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Abstract

How will a virus propagate in a real network?
Does an epidemic threshold exist for a finite power-
law graph, or any finite graph? How long does it
take to disinfect a network given particular values
of infection rate and virus death rate?

We answer the first question by providing equa-
tions that accurately model virus propagation in
any network including real and synthesized network
graphs. We propose a general epidemic thresh-
old condition that applies to arbitrary graphs: we
prove that, under reasonable approximations, the
epidemic threshold for a network is closely related
to the largest eigenvalue of its adjacency matrix.
Finally, for the last question, we show that infec-
tions tend to zero exponentially below the epidemic
threshold.

We show that our epidemic threshold model
subsumes many known thresholds for special-case
graphs (e.g., Erdös-Rényi, BA power-law, homoge-
neous); we show that the threshold tends to zero for
infinite power-law graphs. Finally, we illustrate the
predictive power of our model with extensive experi-
ments on real and synthesized graphs. We show that
our threshold condition holds for arbitrary graphs.
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1. Introduction

Computer viruses remain a significant threat to
today’s networks and systems. Existing defense
mechanisms typically focus on local scanning of
virus signatures. While these mechanisms can de-
tect and prevent the spreading of known viruses,
they do little for globally optimal defenses. The
recent proliferation of malicious code that spreads
with virus code exacerbates the problem [10, 24, 25].
From a network dependability standpoint, the prop-
agation of malicious code represents a particular
form of fault propagation, which may lead to the ul-
timate demise of the network (consider distributed
denial-of-service attacks). With the exception of a
few specialized modeling studies [7, 8, 16, 19, 26],
much still remains unknown about the propagation
characteristics of computer viruses and the factors
that influence them.

In this paper, we investigate epidemiological
modeling techniques to reason about computer vi-
ral propagation. Kephart and White [7, 8] are
among the first to propose epidemiology-based an-
alytic models. Their studies, however, are based
on topologies that do not represent modern net-
works. Staniford et al. [23] reported a study of the
Code Red worm propagation, but did not attempt
to create an analytic model. The more recent stud-
ies by Pastor-Satorras et al. [16, 17, 18, 19, 20] and
Barabási et al. [2, 4] focused on epidemic models
for power-law networks.

This work aims to develop a general analytic
model of virus propagation. Specifically, we are in-
terested in models that capture the impact of the
underlying topology but are not limited by it. We
found that, contrary to prior beliefs, viral propaga-
tion is largely determined by intrinsic characteris-
tics of the network. Our model holds for arbitrary
graphs and renders surprisingly simple but accurate
predictions.



The layout of this paper is as follows: section 2
gives a background review of previous models. In
section 3, we describe our proposed model. We
show that our model conforms better to simulation
results than previous models over real networks. In
section 4, we revisit the issue of epidemic threshold
and present a new theory for arbitrary graphs—the
epidemic threshold of a given network is related in-
trinsically to the first eigenvalue of its adjacency
matrix. We summarize in section 6.

2. Earlier models and their limitations

The class of epidemiological models that is most
widely used is the so-called homogeneous mod-
els [1, 11]. A homogeneous model assumes that
every individual has equal contact to everyone else
in the population, and that the rate of infection is
largely determined by the density of the infected
population. Kephart and White adopted a mod-
ified homogeneous model in which the communi-
cation among individuals is modeled as a directed
graph [7]: a directed edge from node i to node j
denotes that i can directly infect j. A rate of in-
fection, called the birth rate, β, is associated with
each edge. A virus curing rate, δ, is associated with
each infected node.

If we denote the infected population at time t
as ηt, a deterministic time evolution of ηt in the
Kephart-White model (hereafter referred to as the
KW model) can be represented as

dηt

dt
= β〈k〉ηt(1 − ηt) − δηt (1)

where 〈k〉 is the average connectivity. The steady
state solution for Equation 1 is η = 1−δ/(β〈k〉)∗N ,
where N is the total number of nodes.

An important prediction of Equation 1 is the no-
tion of epidemic threshold. An epidemic threshold,
τ , is the critical β/δ ratio beyond which epidemics
ensue. In a homogeneous or Erdös-Rényi network,
the epidemic threshold is,

τhom =
1

〈k〉 (2)

where 〈k〉 is the average connectivity [7].

