely impractical. Further, if the forecast fails to include even
a single user, the server would not know what to do. To address these concerns, earlier
work proposed storing the duals for a subset of the constraints [Devenur and Hayes
2009; Vee et al. 2010]5 At serving time, these duals then allow the server to reconstruct
the primal solution. However, these earlier papers considered much simpler optimiza-
tion problems. In the case of [Devenur and Hayes 2009], it is a linear program in which
the main constraints are all upper bounds. Although [Vee et al. 2010] studies a prob-
lem with a non-linear objective, it focuses on the case of a bipartite graph. Here, the
input problem is a four-layer graph, and simply storing the duals for the constraints
would not have produced a usable solution. Indeed, much of the difficult technical work
in this paper was re-formulating the problem in such a way that the dual formulation
could compactly represent the primal in a way that was reconstructable at serving
time.

6. CONCLUSIONS
Article selection and ad serving are usually solved by standalone systems, and this has
meant that underdelivering ads could not be “helped”. We propose an optimization-
based formulation of traffic shaping that minimizes underdelivery while ensuring that
the maximum-CTR articles are still selected at least some pre-specified fraction of
the time. Thus, the objective jointly optimizes for underdelivery (ad serving) and CTR
(user engagement through article selection). We further give an online reconstruction
algorithm that can infer the optimal traffic shaping probabilities for each incoming
user using only a small cache of duals; thus, the entire forecast graph need not be
loaded into memory. The degree of traffic shaping can be controlled by the publisher
to conform as closely as desired to any standalone article selection solution. Empirical
results on a large dataset from a real-world web portal demonstrate that a threefold
reduction in underdelivery is possible with only a 10% CTR drop, or a 2.6-fold im-
provement with only a 4% CTR drop, clearly demonstrating the effectiveness of traffic
shaping.
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