These earlier models provide a good approxima-
tion of virus propagation in networks where the
contact among individuals is sufficiently homoge-
neous. However, there is overwhelming evidence
that real networks (including social networks [21],
router and AS networks [6], and Gnutella overlay
graphs [22]) deviate from such homogeneity—they

follow a power law structure instead. Computer
viruses, therefore, are likely to propagate among
nodes with a high variance in connectivity.

Pastor-Satorras and Vespignani studied epidemic
spread for power-law networks where the connec-
tivity distribution is characterized as P (k) = k−γ

(P (k) is the probability that a node has k links)
[14, 16, 18, 19]. Power-law networks have a highly
skewed connectivity distribution and for certain val-
ues of γ resemble the Internet topology [6]. Pastor-
Satorras et al. developed an analytic model (we
refer to their model as the SV model) for the
Barabási-Albert (BA) power-law topology (γ = 3).
Their steady state prediction is,

η = 2e−δ/mβ (3)

where m is the minimum connection in the net-
work. The SV model, however, depends critically
on the assumption γ = 3, which does not hold for
real networks [9, 6]. This model yields less than
accurate predictions for networks that deviate from
the BA topology, as we will show later in the pa-
per. Pastor-Satorras et al. [18] also proposed an
epidemic threshold condition

τSV =
〈k〉
〈k2〉 (4)

where 〈k〉 is the expected connectivity and 〈k2〉 sig-
nifies the connectivity divergence.

Following [19], Boguñá and Satorras studied epi-
demic spreading in correlated networks where the
connectivity of a node is related to the connectiv-
ity of its neighbors [3]. These correlated networks
include Markovian networks where, in addition to
P (k), a function P (k|k′) determines the probability
that a node of degree k is connected to a node of
degree k′.

While some degree of correlations may exist in
real networks, it is often difficult to character-
ize connectivity correlations with a simple P (k|k′)
function. Indeed, prior studies on real networks
[6, 15] have not found any conclusive evidence to
support the type of correlation as defined in [3].
Hence, we will not discuss models for correlated
networks further in this paper.

We present a new analytic model that does not
assume any particular propagation topology. We
will show later that our model subsumes previous
models that are tailored to fit special-case graphs
(homogeneous, BA power-law, etc.).



3. The proposed model

In this section, we describe a model that does
not assume homogeneous connectivity or any par-
ticular topology. We assume a connected network
G = (N, E), where N is the number of nodes in the
network and E is the set of edges. We assume a
universal infection rate β for each edge connected
to an infected node, and a virus death rate δ for
each infected node. Table 1 lists the symbols used.

β Virus birth rate on a link connected
to an infected node

δ Virus curing rate on an infected node
t Time stamp
pi,t Probability that node i is infected at t
ζi,t Probability that node i does not

receive infections from its neighbors at t
ηt Infected population at time t
〈k〉 Average degree of nodes in a network
〈k2〉 Connectivity divergence

Table 1. Table of Symbols

3.1. Model

Our model assumes discrete time. During each
time interval, an infected node i tries to infect its
neighbors with probability β. At the same time,
i may be cured with probability δ. We denote the
probability that a node i is infected at time t as pi,t.
We define ζi,t, the probability that a node i will not
receive infections from its neighbors at time t as,

ζi,t =
∏

j:neighbor of i

(pj,t−1(1 − β) + (1 − pj,t−1))

=
∏

j:neighbor of i

(1 − β ∗ pj,t−1) (5)

We assume that a node i is healthy at time t if

• i was healthy before t and did not receive in-
fections from its neighbors at t (defined by ζi,t)
OR

• i was infected before t, cured at t and did not
receive infections from its neighbors (defined
by ζi,t) OR

• i was infected before t, received and ignored
infections from its neighbors, and was subse-
quently cured at t

Note that the third bullet above is due to poten-
tially concurrent curing and infection events.

We subsequently define the healthy probability
of a node i at time t, 1 − pi,t, to be

1 − pi,t = (1 − pi,t−1)ζi,t + δpi,t−1ζi,t

+
1

2
δpi,t−1(1 − ζi,t) i = 1 . . .N (6)

Note that for the last term on the right hand side
of Equation 6 we assume that the probability that
a curing event at node i takes place after infection
from neighbors is roughly 50%.

Given a network topology and particular values
of β and δ, we can solve Equation 6 numerically and
obtain the time evolution of infected population, ηt,
where ηt =

∑N
i=1

pi,t.

3.2. Experiments

In this section, we present a set of simulation
results. The simulations are conducted to answer
the question—how does our model perform in real,
BA power law, and homogeneous graphs? We use a
real network graph collected at the Oregon router
views1. This dataset contains 31180 links among
10900 AS peers. All synthesized power-law graphs
used in this study are generated using BRITE [12].
Unless otherwise specified, each simulation plot is
averaged over 15 individual runs.

We begin each simulation with a set of randomly
chosen infected nodes on a given network topology2.
Simulation proceeds in steps of one time unit. Dur-
ing each step, an infected node attempts to infect
each of its neighbors with probability β. In addi-
tion, every infected node is cured with probability
δ. An infection attempt on an already infected node
has no effect.

Figure 1 shows the time evolution of η as pre-
dicted by our model (see Equation 6) on the 10900-
node Oregon AS graph, plotted against simulation
results and the steady state prediction of the SV
model in Equation 3 (Since the SV model does not
estimate the transients, we plot the steady state
only.) As shown, our model yields a strictly more
precise result than the SV model.

Figure 2 compares the predictions of our model
against the SV model for Barabási-Albert networks
(see Equation 3). The topology used in Figure 2 is
a synthesized 1000-node BA network. Since the SV

1http://topology.eecs.umich.edu/data.html
2The number of initially-infected nodes does not affect

the equilibrium of the propagation. It is chosen based on
the particular values of β and δ for each run



(a) (b)

Figure 1. Experiments show the time evolution of infection in an 10900-node power-law network.
Both simulations were performed on an Oregon network graph, with 〈k〉 = 5.72 and β = 0.14. In
both cases, our model conforms much closer to the simulation results than the SV model.

model (see Equation 3) is specifically tailored for
BA networks, we expect the comparison to be sim-
ply a sanity check. As shown, both models conform
nicely to the simulation results, though our model
appears to be slightly more precise.

Figure 2. Experiments on BA topology:
shows time evolution of infected popula-
tion in a 1000-node power-law network.
Our model outperforms the SV model in
its steady state prediction.

Figure 3 shows simulation results of epidemic
spreading on a synthesized 1000-node random net-
work, plotted against the KW model [7] and our
model. The network is constructed according to
the Erdös-Rényi model [5]. Since an Erdös-Rényi
network is sufficiently close to being homogeneous
as far as epidemiological models are concerned, the
results in Figure 3 suggest that our model is as pre-

cise as the KW model, which is designed specifically
for homogeneous networks. In one case where β is
0.2 and δ is 0.72, the simulated spreading appears
to follow our prediction more closely than that of
the KW model.

Figure 3. Experiments on ER topology:
shows time evolution of infected popu-
lation in a 1000-node random Erdös net-
work. Our model generally yields similar
predictions to the KW model, but outper-
forms it when δ is high.

The experiments we show here, conducted on a
real network, a synthesized BA power-law network,
and an Erdös-Rényi network, illustrate the predic-
tive power of our model—as a general model, it sub-
sumes prior models and produces predictions that
equal or outperform predictions that target specific
topologies.



4. Epidemic threshold and eigenvalues

As described previously, an epidemic threshold
is a critical state beyond which infections become
endemic. Predicting the epidemic threshold is an
important part of an epidemiological model. The
epidemic threshold of a graph depends fundamen-
tally on the graph itself. The challenge therefore is
to capture the essence of the graph in as few param-
eters as possible. We present one such model here
that predicts the epidemic threshold with a single
parameter—the largest eigenvalue of the adjacency
matrix of the graph—for arbitrary graphs.

We note that previous models have derived
threshold conditions for special-case graphs. For in-
stance, the epidemic threshold for a homogeneous
network is the inverse of the average connectivity,
〈k〉. Similarly, the threshold for infinite power-law
networks is zero. However, a unifying model for
arbitrary, real graphs has not appeared in the lit-
erature. The closest model thus far is the one put
forth by Pastor-Satorras et al. (see Equation 4).
We show later that their model is not accurate for
arbitrary graphs.

In this section, we describe a general theory for
epidemic threshold that holds for arbitrary graphs.
We observe that the epidemic threshold is a con-
dition linking the virus’ birth and curing rate to
the adjacency matrix of the graph, such that an in-
fection becomes an epidemic if the condition holds,
and dies out if it does not. Our theory is surpris-
ingly simple yet accurate at the same time. We
show later in this section that this new threshold
condition subsumes prior models for special-case
graphs. Table 2 lists the symbols used in this sec-
tion.

A Adjacency matrix of the network
trA The transpose of matrix A
λi,A The i-th largest eigenvalue of A
ui,A Eigenvector of A corresponding to λi,A

S The ‘system’ matrix describing the
equations of infection

λi,S The i-th largest eigenvalue of S

Table 2. Symbols for eigenvalue analysis

Next, we will show that our estimate for the epi-
demic threshold τ is

τ = 1

λ1,A
(7)

where λ1,A is the largest eigenvalue of the adjacency

matrix A of the network.

Theorem 1 (Epidemic Threshold) If an epi-
demic dies out, then it is necessarily true that
β
δ < τ = 1

λ1,A
, where β is the birth rate, δ is the

curing rate and λ1,A is the largest eigenvalue of the
adjacency matrix A.

Proof: Restating Equation 6,

1 − pi,t = (1 − pi,t−1)ζi,t + δpi,t−1ζi,t

+
1

2
δpi,t−1(1 − ζi,t) i = 1 . . .N

Rearranging the terms,

1 − pi,t =
1

2
δpi,t−1 +

(

1 +

(

1

2
δ − 1

)

pi,t−1

)

ζi,t

=
1

2
δpi,t−1 + 1 +

(

1

2
δ − 1

)

pi,t−1

−β
∑

j

pj,t−1

= 1 + δpi,t−1 − pi,t−1 − β
∑

j

pj,t−1 (8)

This uses the approximation

(1 − a)(1 − b) ≈ 1 − a − b (9)

when a � 1, b � 1.

We thus have

so, pi,t = (1 − δ)pi,t−1 + β
∑

j

pj,t−1 (10)

Converting Equation 10 to matrix notation (Pt

is the column vector (p1,t, p2,t, . . . , pN,t)),

Pt = ((1 − δ) I + βA) Pt−1 (11)

Thus, Pt is of the form

Pt = SPt−1 (12)

= StP0 (13)

where S = (1 − δ)I + βA. We call S the system
matrix.

As we show in Lemma 1 in the Appendix, the
matrices A and S have the same eigenvectors ui,S,
and their eigenvalues, λi,A and λi,S , are closely re-
lated:

λi,S = 1 − δ + βλi,A ∀i (14)

Using the spectral decomposition, we can say

S =
∑

i

λi,S ui,S tr(ui,S)

and, St =
∑

i

λt
i,S ui,S tr(ui,S) (15)



Using this in Equation 13,

Pt =
∑

i

λt
i,S ui,S tr(ui,S) P0 (16)

Without loss of generality, order the eigenvalues
such that λ1,A ≥ λ2,A . . .. For an infection to die off
and not become an epidemic, the vector Pt should
go to zero for large t, which happens when ∀i, λt

i,S

tends to 0. That implies λ1,S < 1. So,

1 − δ + βλ1,A < 1 (17)

which means that, τ = 1

λ1,A
2

Theorem 2 (Exponential Decay) When an
epidemic is diminishing (therefore β/δ < 1

λ1,A
), the

probability of infection decays exponentially over
time.

Proof: We have:

Pt = StP0 (from Equation 13)

≈
∑

i

λt
i,S ui,S tr(ui,S)P0 (from Equation 15)

≈ λt
1,S ∗C (18)

where C is a constant vector. Since the value of
λ1,S is less than 1 (because of the no-epidemic con-
dition). the values of pi,t are decreasing exponen-
tially over time. 2

Corollary 1 When the network is below the epi-
demic threshold, the number of infected nodes de-
cays exponentially over time.

Proof: Let nt denote the number of infected nodes
at time t.

nt =

N
∑

i=1

pi,t

=
∑

i

λt
1,S ∗ Ci

= λt
1,S ∗

∑

i

Ci

where Ci are the individual elements of the matrix
C in Equation 18 above. Because

∑

i Ci is a con-
stant and λ1,S < 1 (from Theorem 1), we see that
nt decays exponentially with time. 2.

The exponential decay in the number of infected
nodes is shown clearly in Figure 4, where we plot
the logarithm of the number of infected nodes, ηt,
versus t. Two plots are shown: One for the star
topology, and one for the Oregon dataset. In both
cases, we observe that for large values of time t, the
plots become linear, implying that the number of
infected nodes decays exponentially.

5. Discussion—generality of our

threshold condition

We now turn to show that our threshold condi-
tion is general and holds for other graphs. In par-
ticular, we show that the threshold condition holds
for a) homogeneous, b) star, c) infinite power-law,
and d) finite power-law graphs. We do that with
the following corollaries.

Corollary 2 The new threshold model holds for
homogeneous or random Erdös-Rényi graphs.

Proof: As reported previously, the epidemic
threshold in a homogeneous network or a random
Erdös-Rényi graph is τhom = 1/〈k〉 where 〈k〉 is the
average connectivity [7]. It is easily shown that,
in a homogeneous or random network, the largest
eigenvalue of the adjacency matrix is 〈k〉. There-
fore, our model yields the same threshold condition
as the homogeneous models [11]. 2

Corollary 3 The epidemic threshold, τ (as defined
in section 2), for a star topology is exactly 1√

d
,

where
√

d is the square root of the degree of the
central node.

Proof: In a star topology, we have two types of
nodes, the center node and the satellite nodes. Sup-
pose that we have d satellites, the first eigenvalue
of the adjacency matrix, λ1, is

√
d. The stability

condition then becomes

λ1 = 1 − δ + β ∗
√

d = 1 (19)

which means that δ = β ∗
√

d to achieve stability,
thus rendering τ = 1√

d
. 2

Figure 5 shows an infection spread over time in
a 100-node star graph with β = 0.016. Given τ =
1/

√
99, the critical δ on the threshold is 0.16. We

plotted our propagation model as given by Equa-
tion 6 in Figure 5(b). As shown, the propagation
model confirms our prediction for the critical δ.
More specifically, the theoretical results rendered
by the propagation model closely reflect the simu-
lation when δ > 0.16. For δ < 0.16, there is no
epidemic. For δ = 0.16, a very interesting setting
appears.

For the case of δ = 0.16, our propagation model
seems to show that the expected number of infected
nodes ηt drops approximately at the rate of t−1,
which is qualitatively different from the other two
cases: for δ > 0.16, ηt ≈ λt

1
; for δ < 0.16, ηt stabi-

lizes. This suggests a phase transition phenomenon.
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(a) Star topology (b) Oregon topology

Figure 4. This figure shows the exponential decay in the number of infected nodes over time,
when we are under the epidemic threshold. Plot (a) compares the logarithm of the number
of infected nodes over time for a 100-node star topology; plot (b) shows the same for the
Oregon topology. In both cases, the plot becomes linear for large t, meaning that the decay is
exponential.

(a) Simulation (b) Our propagation model

Figure 5. Critical δ for an 100-node star topology: number of infected nodes versus time in
log-log scales, given β = 0.016. Our threshold prediction places the critical δ at 0.16. (Triangles
at left and crosses at right plot)

Figure 6(d) depicts a further example for the
star topology, plotting the number of infected nodes
η200 at time t=200 for several values of the β/δ ra-
tio. We plot both theoretical (see Equation 6) and
simulation results. We also show the two epidemic
thresholds with vertical lines: Our threshold with
“crosses” at β/δ = 1/λ1,A = 0.1 and the SV thresh-
old with “squares” at β/δ = 0.02. The simulation

results indicate that our threshold is clearly in the
correct region, while the SV threshold prediction is
not accurate.

Corollary 4 The epidemic threshold for an infi-
nite power-law network is zero.

Proof: In a power-law network, the first eigenvalue
of the adjacency matrix, λ1,A, is

√
dmax (according



to [13]). Since dmax ∝ ln(N) and N is infinite, λ1,A

is infinite. Our epidemic threshold condition states
that δ must be greater than β ∗ λ1,A in order for
there not be any epidemic. Therefore, the epidemic
threshold is effectively zero for infinite power-law
networks. This result concurs with previous work,
which finds that infinite power-law networks lack
epidemic thresholds. 2

Corollary 5 The epidemic threshold, τ , for finite
power-law networks is more precisely indicated by

1

λ1,A
, where λ1,A is the first eigenvalue of A.

Proof: This follows from Theorem 1 above. 2

We compare our threshold prediction with the
threshold model by Pastor-Satorras et al. in Equa-
tion 4. Their model, τSV = 〈k〉/〈k2〉, where k
is the average connectivity, is put forth as a gen-
eral model. Figures 6(a) and (b) show simulated
epidemic spreading on the Oregon network. The
largest eigenvalue λ1,A of the adjacency matrix for
this network is approximately 58.7211.

We structured the experiment such that 5000
nodes are infected initially. Simulations proceed
with β = 0.001 and δ ranging from 0.05 to 0.14. For
the particular values of β and λ1,A, our epidemic
threshold model predicts a critical δ at 0.0587211,
while the SV threshold prediction puts the critical
δ at 0.2078. As shown in Figure 6(a), the simu-
lation with δ = 0.05 reaches equilibrium while the
run with δ = 0.07 approaches zero at approximately
time-tick 600. The run with δ = 0.06 approaches
zero steadily, but has yet to reach it at time-tick
1000. These results closely mirror our threshold
prediction, which shows a critical δ at approxi-
mately 0.06.

Figure 6(b) shows an alternate view of the exper-
iment result, plotting the number of infected nodes
η at time t=500 for several values of the β/δ ra-
tio. We plot both theoretical (see Equation 6) and
the simulation results. We also show the two epi-
demic thresholds with vertical lines: Our threshold
with “crosses” at β/δ= 1/λ1,A = 0.0167 and the SV
threshold with “squares” at β/δ= 0.0048. Notice
that our threshold is clearly in the correct region,
while the SV threshold prediction is less precise.

It was brought to our attention that Boguñá et
al. derived an epidemic threshold condition for cor-
related networks based on the largest eigenvalue of
a specialized connectivity matrix, C [3]. Each en-
try Ck,k′ of C is defined by kP (k|k′) where P (k|k′)
indicates the probability that a k-linked node is
connected to a k′-linked node. In [3], they used

a continuous-time model and arrived at the eigen-
value based threshold condition following a different
line of reasoning. While the two results are similar
for correlated networks, our threshold condition is
more general.

6. Conclusions - contributions

How will a virus propagate in a real computer
network? What is the epidemic threshold for a fi-
nite graph, if any? How long does it take for a
viral outbreak to reach steady state? These ques-
tions have for decades intrigued researchers. In this
paper we attempt to answer these questions by pro-
viding a new analytic model that accurately models
the propagation of viruses on arbitrary graphs. The
primary contributions of this paper are:

• We propose a new model for virus propagation
in networks (Equation 6), and show that our
model is more precise and general than previ-
ous models. We demonstrate the accuracy of
our model in both real and synthetic networks.

• We show that we can capture the virus-
propagation properties of an arbitrary graph
in a single parameter, namely the eigenvalue
λ1,A. We propose a precise epidemic thresh-
old, τ = 1/λ1,A, which holds irrespective of
the network topology; an epidemic is prevented
when δ > δc = β ∗ λ1,A. We show that our
epidemic threshold is more general and more
precise than previous models for special-case
graphs (e.g., Erdös-Rényi, homogeneous, BA
power-law); we show that it tends to zero for
infinite power-law graphs.

• We show that, below the epidemic threshold,
the number of infected nodes in the network
decays exponentially.

Future research directions abound, both for the-
oretical as well as experimental work. One could
examine phase transition phenomena, when we are
exactly on the epidemic threshold. Another promis-
ing direction is to enhance the model with a “vig-
ilance” parameter to model environmental factors
that affect viral propagations.
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Figure 6. Epidemic threshold on the Oregon and Star topology. Plot (a) shows that the critical
δ at 0.06 is very close to our predicted epidemic threshold critical δ ≈ 0.0587211. The SV model
predicts critical δ ≈ 0.207796. Plot (b) shows that our predicted τ at 0.0167 approximates the
behavior of the infection at time-tick 500 where the system state has stabilized. As shown, the
threshold predicted by the SV model does not accurately reflect reality. Plots (c) and (d) show
the same information for the Star topology, except at time-tick 200. Again, our estimate of the
threshold is better than that of the SV model.

also like to thank the anonymous reviewers for their
helpful comments.

8. Appendix

Lemma 1 (Eigenvalues of the system matrix)
The i − th eigenvalue of S is of the form
λi,S = 1 − δ + βλi,A, and the eigenvectors of S are
the same as those of A.

Proof: Let ui,A be the eigenvector of A corre-
sponding to eigenvalue λi,A. Then, by definition,
Aui,A = λi,Aui,A (because A is symmetric in our
case). Now,

Sui,A = (1 − δ)ui,A + βAui,A

= (1 − δ)ui,A + βλi,Aui,A

= (1 − δ + βλi,A)ui,A (20)

Thus, ui,A is also an eigenvector of S, and the cor-
responding eigenvalue is (1 − δ + βλi,A). 2
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